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ABSTRACT In this paper, we focus the problem of unsupervised domain adaptation which transfers
knowledge from a well-labeled source domain to an unlabeled target domain with distinctive distributions.
Based on Gromov-Hausdorff’s theory, we proposed two kinds of feature mappings in the model of joint
distribution adaptation by embedding the original feature subspace to a common subspace. It can been seen
as a part of feature embedding used for the models based feature alignment. Our experiments show that
constructed mappings have the abilities to alleviate the feature discrepancy and mitigate the distribution
shift between source domain and target domains.

INDEX TERMS Domain adaptation, metric information matrix, maximum mean discrepancy, Toeplitz
matrix, convolutional filter mask.

I. INTRODUCTION
In some application scenarios, one can only access to infor-
mation on source domains, but there doesn’t exist direct
information about a target domain. Domain adaptation (DA)
aims at training a model in source domain and applying it
to a new target domain. The key of most domain adaptation
methods is to learn a transformation on the features to reduce
the discrepancy of the distributions between the source and
the target datasets. There are different situations in real-world
problems: 1) The marginal distributions are different, while
the conditional distributions are similar. 2) The marginal
distributions are similar, while the conditional distributions
are different. 3) Both the marginal and the conditional distri-
butions are different. The approaches of domain adaptation
fall into two major categories: based on optimization and
based on deep learning.

Maximum mean discrepancy (MMD) is a widely adopted
tool based on optimization to measure the discrepancy
between the source and target domain distributions. A popular
domain adaptation is feature-based, which projects different
domain data into a shared subspace to minimize their dis-
crepancy, usually measured by MMD [1]. Li et al. proposed
a novel heterogeneous domain adaptation method that can
optimal both feature discrepancy and distribution divergence
in a unified objective function, and the notion of progressive
alignment was given to lean a new transferable feature space
by dictionary-sharing coding and align the distribution gaps
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on the new space [2]. Joint distribution adaptation (JDA)
and its generalized discriminative joint probability MMD
(DJP-MMD) were proposed to measuring the distribution
shift between domains [4], [5].

Deep domain method based on neural network currently
provide some new solutions to domain adaptation. Hoffman
et al. derived some new normalized solutions with strong
theoretical guarantees for the cross-entropy loss and other
similar losses, and present a number of novel contributions
to the multiple-source adaptation problem [6]. In order to
character the common feature subspace in more details,
an Adversarial Tight Match method with a novel distance
loss named Maximum Density Divergence, was proposed in
adversarial domain adaptation which enjoys the benefits of
both adversarial training and metric learning [7]. Moreover,
a quintessential domain adaptation framework on deep learn-
ing is the Deep Transfer Network (DTN), where the highly
flexible deep neural networks are used to implement such a
distribution matching process [8].

In this paper we focus on the approaches based on MMD
for domain adaptation. We introduced a graph structure,
named metric information matrix, which can be used to
character the geometric information of a set or a feature
space. Then we used the invariant property to character the
local metric information of a feature space for domain adap-
tation. We also provided some additional notions such as
Gromov-Wasserstein barycenters and k−nearest neigh-
bour graph to improve the MMD-like algorithms based
metric matrices. The main contributions of the paper
are:
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(1) We introduce the notion of metric information matrix
constructed by some metric matrices, Toeplitz Matrix and
Markov Matrix. It can be used as a based block to represent
the geometric structural information of the source domain and
target domain.

(2) We provide a strategy that can help us to search a
common subspace where one can optimize easily the
between-domain transferability and the between-class dis-
criminability by usingMMD-likemethods.Moreover, associ-
ated with MMD, it can be seen as a part of feature embedding
in the adversarial domain adaptation models. An experiment
is given to verify the effectiveness of the hybrid adversarial
model.

(3) One can combine the proposed approach with the
MMD-like approaches in a straightforward way by transform
the original domains to a common subspace. And we show by
extensive experiments that the proposed method outperforms
the baseline methods in accuracy on different datasets.

II. MATHEMATICAL FOUNDATIONS
Let Ds be the source domain with ns labeled samples
{Xs,Ys} = {(Xs,i,Ys,i)}

ns
i=1. Let Dt be the target domain with

nt unlabeled samples Xt = {xt,j}
nt
j=1, where x ∈ Rd×1 is the

feature tensor, and let y be the label, with y ∈ {1, . . . ,C}
for C−class classification. In this paper we only consider
homogeneous transfer learning, i.e., Xs = Xt and Ys = Yt .
Domain adaptation aims to search a mapping H that brings
H (Xs) and H (Xt ) together in some means, so that the well-
trained classifier works well on both H (Xs) and H (Xt ).
Consider a feature mapping g that maps x to a feature

space. The general objective function of domain adaptation
can be defined as following

min
h
dS,T + λR(h), (1)

where dS,T = d(P(Xs,Ys),P(Xt ,Yt )) is a discrepancy metric
between the source and target domain distributions, R(h) =
‖h‖2F controls the mapping complexity, and λ is a regulariza-
tion parameter.

A. MATHEMATICAL FOUNDATIONS
The metric matrix theory is an important research object
in metric measure geometry, and it is a tool to study the
Gromov’s theory of convergence and concentration ofmetrics
and measures. By the definition of distance matrix, it is easy
to see that any translation, rotation, or reflection transform
will lead to the samemetric matrix such as Euclidean distance
matrix. We can use this property to character the local metric
information of a set (or a domain).

Let (X , d) be a metric space. We introduce the following
definition to character the metric information of a domain
data.

1) METRIC INFORMATION MATRIX
For a metric space X and a natural number N , the distance
matrix MN (X ) of X in order N is defined to be the set of

symmetric matrices
{
dX (xi, xj)

}N
ij of order N , where xi, i =

1, 2, . . . ,N run over all points in X . By the definition of
metric (distance) matrix, we can obtain a set of N × N
matrices for order N . Then for a feature space (X ,D) of the
domain we can define a metric information matrix (MIM) by

MN (X ) :=
{
D(xi, xj)

}N
i,j=1

, xi,j ∈ X (2)

whereD is a metric. IfX is compact, then the distance matrix
KN (X ) is compact. It can be used to character the geometry
feature of a set, and by Gromov-Housdorff (or Gromov-
Wasserstein) distance one can measure the distance between
the two metric information matrices.

2) TOEPLITZ MATRIX
A Toeplitz matrix or diagonal-constant matrix is a matrix in
which each descending diagonal from left to right is constant.

3) MARKOV MATRIX
If the probability of moving from i to j in one time step is
Pr(j|i), the stochastic matrix P is given by using Pi,j as the
i−th row and j−th column element.

4) GROMOV-WASSERSTEIN BARYCENTERS
Gromov-Wasserstein barycenters of measured similarity
matrices (Cs)Ss=1,Cs ∈ RNs×Ns can be defined as a Féchet
mean

min
C∈RN×N

∑
s

λsGWε(C,Cs, p, ps). (3)

For a large class of losses (KL loss or L2 loss), one can com-
pute the global minimizer by the Proposition 3 in paper [3].

5) MAXIMUM MEAN DISCREPANCY
Maximum mean discrepancy is a distance associated with
the embedding probabilities in a reproducing kernel Hilbert
space. For the embedding of P and Q, Maximum Mean
Discrepancy MMDk (P,Q) can be defined as the distance
between the corresponding mean elements, i.e.,

MMDk (P,Q) = ‖µP − µQ‖H. (4)

B. DOMAIN ADAPTATION
Domain adaptation aims at learning a model in the source
domain and applying it to the target domain. Many domain
adaptation methods try to reduce the distribution shift
between the source and the target datasets. A discriminative
joint probability maximum mean discrepancy for domain
adaption was proposed in paper [4]. The object function for
domain adaptation of DJP-MMD can be defied as

argmin
A

∥∥∥ATXsNs − ATXtNt∥∥∥2
F

− µ

∥∥∥ATXsMs − ATXtMt

∥∥∥2
F
+ λ ‖A‖2F

s.t. ATXHXTA = I , (5)
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whereH = I−1n is the centeringmatrix, in which n = ns+nt
and 1n ∈ Rn×n is a matrix with all elements being 1

n .

III. DOMAIN ADAPTATION WITH INFORMATION MATRIX
To facilitate domain adaptation, we improveMMD-like mod-
els by minimize the object function on a common subspace.
Generally speaking, for any N ≤ |X |, X and MN (X ) cannot
be placed in one-to-one correspondence. If N 6= |X |, then
MMD algorithms based on labels and pseudo-labels doesn’t
work on this subspace. If N = |X |, MN (X ) is also called
similarity matrix which is indeed a symmetric nonnegative
adjacency matrix with zero diagonal. In this paper we con-
struct a neighbour graph of domains and perform MMD-like
models for domain adaptation on the graph.

A. I-MIM METHOD
1) NEAREST NEIGHBOUR GRAPH
For a given set V = (v1, v2, .., vn), a sparse affinity matrix
A ∈ Rn×n with elements

aij :=

{[
D(vi, vj)

]γ
+
, if i 6= j ∧ vi ∈ NN k (vj),

0, otherwise
(6)

is constructed, where NNk denotes the set of k nearest neigh-
bors in X , and γ is parameter following recent work on
manifold-based search [9]. Because this matrix is constructed
by a metric function, we call it metric information matrix
(i-MIM).

A linear mapping is given as

L(X ) = γ · X + (1− γ ) ·M(X ), (7)

where γ is a trade-off parameter.
For clarity, we summarize the learning algorithms in

Algorithms 1.

TABLE 1. i−MIM Algorithm 1.

2) i-MIM
We introduce amodified algorithm for domain adaptation that
can be summarized as follows. We construct a nearest neigh-
bour graph on the source domain and target domain. Then we
perform the discriminative joint probability maximum mean
discrepancy for domain adaptation on two graphs. The idea is
developed below, while a graphical overview of the proposed
approach is shown in Figure 1. Then the modified object
function of the discriminative joint probability maximum
mean discrepancy for domain adaptation can be defied as

argmin
A

∥∥∥ATMsNs − ATMtNt
∥∥∥2
F

− µ

∥∥∥ATMsMs − ATMtMt

∥∥∥2
F
+ λ ‖A‖2F

s.t. ATMs,tHMT
s,tA = I . (8)

FIGURE 1. An illustrative example of the i−MIM method.

B. II-MIM METHOD
The i-MIM only characters the metric relationship of points
on each domain and that will miss the information of the
original data.We provide a strategy tomapping the source and
target data into a common subspace. We construct an infor-
mation matrix which can be constructed as a nearest neighbor
graph or as a matrix with some special properties such as
Toeplitz matrix. We introduce the definition of convolutional
filter masks proposed in [10].

1) CONVOLUTIONAL FILTER MASKS
A convolutional filter mask W is a sequence support in
{0, 1, . . . , s} for some s ∈ N called filter length, involving
only s+1 free parameters. Such a filter mask w = (wk )∞k=−∞
support in {0, 1, . . . , s} for some s ∈ N satisfies wk = 0 for
k 6= [0, s] and convoluting with it leads to a Toeplitz type
(D+ s)× D convolutional matrix T .

2) ii-MIM
Let (Xt ,Nt ) be the finite state space of the target domain,
whereNt is the cardinality ofXt . Let (Xs,Ns) be the finite state
space of the source domain, where Ss is the cardinality of Xs.
We then construct the similarity matrices or the convolutional
filter mask associated with Gromov-Wasserstein barycenter
of the source domain and the target domain and denote as
Ms := M(Xs) and Mt := M(Xt ). Using the information
matrices Ms,Mt to describe the Markov chains, then we can
construct the stochastic matrix Ss := S(Ms) and St :=
S(Mt ). Then the linear mapping is given as

L(X ) = γ · X + (1− γ ) · S[M](X ), (9)

where γ is a trade-off parameter. The matrix S ·M is named
the metric information matrix (ii-MIM).

Then we perform the discriminative joint probability maxi-
mummean discrepancy for domain adaptation on two graphs.
These ideas are developed below, while a graphical overview
of the proposed approach is shown in Figure 2. Then the mod-
ified object function of the discriminative joint probability
maximum mean discrepancy for domain adaptation can be
defied as

argmin
A

∥∥∥ATL(Xs)Ns − ATMtNt
∥∥∥2
F

− µ

∥∥∥ATL(Xs)Ms − ATL(Xt )Mt

∥∥∥2
F
+ λ ‖A‖2F

s.t. ATL(Xs,t )HL(Xs,t )TA = I . (10)

The optimal problems can be optimized by the algorithm
provided in the paper [4].
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FIGURE 2. An illustrative example of the i−MIM method.

TABLE 2. ii−MIM Algorithm 2.

IV. EXPERIMENTS
In this section, some experiments are given to show the
effectiveness of the modified algorithms.

A. DATESETS
1) OBJECT RECOGNITION
Office+Caltech includes four domains: Caltech (C), Amazon
(A), Webcam (W), and DSLR (D). In this paper we adopt
the SURF features, and obtain 4 × 3 = 12 different domain
adaptation tasks by randomly selecting a source domain and
a target domain.

2) COIL
COIL includes 20 objects with 1, 440 images. The images of
each object are taken 5 degrees apart as the object was rotated
on a turntable, and each object has 72 images of 32×32 pixels.
The dataset is partitioned into two equal subsets (COIL1 and
COIL2) with different distributions.

3) DIGIT RECOGNITION
USPS and MNIST are two public digit recognition datasets
with different resolutions. Our experiments used the public
USPS and MNIST datasets released by Long et al. [5], which
randomly sampled 1,800 images in USPS and 2,000 images
in MNIST. They both have 10 classes of digits, with different
distributions.

4) MODULATION RECOGNITION
Experiments are conducted on the public dataset named
RadioML [11], which is commonly used for domain

adaptation modulation recognition. It contains 11 modu-
lation classes, 8PSK, BPSK, QPSK, QAM16, QAM64,
AM-DSB, CPFSK, GFSK, LFM, WBFM, PAM4. Each
example waveform is of size 2 × 128. GNU Radio models
for time varying multi-path fading of the channel impulse
response, random walk drifting of carrier frequency oscil-
lator and additive Gaussian white noise are added, and the
signals are passed through harsh channels models which
introduce unknown scale, translation and dilation. RadioML
consists of two parts, named RadioML2016.10a (10a) and
RadioML2016.04c (04c). Each class contains 10,000 samples
for 20 signal-to-noise ratios levels.

B. SETTING
In our experiments we compared the models for unsu-
pervised domain adaptation tasks, JPDA [4], TCA [12],
JDA [5], DICE [13], PACET [14] and BDA (which used
the A-distance [15] to compute the weight, instead of grid
search in [16]), adversarial discriminative domain adap-
tation [17] and adversarial unsupervised domain adapta-
tion [18].We chose k-nearest neighbormodel as the classifier.
The parameter settings in [12] were used for TCA, JDA and
BDA. We fixed p = 100 and T = 20 in all experiments,
and the regularization parameter λ = 1 with linear kernel
for Office+Caltech dataset, λ = 0.1 with primal kernel for
other datasets. In the experiment of deep domain adaptation
we used an improved neural network model in our previous
work [19] to feature extraction.

C. EXPERIMENTAL RESULTS
1) DOMAIN CLASSIFICATION ACCURACY
The classification accuracies of the following algorithms are
given in Table 1 and Table 2. The accuracies of proposed
algorithms of the i-MIM and the ii-MIM are respectively
56.87% and 56.50%, which both outperform the baseline
methods. It clearly demonstrates the effectiveness of the pro-
posed methods. Furthermore, we can obtain that:

(1)The i-MIM method always performs better in the fea-
ture subspace constructed by nearest neighbour graph, and
it shows that the geometry feature subspace can replace
the original domain as a latent subspace to perform the
MMD-like methods.

(2) As can be seen from the results of the ii-MIM method,
convolutional filter masks can be used to construct a linear
transform to map the original feature space to a common sub-
space which is more easier to optimize the domain adaptation
approaches based on MMD.

(3) In the frame of deep domain adaptation the pro-
posed method based on MIM-like feature embedding still
outperforms the baseline methods (ADDA, GR-AUDA or
FA-AUDA) in a 1-D feature vector space extracted by a deep
neural network.

(4) The feature embeddings associated with metric infor-
mation matrix can obtain a more transferrable and also
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FIGURE 3. t-SNE visualization of the first five classes’ distributions before
and after different DA approaches, when transferring Caltech (source) to
Amazon (target).

FIGURE 4. t-SNE visualization of the first five classes’ distributions before
and after different DA approaches, when transferring Amazon (source) to
Caltech (target).

FIGURE 5. t-SNE visualization of the first five classes’ distributions before
and after different DA approaches, when transferring Dslr (source) to
Caltech (target).

more discriminative feature mapping for cross-domain visual
adaptation.

2) FEATURE VISUALIZATION
We adopt the t-SNE method [20] to visualize the learned
feature on the C-W task, W-C task, D-C task and C-D task on
Office+Caltech dataset. The visualization results are plotted
in Figure 3-6. From the results, we can obtain the following
observations:

(1) Figure 3 shows the results of the first five classes’ data
distributions when transferring Caltech (source) to Amazon

FIGURE 6. t-SNE visualization of the first five classes’ distributions before
and after different DA approaches, when transferring Caltech (source) to
Dslr(target).

FIGURE 7. Average classification accuracies with the trade-off
parameter γ .

(target), before and after different distribution adaptation
approaches, where RAW denotes the raw data distribution.
For the raw distribution, the samples of the source and the
target domains are mixed together. After domain adaptation,
the proposed approaches bring data distributions of the source
and the target domains together, and also keeps samples from
different classes well-separated.

(2) Compared with JPDA, the proposed methods based
MIM not only align the distributions between the source and
target data but also enhance the discriminative power of the
target data (See S4→ T4.).
(3) i-MIM and ii-MIM can both align the distributions

between the source and target data. And i-MIM is a bet-
ter feature representation than ii-MIM and JPDA (See
(S3→ T3) or (S5→ T5) in Figure 3).

3) PARAMETERS SENSITIVITY AND CONVERGENCE
We consider the parameter sensitivity and convergence of the
proposed models on different datasets. The main adjustable
parameter γ was studied for two classes approaches base
MIM. The result is shown in Figure 7. The method of
ii-MIM is robust when γ ∈ [0.1, 0.6]. Another parameter
is the metric used in metric information matrix. Here we
compare 12 different kinds of distances, Euclidean, suare-
dEuclidean, seuclidean, mahalanobis, cityblock, minkowski,
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TABLE 3. Classification accuracy of the algorithms.

FIGURE 8. Classification accuracies with the different metric matrices.

TABLE 4. Classification accuracy of the algorithms in deep domain adaptation.

chebychev, consine, correlation, hamming, jaccard and spear-
man. It shows that the distance in MIM is important for
domain adaptation, but there is no clear evidence to show
which distance is the best one. In the view of average accuracy
cosine distance and Euclidean distance are more robust.

4) ABLATION STUDY
We also conducted the ablation study to check if the MMD
based on i-MIM can indeed improve the ability of the
domain adaptation. The JDP-MMD was used as a baseline.
When embedded in DA, the classification accuracies of the

approaches based on different metric matrices are shown in
Figure 8. Compared with the baseline method, the proposed
algorithms can improve classification accuracies on the tasks
COIL2-COIL1 and COIL1-COIL2.

V. CONCLUSION
In this paper, we constructed two metric information matri-
ces which could be as basic components of feature map-
pings for the models of domain adaptation. Combined with
MMD-like model, the feature space induced by metric infor-
mation matrix is more simple and effective to measure the

148022 VOLUME 9, 2021



W. Ren et al.: Metric Information Matrix for Maximum Mean Discrepancy

discrepancy between different domains. The feature mapping
can also be as a basic block of a deep domain adaptation
neural network such as Adversarial Discriminative Domain
Adaptation. Experiments on different classification datasets
verified the superiority of proposed methods.

Furthermore, the proposed models are not the state-of-the-
art models. For example, DICE [13] and PACET [14] are
both more effective than ours for domain adaptation in the
experiments. In the future work, we will try to borrow ideas
from PACET and DICE to modified our models.
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