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ABSTRACT This paper presents a novel delay-dependent dissipative control synthesis technique with a
state-feedback structure for input-delayed suspension systems using a tighter bounding technique. By more
accurately estimating the derivative of the LKF, we focus on reducing the conservatism of the state-feedback
control synthesis for suspension systems with strict design constraints. New LMI conditions for a desired
state-feedback controller are developed by employing a generalized free-weighting-matrix (GFWM)method.
By solving the LMIs, the proposed controller for active suspension systems is obtained such that the closed-
loop systems have asymptotic stability with guaranteed (Q,S,R)-dissipative performances, while also
satisfying the design constraint conditions. Numerical simulations effectively confirm the benefits of the
proposed control synthesis technique for the design of state-feedback control.

INDEX TERMS Lyapunov–Krasovskii stability, generalized free-weighting-matrix, linear matrix inequality,
state-feedback, suspension systems, dissipative control, bonded time-varying delay.

I. INTRODUCTION
Recently, autonomous driving technology has been on the
rise because it promises to improve the safety of vehicles and
the comfort of drivers and passengers. The demand for elec-
tronic stability control systems, such as rollover protection
and adaptive cruise control, is growing [1], [2]. In particu-
lar, research on suspension systems has received significant
attention from academia and industry because it can improve
vehicle comfort and steering stability [3]. State-of-the-art sus-
pension systems can be divided into two classes: active and
semi-active suspensions [4], [5]. A semi-active suspension
can only change the damping coefficient based on the road
conditions, whereas an active suspension can raise and lower
the chassis through an actuator independently mounted on
each wheel [6], [7].

The major concern of active suspension systems is
the effective handling of the trade-off between competing
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performances [8]. This can be regarded as a multi-objective
optimization problem, and various control techniques for
active suspension systems have been introduced [9]–[11].
Among them, H∞ control has been recognized as a powerful
tool for managing the trade-off so that a compromise between
the conflicting performance requirements can be achieved.
This is because, based on the Lyapunov stability theory and
linear matrix inequality, it can be treated as a single control
problem by treating ride comfort as the main target and other
performance indicators as constraints [12]–[15].

On the other hand, the notion of dissipativity comes
from energy-based control, which generalizes the concepts
of energy storage and dissipation. The theory of dissipation
inequality in [16], [17] has received considerable attention in
many fields, such as circuits, networks, systems, and control
engineering [18]–[21]. Dissipative control is advantageous
in providing a unified framework that includes conventional
controls such as H∞ control and passive control as special
cases, and providing design flexibility through (Q,S,R)
adjustment [22], [23]. This can be an effective solution for
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reducing the conservatism of controller design problems
where design constraints exist [24], [25]. Despite this poten-
tial, the controller design results utilizing the concept of
dissipation in suspension systems are very limited, and in par-
ticular, the problem of input-delay state-feedback dissipative
control has not been solved yet.

In many practical applications, the time-varying delay is
frequently considered a factor causing instability of dynamic
systems [26], [27]. Therefore, time delay has been recog-
nized as an essential consideration in stability analysis and
control design, and has been extensively studied over the last
few decades [28]–[30]. A challenging task in control design
and stability analysis for time-delayed systems is extending
the allowable upper bound to ensure the stability of closed-
loop systems [31], [32]. This can be achieved by reduc-
ing the numerically derived stability or conservatism of the
controller synthesis conditions [33]. Therefore, some tighter
bounding techniques have been proposed in the literature to
reduce conservatism considering stability criteria and con-
trol design [34]–[37]. Representative bounding techniques
for estimating the derivative of the Lyapunov-Krasovskii
function include the Jensen inequality [34], Wirtinger-type
inequality [35], free-weight matrix approach [36], and recip-
rocal convex technique [37]. Developing and using effective
boundary techniques to contribute to the reduction of conser-
vatism in controller synthesis remains a challenging task.

In active suspension systems, considerable attention has
been paid to the issue of actuators input delay [38], [39].
Many studies have provided numerical solutions based on the
Lyapunov stability theory and the LMI approach [40]–[44].
The authors in [40] proposed a delay-dependent controller in
the context of robustness and disturbance attenuation. Fuzzy
sampled-data control for uncertain vehicle suspension sys-
tems was addressed in [41]. By employing a delay-dependent
Lyapunov function, the conditions of a robust non-fragile
controller were derived in [42]. The results of the dynamic
output-feedback control for half-vehicle suspensions were
obtained in [43]. The problem of sampled-data H∞ control
of nonlinear suspension systems via a fuzzy approach was
studied in [44]. However, the aforementioned results were
limited to control design conditions that guarantee robust
performance in the H∞ sense. In addition, only a few studies
have focused on the conservatism of controller synthesis
conditions caused by design constraints, and the conditions
presented above are still conservative. In particular, develop-
ing an efficient and less conservative analysis method for the
design of a controller for a state-feedback structure remains
a difficult yet important task.

Based on the above discussions, we focused on developing
a less conservative condition for the state-feedback dissipa-
tive control strategy for input-delayed suspension systems.
To simultaneously satisfy the asymptotic stability, achieve
strictly (Q,S,R)-dissipative performance, and obtain desir-
able design constraints of the suspension system, includ-
ing the state-feedback controller, a novel LMI-based control
synthesis method was developed. The proposed approach is

beneficial because it reduces the conservatism of the con-
trol synthesis problem for suspension systems, which can
be achieved by introducing a generalized free weight
matrix (GFWM) technique. In addition, the proposed control
synthesis technique provides an integrated framework for the
controller synthesis of input delay suspension systems with
design constraints including conventional H∞ and passive
control as special cases. Numerical simulations are presented
to confirm the superiority of the proposed method over other
bounding techniques and to demonstrate the importance of
the delay-dependent approach when designing the controller
of the suspension system.

Notation: Throughout this note, a symmetric and positive
definite (semi-definite) matrix is denoted by the notation
P > 0 (P ≥ 0). ‖·‖∞ refers to the H∞ norm for matrices.
Rn represents the Euclidean space with dimension n. The
superscript T refers to the matrix transposition. We use an
asterisk * to represent a symmetric term in the symmet-
ric matrix. Matrices, if their dimensions are not explicitly
stated, are assumed to be compatible for algebraic operations.
sym{A} is the shorthand notation for A+AT . diag{·} refers to
the block-diagonal matrix. The space of the square-integrable
vector function over [0,∞) is represented by L2[0,∞), and
for x = {x(t)} ∈ L2[0,∞), its norm is represented by

‖x‖2 =
√∫
∞

0 |x(t)|
2 dt .

II. SYSTEM MODELING AND PROBLEM DESCRIPTION
Figure 1 illustrates a typical quarter-car suspension system
introduced in various studies. The variable descriptions of
the systems are presented in Table. 1. Based on Newton’s
classical laws, the dynamics of the suspension motion are
governed by the following equation:

FIGURE 1. Quarter-car suspension system.

msz̈c(t)+ cs[żs(t)− żu(t)+ ks[zs(t)− zu(t)]]

= u(t − h(t)),

muz̈u(t)− cs[żs(t)− żu(t)− ks[zs(t)− zu(t)]]

+ct [ż(t)− żr (t)+ kt [zu(t)− zr (t)]]

= −u(t − h(t)) (1)
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where h(t) is the bounded time-varying delay with the follow-
ing conditions:

0 ≤ h(t) ≤ d (2)

ḣ(t) ≤ µ (3)

where d , and µ are prescribed scalar; Before proceeding,

TABLE 1. Description of variables.

we must explore the key performance metrics of the sus-
pension system and the control objective. The representative
performance metrics for the control design of the active
suspension are ride comfort, road holding, and suspension
stroke. It is well known that body acceleration is a quan-
titative measure of vehicle ride comfort. Thus, we set z̈s(t)
as the main control variable. Other performance metrics for
the quantitative evaluation of suspension systems include
suspension and tire deflection, which are generally consid-
ered constraint variables. Owing to physical constraints, the
suspension stroke only allows movement within the maxi-
mum allowable limits. This can be represented by |zs(t) −
zu(t)| ≤ zmax . Moreover, to guarantee solid contact between
the wheels and road, the dynamic and static tire loads must
satisfy the condition kt (zu(t) − zr (t)) < (ms + mu)g. The
design of an active suspension can be regarded as a multi-
objective optimization problem that minimizes vertical accel-
eration within the constraints defined above. Based on the
above performance criteria, the body acceleration is selected
as the first control output z1(t), and the suspension deflection
and dynamic tire load are defined as the second control
outputs z2(t). Furthermore, by choosing the state vector as
x(t) = [zu(t)−zr (t) zu(t)−zr (t) żs(t) żu(t)]T andw(t) = żr (t),
the dynamics of the suspension motion can be expressed by
the following state equation:

ẋ(t) = Ax(t)+ Buu(t − h(t))+ Bww(t),

z1(t) = C1x(t)+ D1uu(t − h(t)),

z2(t) = C2x(t),

y(t) = Cx(t),

where

A =


0 0 1 −1
0 0 0 1
−

ks
ms

0 −
cs
ms

cs
ms

ks
mu
−

kt
mu

cs
mu
−
cs+ct
mu

 ,
Bu =

[
0 0 1

ms
−

1
mu

]T
,

Bw =
[
0 −1 0 ct

mu

]T
,

C =
[
1 1 1 0

]
C1 =

[
−

ks
ms

0 − cs
ms

cs
ms

]
, D1 =

1
ms

C2 =

[
1 0 0 0
0 kt

(ms+mu)g
0 0

]
(4)

It is assumed that an online measurement of all states is
available. Thus, the controller with the state-feedback form
is given as follows:

u(t) = Kx(t). (5)

By applying a controller of the form (5) to the suspen-
sion model in (4), we can represent a closed-loop system as
follows:

ẋ(t) = Ax(t)+ BuKx(t − h(t))+ Bww(t),

z1(t) = C1x(t)+ D1uKx(t − h(t)),

z2(t) = C2x(t),

y(t) = Cx(t), (6)

In this study, we introduced the notion of (Q,S,R) dissi-
pativity, which was used as a performance criterion.
Definition 1: For the given matrices Q,S, and R, the

closed-loop system (6) is said to be strictly (Q,S,R)-
dissipative if there exists a scalar α, such that the following
inequality holds under the zero initial condition:

E(t) ≥ α
∫ t

0
wT (s)w(s)ds (7)

where E(t) = zT (t)Qz(t) + 2zT (t)Sw(t) + wT (t)Rw(t)
is called energy supply function, and α is the dissipativity
performance index. Without loss of generality, Q and R are
symmetric, and Q ≤ 0 and −Q = QT

−Q− for any Q− ≥ 0.
Remark 1: In terms of the energy dissipation in a suspen-

sion system, the energy associated with the (w(t), z1(t)) pair
stored in the system must be strictly less than the energy
supplied. This can be guaranteed with dissipative perfor-
mance by providing an integrated framework that includes
conventional H∞ and passivity control as special cases.
Remark 2: The notion of (Q,S,R)-dissipativity intro-

duced in Definition 1 includes some well-known performance
indices as special cases by changing the weighting matrices:
• Case 1: By choosing Q = −I ,S = 0, and R =

(α2 + α)I , the (Q,S,R)-dissipative performance can
be changed to H∞ performance.
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• Case 2: By choosing Q = 0,S = I , and R = 2αI ,
the (Q,S,R)-dissipative performance can be changed
to passivity performance.

• Case 3: By choosing Q = −εI ,S = (1 − ε)I , and
R = [(α2 − α)ε + 2α]I , the (Q,S,R)-dissipative
performance can be changed to mixed passivity/H∞
performance. ε is a design parameter that allows flexible
tuning between passivity and H∞ performance.

This study aimed to find the gain matrixK of the controller
in (5), which guarantees that

1) an asymptotic stability of the closed-loop systems (6)
with the bounded time-varying delay h(t) satisfying (2)
and (3);

2) (Q,S,R)-dissipativity related to the transfer func-
tion from the disturbance w(t) to the control output
z1(t) under zero initial conditions, for all nonzero
w ∈ L2[0,∞);

3) the constraints for the control output and input are as
follows:

|z2(t)| ≤ z2,max , |u(t)| ≤ umax , t > 0 (8)

III. GFWM-BASED LMI CONDITIONS FOR THE
STATE-FEEDBACK H∞ CONTROLLER
A. PRELIMINARY
Before proceeding, it is necessary to address the following
lemmas:
Lemma 1 (Wirtinger-Type Inequality): For the well-

defined vector ρ : [a, b] 7→ Rn, scalar a < b, and symmetric
n× n matrix R > 0; thus, the following inequality holds:∫ b

a
ρT (s)Rρ(s)ds ≥

1
b− a

[
η1
η2

]T [R 0
∗ 3R

] [
η1
η2

]
(9)

where η1 =
∫ b
a ρ(s)ds and η2 = η1 −

2
b−a

∫ a
b

∫ s
a ρ(u)duds =

−η1 +
2

b−a

∫ a
b

∫ b
s ρ(u)duds.

Lemma 2 (Free-Matrix-Based Inequality): For the well-
defined vector ω : [a, b] 7→ Rn, symmetric n × n matrix
R and 3n× 3n matrices S1, S3, any 3n× 3n matrices S2 and
3n× n matrices L1,L2 such thatS1 S2 L1∗ S3 L2

∗ ∗ R

 > 0 (10)

the following inequality holds:∫ b

a
ω̇T (s)Rω̇(s)ds ≥ −(b− a)υT0

(
3S1 + S3

3

)
υ0

−Sym
{
υT0 L1υ1 + υ

T
0 L2υ2

}
(11)

where υ0 = [ωT (b) ωT (a)
∫ b
a
ωT (s)
b−a ds]

T , υ1 = ω(b) − ω(a),

and υ2 = ω(b)+ ω(a)− 2
∫ b
a
ωT (s)
b−a ds.

Lemma 3 (Reciprocally Convex Approach): Given con-
stants 0 ≤ α ≤ 1, any vectors β1 and β2, symmetric matrix R,

and any matrix Z such that
[
R Z
∗ R

]
≥ 0, the following

inequality holds:

1
α
βT1 Rβ1 +

1
1− α

βT2 Rβ2 ≥
[
β1
β2

]T [R Z
∗ R

] [
β1
β2

]
(12)

Lemma 4: For any symmetric matrices 40, 41, and 42,
and a scalar function κ(t) ∈ [0, γ ] with constant γ , the
following inequality holds:

γ 240 + γ41 +42 ≤ 0
γ41 +42 ≤ 0

42 ≤ 0

 ⇒ κ2(t)40 + κ(t)41 +42 ≤ 0

40 ≥ 0
γ 240 + γ41 +42 ≤ 0

42 ≤ 0

 ⇒ κ2(t)40 + κ(t)41 +42 ≤ 0

40 ≤ 0
γ41 +42 ≤ 0

42 ≤ 0

 ⇒ κ2(t)40 + κ(t)41 +42 ≤ 0

(13)

Lemma 5 (GFWM-Based Inequality): For the well-
defined vector ρ : [a, b] 7→ Rn, symmetric n × n matrix
R > 0, and any matricesM ,N. Thus, the following inequality
holds:∫ b

a
ρT (s)Rρ(s)ds ≥ −Sym

{
ηT0Mη1 + η

T
0 Nη2

}
−(b− a)ηT0

(
3MR−1MT

+ NR−1NT

3

)
η0 (14)

where η0 is any vector and η1, η2 are prescribed in Lemma 1.
Remark 3: As the GFWM technique does not require

ρ = ω̇, it can handle single integral terms in a more general
form than the FWM. In addition, the GFWM is more advanta-
geous for the generation of less conservative LMI conditions
than the FWM because it includes more zero-value terms that
reduce the gap between the integral term and the estimate.
Remark 4: The Wirtinger-based inequality is a special

case of the GFWM-based inequality [45] and can be obtained
by fixing slack matrices. Thus, the GFWM approach is
less conservative because slack matrices provide additional
freedom.

B. DESIGN OF A STATE-FEEDBACK CONTROLLER USING
THE GFWM APPROACH
In this section, the LMI conditions for the design of a robust
state-feedback controller and a (Q,S,R)-dissipative per-
formance analysis are presented by employing the GFWM
approach. Before proceeding, we first introduce the following
notation to simplify the expressions in this section:

h̄(t) = d − h(t)

χ1(t) =
∫ t

t−h(t)

x(s)
h(t)

ds

χ2(t) =
∫ t−h(t)

t−d

x(s)

h̄(t)
ds
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ζ (t) = [xT (t) xT (t − h(t)) xT (t − d)

χT1 (t) χT2 (t) wT (t)]T

e0 = [0 0 0 0 0 0]

ei = [0n×(i−1)n In×n 0n×(6−i)n], i = 1, 2, · · · , 6

es = [A BuK 0 0 0 Bw]

ey = [C1 D1uK 0 0 0 0]

eg = [eT1 e
T
2 e

T
3 e

T
4 e

T
5 e

T
0 ]
T (15)

Theorem 1: Given constants d, µ, ρ and θ , if there exist
symmetric n × n matrices P > 0,X > 0,Y > 0,Z > 0 and
any 6n×n matrices Mi,Ni, i = 1, 2, the following conditions
hold:

8(h(t))|h(t)=d − d25 eTyQ−
∗ −I
∗ ∗

∗ ∗

∗ ∗
√
deTs P deTgM1 deTgN1

0n×n 0n×n 0n×n
θ2Z − 2θP 0n×n 0n×n
∗ −dZ 0n×n
∗ ∗ −3dZ

 ≤ 0, (16)


8(h(t))|h(t)=0 − d26 eTyQ−

∗ −I
∗ ∗

∗ ∗

∗ ∗
√
deTs P deTgM2 deTgN2

0n×n 0n×n 0n×n
θ2Z − 2θP 0n×n 0n×n
∗ −dZ 0n×n
∗ ∗ −3dZ

 ≤ 0, (17)

[
−I

√
ρ(C2)i

∗ −(z2,max)2i P

]
< 0, i = 1, 2

(18)[
−I
√
ρK

∗ −u2maxP

]
< 0 (19)

where

8(h(t)) = 20 + h(t)25 + h̄(t)26,

20 = 21 +22 +24,

21 = Sym
{
eT1 Pes

}
+ eT1 (X + Y )e1

−eT3 Ye3 − (1− µ)eT2 Xe2,

22 = −eTyQey − Sym
{
eT6 Sey

}
− eT6 (R− αI )e6,

23 = deTs Zes,

24 = Sym
{
eTgM1(e1 − e2)

+ eTgN1(e1 + e2 − 2e4)
}

+Sym
{
eTgM2(e2 − e3)

+ eTgN2(e2 + e3 − 2e5)
}
,

25 = eTg

(
M1Z−1MT

1 +
1
3
N1Z−1NT

1

)
eg,

26 = eTg

(
M2Z−1MT

2 +
1
3
N2Z−1NT

2

)
eg, (20)

Then, 1) the closed-loop system in (6) is asymptotically
stable for the bounded time-varying delay h(t) satisfying (2)
and (3); 2) a (Q,S,R)-dissipativity performance related to
the transfer function

∥∥Tz1w∥∥ is guaranteed; and 3) the hard
constraints in (8) are satisfied.

Proof: We select the following Lyapunov-Krasovskii
function candidate:

V (t) = xT (t)Px(t)+
∫ t

t−h(t)
xT (s)Xx(s)ds,

+

∫ t

t−d
xT (s)Yx(s)ds,

+

∫ 0

−d

∫ t

t+θ
ẋT (s)Zẋ(s)dsdθ, (21)

By differentiating V (s), we can get

V̇ (t) 6 2xT (t)Pẋ(t)+ xT (t)(X + Y )x(t)

−(1− µ)xT (t − h(t))Xx(t − h(t))

−xT (t − d)Yx(t − d)

+dẋT (t)Zẋ(t)

−

∫ t

t−d
ẋT (s)Zẋ(s)ds (22)

Adding−zT1 (t)Qz1(t)−2zT1 (t)Sw(t)−w
T (t)(R−αI )w(t)

on both sides of (22) results in

V̇ (t)− zT1 (t)Qz1(t)− 2zT1 (t)Sw(t)− w
T (t)(R− αI )w(t)

≤ ζ T (t)(21 +22 +23)ζ (t)− V̇z(t) (23)

where ζ (t) and 2i, i = 1, 2, 3 are defined in (20), and

V̇z(t) =
∫ t

t−h(t)
ẋT (s)Zẋ(s)ds+

∫ t−h(t)

t−d
ẋT (s)Zẋ(s)ds

(24)

Conversely, let us define η0 in (14) as

η0 = ς0 =
[
xT (t) xT (t − h(t)) xT (t − d)

χT1 (t) χ
T
2 (t)

]T
= egζ (t). (25)

For some matrices Mi,Ni,∈ R6n×n, i = 1, 2, by employ-
ing the inequality (14) in Lemma 5 to accurately esti-
mate (24), we obtain

V̇z(t) ≥ −Sym
{
ςT0 N1ς1 + ς

T
0 M1ς2

}
−h(t)ςT0

(
3N1Z−1NT

1 +M1Z−1MT
1

3

)
ς0
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−Sym
{
ςT0 N2ς3 + ς

T
0 M2ς4

}
−h̄(t)ςT0

(
3N2Z−1NT

2 +M2Z−1MT
2

3

)
ς0 (26)

where

ς1(t) = x(t)− x(t − h(t)),

ς2(t) = x(t)+ x(t − h(t))− 2χ1(t),

ς3(t) = x(t − h(t))− x(t − d),

ς4(t) = x(t − h(t))+ x(t − d)− 2χ2(t)

This expression is rewritten as

−V̇s(t) ≤ ζ T (t)(24 + h(t)25 + h̄(t)26)ζ (t) (27)

where 2i, i = 4, 5, 6 are defined in (20). Consequently,
by adding (23) and (27), we obtain

V̇ (t)− zT1 (t)Qz1(t)− 2zT1 (t)Sw(t)
−wT (t)(R− αI )w(t)

≤ ζ T (t)

(
4∑
i=1

2i + h(t)25 + h̄(t)26

)
ζ (t) (28)

Based on the Schur complement and convex combination
method, satisfying the LMI conditions (16) and (17) along
with (6) guarantees(

4∑
i=1

2i + h(t)25 + h̄(t)26

)
|h(t)=d ≤ 0,(

4∑
i=1

2i + h(t)25 + h̄(t)26

)
|h(t)=0 ≤ 0, (29)

Thus, from (28) we can have

V̇ (t)− zT1 (t)Qz1(t)− 2zT1 (t)Sw(t)
−wT (t)(R− αI )w(t) ≤ 0 (30)

for any nonzero w ∈ L2[0,∞). We know that V (0) = 0
and V (∞) ≥ 0 under zero initial conditions. Integrating
both sides of (30), we have α

∫ t
0 w

T (s)w(s)ds ≤ E(t) for any
nonzero w ∈ L2[0,∞). Thus, the strict (Q,S,R)-dissipative
performance is satisfied from Definition 1. In addition,
if w(t) = 0, V̇ (t) ≤ zT1 (t)Qz1(t) ≤ 0, which shows the
asymptotic stability of the closed-loop system (6). The hard
constraints in (8) are then derived. From (30) and Young’s
inequality, we have

xT (t)Px(t)

<

∫ t

0
zT1 (s)(Q+ S)z1(s)ds

+

∫ t

0
wT (s)(S +R− αI )w(s)ds+ V (0)

≤ 3max(Q+ S)amax +3max(S +R− αI )wmax, (31)

where amax , maxt≥0
∫ t
0 z

T
1 (s)z1(s)ds; 3max(·) denotes the

maximal eigenvalue. Let ρ , 3max(Q + S)amax + 3max

(S + R − αI )wmax + V (0). Similar to [38]; therefore, the
following conditions hold:

max
t>0
|(z2(t))i|2

= max
t>0

∥∥∥xT (t)P 1
2P−

1
2 (C2)Ti (C2)iP−

1
2P

1
2 x(t)

∥∥∥
2

< ρ ·
(
P−

1
2 (C2)Ti (C2)iP−

1
2

)
, i = 1, 2,

max
t>0
|u(t)|2

= max
t>0

∥∥∥xT (t)KTKx(t)
∥∥∥
2

< ρ ·
(
P−

1
2KTKP−

1
2

)
(32)

Thus, the hard constraints in (8) can be guaranteed, if

ρ · P−
1
2 (C2)Ti (C2)iP−

1
2 < (z2,max)2i I , i = 1, 2

ρ · P−
1
2KTKP−

1
2 < u2maxI . (33)

This can be obtained using (18) and (19). The proof is
completed. �
Remark 5: The term −PZ−1P that occurs when solving

23 is not an LMI condition. This nonlinear matrix inequality
can be changed to an LMI condition using the inequality
−PZ−1P ≤ θ2Z − 2θP. Here, θ becomes a tunable parame-
ter; that affords flexibility when solving the LMI.
Now, let us explain how to obtain the desired controller
matrixK in (5) through the appropriate transformation of (16)
and (17).
Theorem 2: Given constants d, µ, ρ, and θ , if symmetric

n×n matricesP > 0,X > 0,Y > 0,Z > 0, and any 6n×n
matricesMi,Ni, i = 1, 2 such that the following conditions
hold:
9(h(t))|h(t)=d − d�5 ϒ

T
2 e

T
yQ−

∗ −I
∗ ∗

∗ ∗

∗ ∗
√
dϒT

2 e
T
s deTgM1 deTgN1

0n×n 0n×n 0n×n
θ2Z − 2θP 0n×n 0n×n
∗ −dZ 0n×n
∗ ∗ −3dZ

 ≤ 0, (34)


9(h(t))|h(t)=0 − d�6 ϒ

T
2 e

T
yQ−

∗ −I
∗ ∗

∗ ∗

∗ ∗
√
dϒT

2 e
T
s deTgM2 deTgN2

0n×n 0n×n 0n×n
θ2Z − 2θP 0n×n 0n×n
∗ −dZ 0n×n
∗ ∗ −3dZ

 ≤ 0, (35)

[
−I
√
ρ {C2i}j P

∗ −
{
z2,max

}2
j P

]
< 0, i, j = 1, 2

(36)
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[
−I
√
ρK

∗ −u2maxP

]
< 0 (37)

where

ϒ1 = diag
{
P−1,P−1,P−1

}
ϒ2 = diag {ϒ1, I , I , I }

9(h(t)) = ϒT
2 8(h(t))ϒ2,

�k = ϒ
T
2 2kϒ2, k = 1, · · · , 6

P = P−1,K = KP−1,

X = P−1XP−1,Y = P−1YP−1,Z = P−1ZP−1,

Mi = ϒ
T
2 MiP−1, Ni = ϒ

T
2 NiP

−1, i = 1, 2 (38)

Then, 1) the closed-loop system in (6) is asymptotically
stable for the bounded time-varying delay h(t) satisfying (2)
and (3); 2) the (Q,S,R)-dissipativity performance related to
the transfer function

∥∥Tz1w∥∥ is guaranteed; and 3) the hard
constraints in (8) are satisfied.

Proof: The problem of the (Q,S,R)-dissipative per-
formance analysis with the given controller matrices can
be changed to the problem of obtaining the controller
matrices with some modifications. To obtain the con-
troller matrices, transforming the LMI condition (16)-(19)
through the pre- and post-multiplication of diag{ϒ2, I , ϒ1},

diag{ϒ2, I , ϒ1}, diag{I ,P−1}, diag{I ,P−1}, respectively, the
state-feedback controller synthesis condition (34)-(37) can
then be obtained using the change of matrix variable
technique.

When the LMI conditions (34)-(37) in Theorem 2 are
feasible, the control gain in (5) is calculated as

K = KP−1 (39)

This completes the proof. �
Remark 6: State feedback requires the assumption that all

the state variables are accessible. However, online measure-
ment of all state information is difficult and impractical in
terms of cost and complexity. In this case, it is more prac-
tical to achieve an appropriate feedback loop by estimating
the state information from the measured output. Therefore,
our future work will include a suitable filter design and its
practical implementation.

IV. NUMERICAL SIMULATIONS
This section provides design examples to demonstrate the
validity of the controller design technique described in the
previous section. The H∞ performance is not only a useful
measure of the ride comfort of the suspension system under
external disturbances, but it also shows how conservative
the problem of state-feedback control design of suspension
systems with hard constraints is. Table 2 presents the param-
eters of the quarter-car suspension system used to design
the following controllers. We assume that z2,max and umax
are 0.035m and 2000N, respectively. By selecting Q =

−I ,S = 0, and R = (α2 + α)I , the (Q,S,R)-dissipative
controller can be changed to an H∞ controller. Here, the
dissipativity performance index α can be regarded as the

disturbance attenuation level γ . Under d = 0.005, µ =
0.1, ρ = 1, and θ = 1, the desired gain matrix for the
H∞ controller with the structure (5) can be derived from
Theorem 1 and is given as follows:

K = 104 ×
[
−4.8610 2.3070 −1.0768 0.0975

]
First, we compare the minimum disturbance attenuation

level with other bounding techniques to confirm the reduced
conservatism of the proposedGFWM-based controller design
condition. The desired state-feedback robust controller for a
delayed suspension system can be designed based on Theo-
rem 1. Table 3 shows the minimum disturbance attenuation
level γ ∗ of the state-feedback controllers for input delayed
suspension systems based on different boundary techniques.
As shown in the table, the design of a state-feedback con-
troller that meets all the different requirements of a suspen-
sion system is a very conservative problem. Only controllers
based on Theorem 1 overcome the conservatism of the state-
feedback controller design and provide a feasible solution.
We also provide a result for the maximum upper bound
d of the delay h(t) under different γ for controllers using
different bounding techniques. It can be seen that only the
proposed GFWM-based control design method provides a
feasible solution for the state-feedback controller of active
suspension systems under certain design conditions. Next,
some evaluations are performed on different road surfaces
to demonstrate the performance requirements of suspension
systems, such as ride comfort, road retention, physical con-
straints of the suspension space, and constraints on control.

TABLE 2. Parameters for the quarter-car model.

TABLE 3. Minimum disturbance attenuation level γ ∗ corresponding to
different bounding techniques.

TABLE 4. Maximum upper bound d of the delay under different γ .
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A. BUMP RESPONSE
Let us consider the time responses for isolated bump-road
profiles. The corresponding disturbance can be expressed as:

zr (t) =


H
2

(
1− cos

(
2πV
L

t
))

, if 0 ≤ t ≤
L
V
,

0, if t >
L
V
,

(40)

Here, we set the height and length of the bump as H =
50 mm and L = 6 m respectively, and the vehicle speed
as V = 35 km/h. Figure 2 shows the comparison between
the open- and closed-loop systems (the proposed delay-
dependent controller applied) in terms of the suspension
performance response. It can be confirmed that the closed-
loop system where the controller derived from Theorem 1 is
applied exhibits a better performance with regard to all the
key performance metrics of suspension systems. We define
Controller I as a controller designed without considering the
input delay and Controller II as the controller proposed in
Theorem 1, which is designed considering the input delay.
When Controller I was compared with Controller II, we con-
firmed the suitability of the proposed delay-dependent con-
trol synthesis method. Figure 4 illustrates the response of the
state value for suspension performances related to ride com-
fort, steering, and physical constraints under the input delay
condition. As shown in the figure, only the delay-dependent
control design method can maintain a stable performance
even in the input delay situation. Thus, the proposed delay-
dependent control design technique should be considered
when designing a practical suspension controller.

FIGURE 2. Bump responses of the open- and closed-loop systems.

In addition, It can be seen from Figure 3 that the controller
is synthesized within a range that satisfies the design con-
straints of the suspension system.

FIGURE 3. Constraints for the control output z2(t) and input u(t).

FIGURE 4. Bump responses of controllers I and II under an input delay.

B. RANDOM RESPONSE
Furthermore, to evaluate the performance requirements of
the proposed controller in suspension systems, we evaluated
the response of the state under random vibrations. According
to [14], an irregular disturbance on the road can be described
by random noise with a power spectral density of the ground
displacement, as follows:

żr (t) = 2πn0
√
Gq(n0)Vw(t), (41)

where w(t) is the zero-mean unit-variance white noise pro-
cess; n0 = 0.1(1/m) denotes the reference spatial frequency,
and Gq(n0) denotes the coefficient of road roughness. The
driving speed was set to V = 35(km/h). In this study,
four levels of road roughness were selected according to
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ISO 2631 specifications; these are presented in Table 5. The
root mean square (RMS) values of the state with respect to
body ride comfort, suspension stroke constraint, and road
holding property under different levels of road roughness are
listed in Tables 6, 7, and 8, respectively. We calculated the

RMS value of x(t) as
√

1
T

∫ T
0 |x(t)|

2 dt , where T = 100(s).

As shown in tables 6, 7, and 8, compared with that of open-
loop systems, the ride comfort of the proposed system is
significantly better while meeting stringent constraints under
various load conditions.

TABLE 5. Classification standards of road roughness.

TABLE 6. RMS values of the acceleration of the car body under different
Gq(n0).

TABLE 7. RMS values of the suspension deflection under different Gq(n0).

TABLE 8. RMS values of the relative dynamic tire load under different
Gq(n0).

V. CONCLUSION
This paper introduced new conditions for (Q,S,R)-
dissipative controller synthesis of input delayed suspensions
with a state-feedback structure under design constraints.

By introducing a novel bounding technique called the
GFWM, new, less conservative delay-dependent conditions
for state-feedback controllers were established. By solv-
ing the proposed sets of LMIs, the desired controller with
state-feedback structure could be obtained such that the
closed-loop systems had asymptotic stability with guaran-
teed performance in (Q,S,R)-dissipative senses. Finally,
the effectiveness of the developed robust controller design
was verified using numerical simulations. This study aims to
provide the latest theoretical findings prior to practical appli-
cation. In future work, we will focus on identifying practical
ways to implement the proposed methods, including state
estimators, into vehicle platforms to close the gap between
theoretical techniques and practical implementations.
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