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ABSTRACT The incredibly increasing demand for higher rates in the last decade as well as the introduction
of many new applications that require wireless connectivity necessitate proper and efficient utilization of the
frequency spectrum. During the last decade, the concept of cognitive radio has been introduced and exten-
sively researched as a possible solution for telecommunication operators to increase the use of the spectrum,
which is usually under-utilized. In this paper, the problem of dynamic spectrum allocation is discussed. A new
mathematical formulation is proposed for the dynamic spectrum allocation problem. The new formulation
defines a bi-objective function that considers the maximization of both the total system throughput and the
number of active users. The proposed formulation is solved optimally using the branch and bound algorithm
with a linear programming solver at its core. In addition, two novel heuristic algorithms are proposed for use
instead to alleviate the time complexity of the branch and bound algorithm. Simulations show that although
sub-optimal, the solutions obtained by the proposed algorithms are at least 80% of the optimum solution
obtained by the branch and bound algorithm, with the advantage of significantly shorter time.

INDEX TERMS Cognitive radio, binary linear program, optimization, spectrum allocation, throughput, user
fairness.

I. INTRODUCTION
The electromagnetic spectrum is a scarce natural resource
and its use is typically licensed by governments and regula-
tory authorities. Static spectrum assignment is the dominant
policy through which the spectrum is assigned. Under this
policy, system operators are granted the privilege to access
their licensed frequency band, while others’ access to that
band is prohibited. This scheme has led to the radio spec-
trum below 6 GHz becoming crowded. Although unallo-
cated resources are currently limited in the frequency bands
of interest, it has been reported that the actual utilization
of licensed spectrum is considered low. The Federal Com-
munications Commission (FCC) revealed that the utiliza-
tion of the spectrum below 3 GHz varies vastly where the
occupancy ranges between 15% to 85%. This is known as
the spectrum under-utilization problem [1]. Cognitive radio
networks (CRNs) have been proposed as an approach to
increase the efficient utilization of licensed but under-utilized
spectrum.
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While there are multiple schemes of cognitive radio, this
paper focuses on interweave cognitive radio. In an interweave
cognitive radio network, referred to as the secondary network,
the licensed spectrum is continuously monitored, and when
available, spectrum holes are opportunistically accessed by
the secondary network users with no interference to the active
users of the primary network, which owns licensed rights of
the spectrum [2]–[5].

The main idea in interweave cognitive radio networks is to
utilize the spectrum as efficiently as possible while avoiding
the interference with the primary network. Co-existence of
the secondary user with the primary user is not allowed in
this sharing mechanism. To accomplish that, the secondary
network must be capable of four fundamental tasks [2]–[5],
summarized in Fig. 1, as follows:

• Identify the holes in the spectrum at a particular instant
of time and geographical location. This is commonly
known as spectrum sensing.

• Estimate the characteristics of the spectrum holes to
adapt the transmission parameters accordingly. This is
known as spectrum analysis.
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FIGURE 1. Functional model of interweave cognitive radio network.

• Allocate each secondary user (SU) an appropriate
sub-channel (hole) according to its quality-of-service
(QoS) requirements. This is known as spectrum alloca-
tion. The characteristics of the spectrum vacancy with
respect to the SU is estimated to determine whether
the available vacancy is appropriate for the SU or
not.

• While the SU is active, it monitors the frequency band to
detect the reappearance of the primary user (PU). This is
to referred to as spectrum monitoring. In case the PU re-
appears, the SU halts transmission and vacates the sub-
channel. Traditionally, spectrum monitoring is based on
the spectrum sensing techniques.

The main contributions of the paper can be summarized as
follows:

• Formulation of the dynamic spectrum allocation prob-
lem as a quality-of-service (QoS) constrained binary
linear program, with a weighted objective function of the
total system throughput and the number of active users.
The new problem is optimally solvable using the branch
and bound algorithm with a linear programming solver
at its core.

• Proposing the Fair Channel Allocation (FCA) algorithm,
a centralized heuristic algorithm that is capable of real-
izing fair sub-channel allocations among SUs.

• Proposing theGreedy Rate Allocation (GRA) algorithm,
a distributed heuristic algorithm that is capable of real-
izing high throughput allocations per user.

The paper is organized as follows. In Section II, an intro-
duction to CRN and a review of the related work on dynamic
spectrum allocation are presented. In Section III, the system
model of typical CRN is explained. The new mathematical
formulation of the dynamic spectrum allocation problem is
then presented in Section IV. In Section V, two heuristics
algorithms are proposed for solving the dynamic spectrum
allocation problem. The Fair Channel Allocation (FCA) algo-
rithm is introduced first and then, the Greedy Rate Allo-
cation (GRA) algorithm is discussed. The performance of
the proposed algorithms are examined in Section VI in
terms of the optimality of the solution, the time complexity,
the average achieved total throughput, the average achieved

throughout per active user and the average number of active
users. Finally, conclusions are drawn in Section VII.

II. LITERATURE REVIEW AND RELATED WORK
Cognitive Radio (CR) technology, proposed by Mitola [6],
Mitola and Maguire [7], Mitola [8], evolved from the con-
cept of software-defined-radio (SDR) which liberates radio
devices from hard-wired characteristics. SDRs are pro-
grammable and flexible because significant percentage of sig-
nal processing is done on general-purpose processors rather
than special-purpose hardware. A CR is an evolved SDR that
is aware of the radio environment and capable of adapting
its communication parameters to meet the network and user
demands. Moreover, it learns from the past and uses this
knowledge to improve its decisions in the future. An intro-
duction to the fundamentals of cognitive radio systems can
be found in [2]–[5]. Regulatory authorities have considered
allowing unlicensed users in licensed bands if there is no
interference to the licensed users which lead to focusing
cognitive radio research on dynamic spectrum access.

The dynamic spectrum allocation problem has been subject
to extensive study in the literature [9]–[11]. As followed
in [9], the first step in the solution procedure is to specify the
target criteria for allocation such as minimizing interference,
maximizing spectrum utilization, minimizing delay, maxi-
mizing throughput, fairness or maximizing energy efficiency.
The various optimality criteria are not usuallymutually exclu-
sive and the objective of the solution can include more than
one criterion. The second step is to model the spectrum
allocation problem in a way that fits the target objectives.
The third step is to define an algorithm to solve the problem.
The execution mode of the solution can either be centralized,
distributed or cluster mode.

There are numerous studies in the literature focusing
on spectrum allocation in underlay-based spectrum sharing
and [11] is an extensive survey of such problem. In the under-
lay scheme, SUs and PUs are allowed to co-exist while ensur-
ing that SUs operate underneath a predefined interference
constraint causing little-to-no degradation in the performance
to the primary network. The problem of power allocation
with the objective ofmaximizing the overall throughput while
maintaining the interference levels below certain thresholds
has been subject to extensive study such as in [12] and [13].
In [12], a framework for multi-hop CRNs in a fading envi-
ronment with interference constraints is developed as a non-
convex non-linear optimization problem and successive con-
vex approximation is used to obtain the optimal solution.
Furthermore, a practical distributed heuristic algorithm is
proposed.

In [13], the problem of maximizing the throughput for
all SUs under interference and received SINR constraints
is modeled as a mixed integer non-linear program and
transformed into a binary linear program using simplifying
assumptions which is solvable in polynomial time. Through-
put maximization can lead to starvation of some SUs, so some
research studies include fairness in the target objectives.

145034 VOLUME 9, 2021



A. Aboulfotouh, S. S. Soliman: Time-Efficient Sub-Optimal Solutions for Dynamic Spectrum Allocation

In [14], the problem of fair bandwidth allocation among
SUs is studied and solutions using linear programming and
heuristic techniques are proposed.

In [15], the authors suggest that vehicle-to-vehicle (V2V)
communication co-exist with vehicle-to-infrastructure (V2I)
communication which preoccupies the spectrum along with
interference management to meet the requirements for both
V2V and V2I communications. The objective is to maxi-
mize the capacity of V2I links and improve the reliability
of V2V links. The resource sharing problem is modeled as
a multi-agent reinforcement learning problem and a solu-
tion using fingerprint-based deep Q-network is proposed for
implementation in a distributed manner.

The problem of dynamic spectrum allocation in interweave
spectrum sharing has been also of significant interest to
numerous studies. In [16], a bijective optimization problem
is designed to minimize the transmission power and max-
imize the rate while ensuring the satisfaction of the QoS
requirements of SUs. In addition, a distributed algorithm is
proposed to find the optimal solution. It is worth noting that
the formulation in [16] allows the co-existence of SUs in the
same sub-channel.

In [17], the channel allocation problem is reduced to a
variant of the graph-coloring problem and approximate cen-
tralized and distributed solutions to achieve fairness and high
throughput are presented. In [18], optimal control policies
are developed to maximize the secondary network through-
put while satisfying a constraint on the number of colli-
sions with the primary network using the Lyapunov opti-
mization technique. In [19], the problem of minimizing the
delay through optimizing the routing decisions in a multi-hop
CRN is studied and a distributed multi-agent learning algo-
rithm based on adaptive fictitious play is proposed. In [20],
the authors propose a multi-channel contention graph to
model the interference among secondary users in a multi-hop
CRN. Furthermore, an optimal maximum throughput solu-
tion and an optimal fair solution -to prevent starvation of some
SUs- are presented.

In [21], a distributed multi-agent reinforcement learn-
ing approach to realize collision-free sub-channel allocation
among SUs is developed and numerical results for the cases
of 2 frequency sub-channels and 2 SUs, as well as 3 fre-
quency sub-channels and 3 SUs, are presented. In [22], the
authors use the spectrum access model developed in [17]
and provide solutions based on genetic algorithm, quantum
genetic algorithm and particle swarm optimization. The algo-
rithms have been shown to outperform color-sensitive graph-
coloring approaches.

In [23], a channel assignment problem is formulated
according to Jain’s fairness criterion which is classified as a
quadratic integer program. A fair distributed multi-channel
assignment algorithm that can realize a good trade-off
between network throughput and fairness is proposed. In the
proposed scheme, each SU can utilize more than one channel.
In [24], a channel allocation scheme based on a greedy algo-
rithm is proposed to maximize the network throughput for

cognitive vehicular networks in low-load scenarios under the
constraints of total transmission time and number of assigned
channels to each vehicle.

A recent approach to spectrum allocation is based on
non-orthogonal multiple access (NOMA). In Power-Domain
NOMA, multiple users can use the same radio resource.
Superposition coding at the transmitter and successive-
interference-cancellation (SIC) at the receiver are utilized
to recover the desired signal. For SIC to decode the sig-
nals correctly, the transmit power of all users must be opti-
mized taking into account their individual channel-gains [25].
In [26], a cluster-based cognitive industrial IoT is proposed
where cooperative spectrum sensing is done to improve sens-
ing performance, and nodes transmit using NOMA. A joint
optimization problem of sensing time, nodes transmit power,
and the number of clusters is formulated, and the objective
is to maximize the average total throughput under the con-
straints of minimal rate for each node, maximum total power,
and cooperative detection probability. The problem is solved
using power and sensing time optimization. In [27], a multi-
beam satellite in the Ka-Band which uses NOMA to improve
beam transmission rate is proposed for industrial IoT. The
transmission rate of each beam is maximized by optimizing
the transmit power of each node under the constraints of total
beam power, and minimal rate for each node.

In order to improve the throughput of the secondary
network, a hybrid overlay-underlay mode was proposed
in [28]–[30]. In this mode, secondary users are allowed to
access the spectrum both when the PU is absent, and when
the PU is present, with power constraints in the latter case.
In [29], the throughput in cases of perfect transmission,
false alarm transmission, spectrum sharing transmission, and
interference transmissionwere analyzed. A joint optimization
problem of sub-channel transmission power and spectrum
sensing time is formulated for spectrum allocation subject
to interference, power, and detection probability constraints.
An alternating direction optimization algorithm is proposed
to solve the optimization problem. In [30], a general resource
allocation problem for a secondary network utility function
was proposed. Since the proposed optimization problem was
non-convex, the problem was reformulated as a convex prob-
lem using the quadratic transform. Two fair resource alloca-
tion approaches were proposed and compared with respect to
performance measures such as throughput and energy effi-
ciency.

In the following, the cognitive radio system model is
explained, followed by a formulation for the dynamic
resource allocation problem. The proposed formulation con-
siders both a data rate-based objective as well as fair alloca-
tion objective.

III. SYSTEM MODEL
In this section, the system model of a typical CRN is pre-
sented. A primary network is assumed to be assigned/licensed
a fixed range of the spectrum for the exclusive use. In addi-
tion, a secondary network of N SUs can access the spectrum
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assigned to the primary network while ensuring no interfer-
ence following the interweave principle. It is assumed that
the whole frequency band assigned to the primary network is
divided into sub-channels which are allocated to each primary
and secondary users. From the point-of-view of the secondary
network, the spectrum is divided into K fixed frequency sub-
channels. Each SU senses the spectrum, resulting in a network
status vector

si =
[
si1, si2, · · · , siK

]T (1)

where i ∈ [1,N ] refers to the ith user and sij refers to the status
of sub-channel j, for j ∈ [1,K ], as seen by user i. Accordingly,

sij =

{
0, if subchannel j is vacant
1, if subchannel j is occupied

(2)

After sensing, each SU sends a network status packet (NS)
which contains its network status vector si on a shared broad-
cast channel. The SUs can access the broadcast channel
using TDMA or a contention-based protocol. In the simplest
scenario, all SUs will be able to reach each other using
direct transmission. However, in case some of the SUs are
not within the same transmission range, sharing information
can be accomplished through multi-hop transmission. All the
NS packets are combined at each SU which ensures that all
the SUs come to the same decision about the vacant sub-
channels. The most conservative combining mechanism is to
declare a sub-channel busy if one SU decided it is busy and
declare a sub-channel vacant only if all the SUs agree that it is
vacant. Note that it is not necessary for all the SUs to undergo
spectrum sensing, it is enough if only some of the SUs do the
sensing task and distribute the information.

The spectrum analysis phase then follows, in which each
SU analyses the characteristics of the vacant sub-channels.
Due to the difference in the geographical location of the SUs,
the channel characteristics differ from a user to another.

There are two parameters which characterize each sub-
channel:

1. The power spectral density (PSD) of the additive-white
Gaussian noise (AWGN), denoted by σ 2.

2. The magnitude of the channel attenuation factor (recip-
rocal of the magnitude of the channel gain), denoted
by g, which includes the path loss and the fading
effects. The analysis in this paper assumes operation
over narrow-band fading channels.

With the assumption of M ≤ K spectrum holes, i.e. vacant
sub-channels, the output of the spectrum analysis phase can
be expressed in two matrices; σ and g, which can be written
as follows:

σ =


σ11 σ12 · · · σ1N
σ21 σ22 · · · σ2N
...

...
. . .

...

σM1 σM2 · · · σMN

 (3)

and

g =


g11 g12 · · · g1N
g21 g22 · · · g2N
...

...
. . .

...

gM1 gM2 · · · gMN

 (4)

where σij refers to the square-root of the noise power of sub-
channel i as seen by user j and gij refers to the attenuation
factor of sub-channel i experienced by user j.
Additionally, quality-of-service (QoS) requirements are

determined for each secondary user. In general, each com-
munication session has unique requirements depending on
its nature. In order to help in the problem formulation, it is
assumed that the QoS requirements are determined by the
minimum acceptable data rate vector, R, and the maximum
tolerable bit-error rate vector, E, expressed, respectively, as:

R =
[
R1 R2 · · · RN

]T (5)

and

E =
[
E1 E2 · · · EN

]T (6)

where Ri is the minimum acceptable rate for the ith SU, and
where Ei is the maximum acceptable rate for the ith SU.

The data rate and the bit-error rate are mutually entan-
gled due to their dependence on the transmit power, channel
attenuation factor and noise power. Consequently, each SU,
knowing its maximum available transmit power, computes
the maximum noise variance and channel attenuation such
that its rate and bit-error rate requirements are satisfied.
According to this computation, the acceptable performance
can be related to σ∗ and g∗, defined as

σ∗ =
[
σ ∗1 σ

∗

2 · · · σ
∗
N

]T (7)

and

g∗ =
[
g∗1 g

∗

2 · · · g
∗
N

]T (8)

where σ ∗i and g∗i are, respectively, the square-root of the
maximum tolerable noise PSD and the maximum acceptable
sub-channel attenuation factor for the ith SU.

IV. PROBLEM FORMULATION
In this section, a mathematical formulation of the dynamic
spectrum allocation problem is developed as an optimization
problem. The formal definition of any optimization problem
comprises an objective function, with the purpose being either
to maximize or minimize it, and constraints which must be
satisfied by the solution.

Let Rij denotes the achievable data rate for sub-channel i if
assigned to user j. Assuming unit transmit energy and a unit
bandwidth, Rij can be calculated as:

Rij = log2

(
1+

1
|gijσij|2

)
(9)
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Moreover, let R̄ be the average achievable data rate for
all possible sub-channel assignments. This can be calculated
as.

R̄ =
1
MN

N∑
i=1

M∑
j=1

log2

(
1+

1
|gijσij|2

)
(10)

As discussed in the literature review, an objective (i.e.
rate, fairness, delay, and energy efficiency) must be chosen
as the target of optimization. While in the majority of the
related literature, the optimization is done with respect to a
single objective, in here, a parameterized objective is pro-
posed to take into account the total achievable throughput
in addition to fairness among users. In the following con-
text, fairness refers to the capability of a larger number of
SUs to operate using the available spectrum holes. Accord-
ingly, the proposed optimization problem can be formulated
as:

max
N∑
i=1

M∑
j=1

(
α + (1− α)

Rij
R̄

)
yij (11)

subject to

N∑
j=1

yij ≤ 1,∀i ∈
{
1, 2, · · · ,M

}
(12)

M∑
i=1

yij ≤ 1,∀j ∈
{
1, 2, · · · ,N

}
(13)

N∑
j=1

(σij − σ ∗i )yij ≤ 0,∀i ∈
{
1, 2, · · · ,N

}
(14)

N∑
j=1

(gij − g∗i )yij ≤ 0,∀i ∈
{
1, 2, · · · ,N

}
(15)

The solution of the problem can be written as a binary
matrix as follows.

y =


y11 y12 · · · y1N
y21 y22 · · · y2N
...

...
. . .

...

yM1 yM2 · · · yMN

 (16)

where yij is defined as:

yij =

{
1, sub-channel j is assigned to user i
0, otherwise

(17)

The objective function in (11) can be viewed as a hybrid of
two objectives, the first objective is the number of allocated
sub-channels represented by the term

∑N
i=1

∑M
j=1 yij and the

second objective is the total achievable rate of the allocated
sub-channels normalized with respect to R̄ represented by the
term

∑N
i=1

∑M
j=1(

Rij
R̄
)yij. The two objectives are weighted by

the variable α which is a tunable parameter that represents
how much the first objective is favored compared to the sec-
ond objective. At α = 1, the objective function is equivalent

to maximizing the number of allocated sub-channels. While
at α = 0, the objective function is equivalent to maximiz-
ing the total achievable rate of the allocated sub-channels.
Introducing the parameter α makes the problem formulation
flexible such that it accommodates applications that require
high total throughput allocations and applications that require
allocating as many sub-channels as possible (fair allocations).
It can be tuned for each setting such that the solution of the
optimization problem fits the target objective which is either
maximizing the total throughput, maximizing the number of
active users, or a weighted combination of both. The con-
straints in (12) ensure that no user is assigned more than one
sub-channel. This constraint can be relaxed in future for the
cases when the number of the available resources are larger
than the number of SU, in which case, the SU can benefit
from higher data rates. The constraints in (13) ensure that no
sub-channel is assigned to more than a single SU. The con-
straints in (14) and (15) ensure that the assigned sub-channels
have a noise power and a sub-channel attenuation factor less
than or equal to the user demands; respectively. Including
the quality-of-service constraints ensures that the users will
be able to initiate communication sessions with their desired
quality.

The problem, as defined in (11), can be classified as a
binary linear program which can be solved optimally using
the branch and bound algorithm. The branch and bound
algorithm uses a linear programming solver at its core and
partitions the feasible solution space into smaller subsets
of solutions. The smaller subsets are systematically eval-
uated until the optimal solution is reached. The approach
has an exponential time complexity in the problem size
which can be a huge issue in some real time applica-
tions. Thus, heuristic polynomial time algorithms to find
practical sub-optimal solutions are developed in the next
section.

V. PROPOSED HEURISTIC ALGORITHMS
In this section, two channel allocation algorithms are pro-
posed, the first of which is a centralized algorithm, while
the second can be implemented in a distributed manner.
As discussed in section IV, the optimization problem defined
in equations (11) to (16) can be solved optimally using
Branch and Bound which will be illustrated in section VI.
The worst-case time complexity of Branch and Bound is
exponential in the problem size which can problematic in
delay-sensitive, and real time applications. As well, it is desir-
able that the allocation phase is completed in minimal time,
so that the SUs can exploit the vacant sub-channels before
the reappearance of PUs. Thus, heuristic polynomial-time
algorithms that are capable of realizing practical solutions
in a significantly shorter period of time compared to that
needed by the branch-and-bound algorithm are proposed in
the following. The proposed heuristics are energy-efficient as
only simple computations are required, which is important
for possible use cases of CRN such as in wireless sensor
networks.
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A. FAIR CHANNEL ALLOCATION ALGORITHM (FCA)
The optimization problem defined in equations (11) to (16)
can be considered as a constraint satisfaction problem
(CSP) [31]. A constraint satisfaction problem consists of
three components:
• X is a set of variables

{
X1,X2, · · · ,Xn

}
.

• D is a set of domains
{
D1,D2, · · · ,Dn

}
, one for each

variable. Each domainDi consists of the set of allowable
values for each variable Xi.

• C is a set of constraints that specify the allowable com-
bination of values

Mapping to (11), the variables are the secondary users, and
the domain of each SU is the set of indices of the sub-channels
that satisfy the quality-of-service constraints for the this user,
as specified by (14) and (15). With such mapping, the FCA
algorithm is proposed as a variant of the backtracking algo-
rithm that is used for solving CSPs [31].

The proposed FCA algorithm works as follows. In each
allocation step, the algorithm has two choices to make. 1) It
chooses the SU to which it will assign a sub-channel. 2) It
chooses which sub-channel to assign to the chosen SU. The
algorithm makes these decisions according to the following
two heuristics:
• Minimum Remaining Values:
A sub-channel is assigned to the SU with the minimum
remaining values in its domain, i.e. the SU that has the
smallest number of feasible sub-channels.

• Least Constraining Value:
The sub-channel that leads to the lowest reduction in the
domains of the other users is assigned to the SU. This
is the sub-channel in the user’s domain which is least
common among all the other users’ domains.

The rationale behind using the minimum remaining values
heuristic is to start with the user that has the least number of
options. Then, the choice of the sub-channel is made using
the least constraining value heuristic to keep the options
open for the subsequent allocation steps of the other SUs.
The described policy avoids starvation of SUs with high
requirements, and hence less options, by allocating such SUs
early on. Moreover, other SUs with low requirements, and
hence more options, are more likely to be allocated a feasible
spectral resource as the algorithm proceeds. Accordingly,
the algorithm will practically maintain equal opportunities
among all users. As such, the FCA algorithm is executed
in a centralized manner. The channel characteristics and the
QoS requirements for all the secondary users are collected
in a central node which executes the allocation algorithm.
Afterwards, it broadcasts a network allocation vector with
the required information for the secondary users to start
transmission. The flowchart of the FCA algorithm is provided
in Fig. 2.

B. GREEDY RATE ALLOCATION ALGORITHM (GRA)
The FCA algorithm has the drawback that it is better exe-

cuted in a fully centralized manner. In a distributed allocation

Algorithm 1 FCA Algorithm (at a Centralized node)
Input: Channel characteristics σ , and g defined in (3)

and (4), in addition to QoS requirements σ∗, and
g∗ defined in (7) and (8)

Output: Assignment //variable to keep
track of channel assignment

M ← number of vacant sub-channels
N ← number of secondary users
Domains← indices of all the sub-channels which
satisfy the SUs QoS constraints
whileM > 0 and N > 0 do

M ← M − 1
N ← N − 1
i← index of the secondary user with the smallest
domain
j← index of the sub-channel that is least common
among the domains of all SUs
Assignment[i]← j //Assign sub-channel j
to user i
Update Domains such that sub-channel j is removed
from all the SUs’ domains

end
return Assignment

Algorithm 2 GRA Algorithm (at Each SU)
Input: Channel characteristics σ , and g defined in (3)

and (4), in addition to QoS requirements σ∗, and
g∗ defined in (7) and (8)

Domain← indices of all the sub-channels which satisfy
the SU QoS constraints
while Domain is not empty do

i← index of the sub-channel that the SU can use to
transmit with the highest possible rate
noBetter ← True
for user in all other SUs do

if user can transmit using sub-channel i at a
higher rate then

Remove i from Domains
noBetter ← False
Break for loop

end
end
if noBetter is True then

Start transmission on sub-channel i
Terminate the algorithm

else
Continue while loop

end
end

algorithm, each SU should execute the algorithm to compute
only its own allocation. However, in case of using the FCA,
each SU will need to compute the allocation of other SUs
as well (all SUs in the worst case) which is a waste of
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FIGURE 2. Flowchart of the FCA algorithm.

resources. In order to overcome such a challenge, the GRA is
proposed. To achieve this, each SU chooses the sub-channel
it operates on according to a greedy, yet cooperative
policy.

The flowchart of the GRA algorithm in Fig. 3 shows
the following. Each SU starts with the best sub-channel
in its domain. To assess the candidacy of a sub-channel,
the SU checks if there is any other SU who can trans-
mit on this sub-channel at a higher rate. This is done
by calculating the capacity of the sub-channel as seen by
other SUs using the knowledge of the channel character-
istics defined in eqs. (3) and (4). Note that the SU only
needs to calculate the capacity as seen by SUs whose
QoS requirements, defined in eqs. (7) and (8), are satisfied
by the sub-channel of interest. The SU only chooses the
sub-channel if there is no other SU who can use it to commu-
nicate at a higher rate. Otherwise, the SU discards the sub-
channel, and checks the other sub-channels using the same
policy.

It should be noted that a conflict might arise in the case
of two (or more) SUs being able to use a given sub-channel
to communicate at the same transmission rate. If the two
SUs have the highest transmission rate over such sub-channel
relative to all other SUs, the two SUs may choose the
same sub-channel leading to a collision (duplicate alloca-
tion). One way to avoid such collision is that both SUs
should discard this sub-channel to avoid conflicts. The draw-
back of this approach is that it wastes spectrum resources.
The other way is that an SU, facing such a case, starts

FIGURE 3. Flowchart of the GRA algorithm.

transmission, taking the chance that the other SU will end up
choosing another sub-channel that achieves a higher through-
put for it. In the latter approach, it is acceptable that this
might lead to a collision. However, the rareness of such a
scenario justifies using either approach with the inherent
drawbacks.

Upon executing the GRA algorithm, each SU either finds a
sub-channel, on which it has the highest rate of transmission
among all SUs, this is the greedy part, or it remains idle.
As such also, the GRA scheme ensures no collisions on all
sub-channels without the need for communication, this is the
cooperative part.

VI. RESULTS AND DISCUSSION
In order to assess the performance of the proposed algorithms,
several experiments are conducted. The results of using the
branch and bound algorithm are used as a benchmark for
comparison.

Each of the proposed algorithms is tested for its capability
to find the optimal solution at different values of α. Moreover,
the average achievable total throughput, and the throughput
per active user are compared across both algorithms. Both
metrics are included as greedy approaches can, in general,
achieve high throughput per active user without achieving a
high overall total throughput, because other SUs are left with-
out feasible sub-channels to use. Furthermore, the average
number of active users, which is used as a metric for fairness,
the runtime, and the time complexity are all investigated for
each of the proposed algorithms.
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A. SIMULATION SETUP
In the following simulation examples, a network of N sec-
ondary users andM vacant frequency sub-channels is consid-
ered. Note that the focus of the following simulation examples
is to assess the dynamic resource allocation, hence the step of
spectrum sensing is not included. One objective of the follow-
ing simulations is to emphasize the effect of the weighting
factor α on the optimal solution of the problem. Hence,
it is necessarily to have a simulation setup in which there
is a trade-off between the number of allocated sub-channels
and the total achievable throughput using the allocated sub-
channels. In other words, the simulation setup needs to have
cases in which allocating as many sub-channels as possible
comes at the expense of the total achievable throughput.
In order to have this, the quality-of-service requirements are
set to be equal to a fraction of the mean of the actual channel
characteristics defined in (3) and (4), σ̄ and ḡ, i.e.

σ ∗i =
1
k
σ̄ , and g∗i =

1
k
ḡ ∀ i = 1, 2, · · · ,N (18)

where k ∈ [1,∞] is an arbitrary factor. Such setup tightens
the feasible solution space by ensuring that all users compete
on the limited number of sub-channels which satisfy their
QoS requirements.

B. NUMERICAL RESULTS
This first set of simulations are used to study the optimality
of the branch and bound algorithm as well as the proposed
heuristic algorithms. A total of 50 experiments are gener-
ated, in which the channel characteristics are sampled from
a half-normal distribution where both σ ∗i and g∗i follow (18)
with k = 2. The number of users is assumed to be N = 50,
and the number of vacant sub-channels is assumed to be
M = 48.
Fig. 4 shows the optimal solution, obtained by applying

the branch and bound algorithm, as well as the solution
achieved by the heuristic algorithms for values of α equal to
0, 0.33, 0.66 and 0.99, in Figs. 4a to 4d, respectively.

It can be observed that at α = 0, where the objective func-
tion completely favors the maximization of the total achiev-
able throughput, the GRA algorithm outperforms the FCA
algorithm.Moreover, the GRA algorithm achieves about 85%
of the optimal value, obtained by the branch and bound
algorithm at α = 0. For example, in the 20th experiment,
while the branch and bound results in a value of 137.1 for
the objective function, and the GRA results in a value of
110. The average values of the objective function, over the
conducted experiments, for the three algorithms are shown in
Fig. 4e for different values of α. It can be seen that for α = 0,
while the branch and bound algorithm results in an average
value of 152.5, andGRA algorithm results in an average value
of 108.8.

As the value of α increases, the objective function becomes
more inclined towards maximization of the number of active

FIGURE 4. Comparison of the objective function value achieved by the
algorithms for 50 experiments at (a) α = 0, (b) α = 0.33, (c) α = 0.66,
(d) α = 0.99, (e) Average value of the objective function.
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users. Consequently, the performance of the FCA algorithm
starts to improve compared to that of the GRA algorithm
and it achieves near optimal behavior at values of α closer
to 1. For example, if can be seen from Fig. 4e that the FCA
achieves 98.76% of the optimal value at α = 0.99. These
observations are justified by fact that the FCA algorithm
makes cautious allocations to maintain equal opportunities
among all users. This can waste the chances of allocating
high-throughput sub-channels. On the other hand, the GRA
algorithm prioritizes users that can transmit with higher
throughput and depletes the resources by prioritizing high
throughput transmissions.

While the branch and bound results in the optimal solu-
tion, it will be shown later that it has a complexity and
runtime disadvantage. With the proposed heuristic algo-
rithms, sub-optimum solutions can be obtained with far less
complexity. Moreover, from the previous examples, it can be
concluded that, for the applications where the maximization
of the number of active users is favored, the FCA algo-
rithm performs better and the resulting solutions are near-
optimal. On the other hand, for the applications where the
maximization of the total throughput is required, irrespec-
tive the number of operating users, the GRA algorithm is
recommended.

The next set of simulations are used to investigate the effect
of the weighting factor α on the performance of the algo-
rithms under study, rather than just the value of the opti-
mization function. Similar to the previous setup, a total of
50 experiments are generated. The average objective function
value, the average total achieved throughput, the average
throughput per user and the average number of active users
at values of α ranging from 0 to 1. The results are displayed
in Figs. 5a to 5d. It is important to note that the solutions
obtained through the proposed heuristic algorithms are insen-
sitive to the value of α, because the value of α is neither
involved nor affects the allocation algorithm in both. This
can be seen clearly from Figs. 5a to 5d. Even though the
value of the objective function itself changes, for the proposed
heuristic algorithms FCA and GRA, with α, the numbers of
the active users, the average total throughput and the average
throughput per user do not change with α.
As depicted in Fig. 5a, the performance of the FCA algo-

rithm steadily improves compared to that of the GRA algo-
rithm, and it has a near-optimal behavior at α = 1. The steady
decline in the overall value of the objective function is due to
the fact that each sub-channel allocation has a weight of α,
while the throughput achieved by the allocated sub-channel
contributes with a weight of (1−α)Rij/R̄. It is understood that
the value of the objective function itself is of marginal interest
compared to the performance indicators, namely; number
of active SUs and the total throughput, resulting from the
solution itself.

Fig. 5b shows the average number of active users resulting
in from each of the three algorithms at different values of α.
It can be seen that the FCA algorithm results in the highest
average number of active users. It can be seen also that

FIGURE 5. The average effect of α, over 50 experiments, on the
performance of the allocation algorithms.

the average number of active users achieved by the branch
and bound algorithm increases as the value of the weighting
factor α increases. This is expected because the higher the
value of α, the more the optimization functions favors the
objective of increasing the number of active users. It can be
also noted that using the GRA results in the lowest number
of active users. In the example, an average of only 35 out of
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FIGURE 6. Comparison of the elapsed time by the three algorithms for 50
experiments.

FIGURE 7. Comparison of the computation time versus the number of
users, N .

the total N = 50 users are allocated feasible resources. This
is again because of the greedy approach that each SU uses
the most rewarding resource maximizing its own throughput
irrespective the other users. So, in this setup, while almost all
of theM = 48 resources are fairly allocated to SUs when the
FCA algorithm is used, only∼ 35 of them are allocated when
the GRA is used.

The average total achievable throughput is assessed in
Fig. 5c. It can be seen that the branch and bound algorithm
results in the highest total throughout, followed by the GRA
algorithm. It can be observed that while the total throughput
resulting from the FCA algorithm is about 80% of the optimal
value achieved by the branch and bound algorithm, the results
of the GRA algorithm is approximately 85% of such optimum
value. It can be seen also that the total throughput achieved by
the branch and bound algorithm decreases for higher values
of α as expected.

TABLE 1. Summary of the comparison points between the proposed
heuristic algorithms.

Finally, Fig. 5d shows the average throughput per active
user. As seen, the solution obtained by the GRA algorithm has
the highest average rate per user. Combined with the result of
a lower number of active users, this is considered an expected
result due to the GRA’s greedy allocation approach. It can
be concluded from these observations that while the GRA
algorithm is in general sub-optimal compared to the branch
and bound algorithm, it is recommended for use when not
only the total throughput but also the throughout per active
user are sought for maximization.

Although the proposed FCA and GRA algorithms result
in sub-optimal solutions, their main advantage is in their
reduced complexity and fast processing time compared to the
branch and bound algorithm. The complexities of the FCA
and the GRA algorithms are both O(N 2M ) in the worst case.
This is an immense speedup compared to branch and bound
whose complexity is exponential in both N and M . In order
to show such low complexity advantage, the three algorithms
are compared to each other from the time complexity point of
view, and results are shown in Figs. 6, 7a and 7b.
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In these figures, a total of 50 experiments are conducted for
a network setup of N = 150 secondary users and M = 100
vacant frequency sub-channels. The times needed by each
of the three algorithms to obtain the solution are recorded
and are shown in Fig. 6. It can be seen that for any of
the conducted experiments, the proposed algorithms requires
significantly shorter time to reach the solution

Fig. 7a shows the time taken by each algorithm to reach
the solution as the number of SUs, N , increases. The number
of sub-channels is assumed fixed irrespective the number of
SUs. It can be observed that the increase in the time needed by
the proposed algorithms is negligible compared to that needed
by the branch and bound algorithm. Fig. 7b emphasizes on the
time needed by the FCA and the GRA algorithms in order
to clearly compare them. It can be observed that the FCA
algorithm requires less computational time that the total time
needed by all users to perform the GRA algorithm. How-
ever, taking into consideration that the GRA is executed in a
distributed manner, with all users processing simultaneously,
it can be observed that the time needed by each user to run the
GRA algorithm is nearly constant irrespective the number of
users. This is a considerable advantage for theGRA algorithm
over both the FCA and the branch and bound algorithms.
A comprehensive comparison between the FCA algorithm
and the GRA algorithm is shown in Table 1

VII. CONCLUSION
In this paper, a new formulation of the dynamic spectrum
allocation problem in cognitive radio networks was proposed.
The new formulation defines a weighted objective function
that takes into consideration the maximization of both the
total throughout and the number of users allocated resources
to achieve fairness among users. The problem is formulated
as a binary linear program that can be solved optimally using
the branch and bound algorithm with a linear programming
solver at its core. Furthermore, two sub-optimal heuristic
algorithms are proposed, the fair channel allocation (FCA)
algorithm and the greedy rate allocation (GRA) algorithm.
The proposed algorithms have significantly shorter computa-
tion time compared to the branch and bound algorithm. The
resource allocations are guaranteed to be collision-free and
they also satisfy the QoS requirements of the secondary users.
Simulations were conducted, and it was shown that the new
formulation achieves balance between both its objectives.
It was shown also that the proposed heuristic solutions can
achieve near optimal solutions with in significantly shorter
times. Moreover, it was shown that the proposed algorithms
are sub-optimal regarding the combined objective functions,
the FCA algorithm always results in a higher number of active
users, and the GRA results in a higher average achievable
throughput per user when compared to the time consuming
branch and bound algorithm.
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