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ABSTRACT This paper addresses the problems of exponentially quasi-incremental-(Q, S, R)-dissipativity
and practically incremental stability analysis for a switched nonlinear system. First, exponential quasi-
incremental-(Q, S, R)-dissipativity for switched nonlinear systems is first defined. Each subsystem may be
not exponentially quasi-incremental-(Q, S, R)- dissipative. Based on this dissipativity property, practically
incremental stability is obtained for switched nonlinear systems. Second, a state-dependent switching
law is designed to establish exponential quasi-incremental-(Q, S, R)- dissipativity criterion. Finally, the
effectiveness of the obtained results is verified by a numerical example.

INDEX TERMS Switched nonlinear systems, exponentially quasi-incremental-(Q, S, R)-dissipativity,
practically incremental stability.

I. INTRODUCTION
In recent years, the dissipativity introduced by Willems [1]
has received more attention from nonlinear control areas
due to its practical applications. In general, a dissipative
system does not produce energy by itself. Since the storage
functions of dissipative systems often can be selected as
Lyapunov function candidates, dissipativity is closely related
to stability [2]–[5]. Especially, (Q, S, R)-dissipativity was
investigated in [4]. In [6] and [7], dissipativity was extended
to exponential dissipativity. Corresponding to the dissipativ-
ity, exponential stability was obtained. However, the conven-
tional dissipativity theory can only apply to the stability of
nonlinear system with respect to one particular equilibrium.
For amore broad physical systemwith an equilibrium point or
not, incremental passivity and some preliminary properties in
state space form were studied in [8]. It was originally defined
from an input-output of view in [9]. The concept of incremen-
tal passivity was extended to incremental dissipativity [10].
In particular, the supply rate in (Q, S, R) form implies the
gain and phase-related conditions [10], [11]. The incremental
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dissipativity was verified to preserve under feedback inter-
connection in [11]. Moreover, incremental dissipativity was
often applied to output tracking [12], output regulation [8],
network synchronization [10]. Nevertheless, it was difficult to
achieve dissipativity due to the large disturbance in practical
systems. Hence, the quasi-dissipativity, or almost dissipativ-
ity was proposed in [13]–[15]. Compared with dissipative
systems, quasi-dissipative systems may contain sources of
energy. Hence, the trajectories of quasi-dissipative systems
were bounded by a simple output feedback. Similar concept,
semi-passivity was studied to derive set stability [16], [17].
Many physical or biological systems are semi-passive.

On the other hand, switched systems have been widely
studied due to their application in recent years [18]–[23].
Stability has been focused on the study of switched sys-
tems [20], [21], [24]–[31]. However, switched systems do
not inherit the property of subsystems. Even if each sub-
system is stable, the switched system may be unstable.
Hence, [20], [22] verify stability, when each subsystem was
stable. In [19], [28], and [29], at least a subsystem was
assumed to be stable, stability was obtained via average
dwell time method. Nevertheless, many practical systems
are stable. Hence, [20], [30], [31] solved stability problem,
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even if all subsystems were unstable. Incremental stabil-
ity of switched systems is one of the hot issues [32]–[36].
Incremental stability means that the distance between any
two solutions of switched systems with bounded input vari-
ables has stable behavior and converges to zero under the
same switching signal. The methods to verify stability for
switched systems were also useful for incremental stability
of switched nonlinear systems, such as the common Lya-
punov function [32], [34], [36], multiple Lyapunov func-
tions [32], [34], [37], average dwell time method [33], [35].

Dissipativity is a useful tool to obtain stability as
nonswitched systems [37]–[39]. Incremental dissipativity
was expected to be useful for switched nonlinear sys-
tems [40]–[43]. In [40], incremental passivity theory and
the incremental passivity-based output tracking problem for
switched nonlinear systems were established using multiple
storage functions and multiple incremental supply rates. But
the adjacent storage functions were required to be connected
at each switching time, which was a strong requirement.
Hence, [41]–[44] extended incremental passivity to incre-
mental dissipativity, which allowed the adjacent storage func-
tions to increase. Moreover, the corresponding incremental
stability was obtained for switched nonlinear systems. Nev-
ertheless, it is hard to achieve incremental dissipativity due
to large uncertainties or switching. As the quasi-dissipativity
for switched systems investigated in [45] and [46], this paper
will study quasi-incremental dissipativity. Unlike incremental
dissipative systems which do not produce energy by itself,
quasi-incrementally dissipative systems often contain energy
sources. Thus, it is impossible to obtain incremental stability.
Therefore, it is necessary to address how to achieve stability
for a quasi-incremental dissipative system. This motivates the
present study.

In this paper, we will investigate exponential quasi-
incremental-(Q, S, R)-dissipativity and practically incremen-
tal stability. The contributions are in three aspects. First,
an exponential quasi-incremental-(Q, S, R)-dissipativity con-
cept for switched nonlinear systems is first proposed. Weak-
ening the incremental dissipativity concept in [41]–[44]
leads to a broader perspective application. Second, compared
with [19], where the common Lyapunov function method
was adopted, while in this paper, practically incremental sta-
bility is obtained using multiple Lyapunov functions, which
provides us a new method to verify incremental stability.
Third, an exponential quasi-incremental-(Q, S, R)- dissi-
pativity criterion is established. It is a generalization of
the nonlinear versions of the Kalman-Yakubovich-Popove
lemma and Hamilton–Jacobi Inequality. The designed state-
dependent switching law ismore general than [19], [41]–[44].
Compared with [19], this switching law allows the storage
functions to increase at each switching point. Compared
with [41]–[44], which requires the selection of active region is
dependent on a storage function, the selection of active region
here is dependent on a continuous function associated with a
storage function. This provides more freedom for the design
of the switching law.

Notations: U : a set of any measurable, locally essentially

bounded function of time; ‖x‖ =
(
xT x

) 1
2 =

(
n∑
i=1
|xi|2

) 1
2

: the

norm of a vector x = (x1, x2 · · · xn)T ; Im: m-order identity
matrix;

II. PRELIMINARIES AND PROBLEM FORMULATION
Consider a switched nonlinear system

ẋ = fσ (x, uσ ) ,

y = hσ (x, uσ ) (1)

with the state x ∈ Rn and a switching signal σ : [0,∞) →
I = {1, 2, . . . ,M}, which has a finite number of switches
in any finite time interval. ui ∈ Rp and hi(x, ui) ∈ Rm are
the input vector and the output vector of the i-th subsystem,
respectively. fi, hi are continuous functions for all i ∈ I . The
switching sequence generated by the switching signal can be
characterized as follows:∑
= {(i0, t0) , (i1, t1) , . . . , (ik , tk) . . . |ik ∈ I , k ∈ N }, (2)

where t0 denotes the initial time and N is the set of nonneg-
ative integers. When σ (t) = ik , the ik -th subsystem is active
on [tk , tk+1). In addition, the state of system (1) is assumed
to be continuous at the switching instants.

We first review the definition of class GK function.
Definition 1 [47]: A function α : R+ → R+ is said to be

a class GK function if it is increasing and right continuous at
the origin with α (0) = 0.

Many real systems can be modeled as switched systems.
We take a switched RLC circuit for example [41].
Example 1: Consider a switched RLC circuit withM input

power sources, M resistances Ri and M capacitors Ci that
could be switched between each other. The models are given
by

ẋ1 =
1
Lσ

x2,

ẋ2 = −
1
Cσ

x1 −
Rσ
Lσ

x2 + uσ + vd ,

y =
1
Lσ

x2, (3)

where the two state variables are the charge in the capacitor
and the flux in the inductance x =

[
qci , φLi

]T , the input ui
and vd denote the voltage and the bounded disturbance with
‖vd‖ ≤ d and d is a positive constant, I = {1, 2, . . . ,M}.

The energy function of ith submode is given as Si =
1
2Ci

(
x1 − x̂1

)2
+

1
2Li

(
x2 − x̂2

)2.
When σ (t) = i, i.e. the i th submode is active, differenti-

ating Si yields

Ṡi ≤ (1− Ri)
(
y− ŷ

)2
+
(
ui − ûi

) (
y− ŷ

)
+ d2.

Thus, the active submode is quasi-incrementally (Q, S,R)-
dissipative.

Now,we define exponential quasi-incremental-dissipativity
for system (1) as follows:
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Definition 2: System (1) is said to be quasi-incremental-
dissipative if for a given switching signal σ (t), there exists
a nonnegative function V

(
σ (t) , x, x̂

)
: I × R2n → R+,

called storage function, and class GK function α and locally
integerable functionswi (1ui,1y), called incremental supply
rates, where 1ui = ui − ûi, 1y = y − ŷ, constants λ > 0,
c ≥ 0 such that for any two inputs uσ , ûσ and any two
solutions of system (1)x, x̂ corresponding to these inputs, the
respective outputs y = hσ (x, uσ ) and ŷ = hσ

(
x̂, ûσ

)
satisfy

the inequality

eλtV
(
σ (t) , x (t) , x̂ (t)

)
− eλt0V

(
σ (t0) , x (t0) , x̂ (t0)

)
≤

∫ t

t0
eλτ (wσ(τ)

(
1uσ(τ) (τ ) ,1y (τ )

)
+ cσ(τ)) dτ

+ eλt0α
(∥∥x0 − x̂0∥∥) , (4)

where x0 and x̂0 are the initial states. If the incremental supply
rates are given by

wi (1ui,1y) = 1yTQi1y+ 21yT Si1ui+1uTi Ri1ui, (5)

then, system (1) is said to be exponentially quasi-
incrementally (Q, S,R)-dissipative, where Q = (Q1,Q2, · · ·

QM ), Qi = QTi ∈ Rm×m, S = (S1, S2, · · · SM ) , R =
(R1,R2, · · ·RM ), Si ∈ Rm×p,Ri = RTi ∈ R

p×p are constant
matrices.
Remark 1: (4) means that the overall system is

quasi-incremental-dissipative. Each subsystem of a quasi-
incremental-dissipative switched system may contain a
source of energy with ci being seen as the interior supply
rate. This dissipativity property balances the total energy
throughout the overall process, while each active subsystem
is not required to be quasi-incremental dissipative. In many
practical systems, some active subsystems are not incremen-
tally dissipative due to fault or external disturbance, such
as power system or network control system. According to
Definition 2, the energy may increase at some switching
time. The item eλt0α

(∥∥x0 − x̂0∥∥) is used for bounding the
total change of ‘‘energy’’ at the switching times. If ci = 0
then Definition 2 can degenerate into the exponential quasi-
dissipativity defintion in [44]. If ci = 0, λ = 0 then Defini-
tion 2 can degenerate into the incremental quasi-dissipativity
definition in [41].
Remark 2: For system with an equilibrium (0, 0), Defini-

tion 2 is reduced to the quasi-dissipativity definition in [46]
by setting x̂ = 0 and û = 0.
Next, based on Definition 2, exponentially incre-

mental finite power gain and exponentially incremental
quasi-passivity are defined:
Definition 3: System (1) is said to have exponentially

vector quasi-incremental finite power gain (γ1, γ2, . . . γM ),
if system (1) is exponentially quasi-incrementally dissipative
with Qi = −Im,Ri = γ 2

i Ip, Si = 0 for some constants γi > 0
and ∀i ∈ I .
Definition 4: System (1) with m = p is said to be

exponentially quasi-incrementally passive if system (1) is

exponentially quasi-dissipative with Qi = 0,Ri = 0, Si =
1
2 Im for ∀i ∈ I .
Remark 3: The quasi-incremental (Q, S,R)-dissipativity is

more general than the quasi-incremental passivity and vector
quasi-incremental L2-gain, since its incremental supply rate
carries the information on both the incremental phase (given
by the bilinear term 21yT Si1ui) and the incremental gain
(given by the quadratic terms 1yTQi1yi and 1uTi Ri1ui).

This paper will study quasi-incremental-(Q, S,R)-
dissipativity and practically incremental stability for switched
nonlinear systems.

III. PRACTICAL INCREMENTAL STABILITY ANALYSIS
This section will show practically incremental stability based
on quasi-incremental (Q, S,R)- dissipativity.

First, a concept of practically incremental stability is pro-
posed as follows:
Definition 5: System (1) is practically incrementally stable,

if for any given constant δ ≥ 0, a switching signal σ (t) and
any ui ∈ U , i ∈ I , the closed-loop system possesses the
following properties

(a) (Uniform boundedness) there exists ε > 0 such that
for all t0 ≥ 0,

∥∥x (t, x0, uσ )− x̂ (t, x̂0, uσ )∥∥ < ε, when∥∥x0 − x̂0∥∥ < δ.
(b) (Uniform ultimate boundedness) for every initial con-

dition x (t0) , x̂ (t0) , there exist constants R > 0 and T =
T
(
x0, x̂0,R

)
≥ 0 such that

∥∥x (t)− x̂ (t)∥∥ ≤ R holds for
t ≥ t0 + T .
Remark 4: If all vector fields share a common equilibrium,

system (1) is practical stability. In particular, system (1) with
equilibrium 0 is practical stable.

Next, we will show that an quasi-incrementally (Q, S,R)-
dissipative switched system is practically incrementally
stable.
Theorem 1: Suppose that there exist class K∞ functions

α1, α2 and nonnegative continuous functions Vi
(
x, x̂

)
, i ∈

I satisfying α1
(∥∥x − x̂∥∥) ≤ Vi

(
x, x̂

)
≤ α2

(∥∥x − x̂∥∥).
If system (1) is quasi-incrementally (Q, S,R)-dissipative
with Qi ≤ 0, i ∈ I and V

(
σ (t) , x, x̂

)
= Vσ(t)

(
x, x̂

)
then

system (1) is practically incrementally stabilized.
Proof: For t ≥ t0, ∀t ∈ [tk , tk+1) , k ∈ N , substituting

ûi = ui ∈ U into the inequality (4) gives

eλtV
(
σ (t) , x (t) , x̂ (t)

)
− eλt0V

(
σ (t0) , x (t0) , x̂ (t0)

)
≤

∫ t

t0
eλτ cσ(τ) dτ + eλt0α

(∥∥x0 − x̂0∥∥) , (6)

For t > t0, there exists positive integer k such that
t ∈ [tk , tk+1). By (5), we get:

eλtV
(
σ (t) , x (t) , x̂ (t)

)
− eλt0V

(
σ (t0) , x (t0) , x̂ (t0)

)
= eλtVik

(
x (t) , x̂ (t)

)
− eλt0Vi0

(
x (t0) , x̂ (t0)

)
≤

∫ t

t0
eλτ cσ(τ) dτ + eλt0α

(∥∥x0 − x̂0∥∥) , (7)
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Combining α1
(∥∥x − x̂∥∥) ≤ Vi

(
x, x̂

)
≤ α2

(∥∥x − x̂∥∥)
with (7) gives:

α1
(∥∥x (t)− x̂ (t)∥∥)
≤ Vik

(
x (t) , x̂ (t)

)
≤ e−λ(t−t0)Vi0

(
x (t0) , x̂ (t0)

)
+ e−λ(t−t0)α

(∥∥x0 − x̂0∥∥)
+
c
λ

(
1− e−λ(t−t0)

)
≤ e−λ(t−t0)

(
Vi0

(
x (t0) , x̂ (t0)

)
−
c
λ
+ α

(∥∥x0 − x̂0∥∥))+ c
λ

≤ e−λ(t−t0)α
(∥∥x0 − x̂0∥∥)+ c

λ
,

where c = max
i∈I
{ci} , α = α + a2.

i) For ∀δ > 0, there exists ε = α−1
1

(
α (δ)+ c

λ

)
such that

∥∥x (t, x0, uσ )− x̂ (t, x̂0, uσ )∥∥ ≤ ε, when∥∥x0 − x̂0∥∥ ≤ δ.
ii) When t →∞,

∥∥x (t)− x̂ (t)∥∥ ≤ α−11

( c
λ

)
.

By Definition 5, system (1) is practically incrementally
stabilized.

IV. SUFFICIENT CONDITIONS OF
QUASI–INCREMENTAL-(Q, S, R)-DISSIPATIVITY
In this section, a state-dependent switching law will be
designed to achieve exponential quasi-incremental-(Q, S, R)-
dissipativity.
Theorem 2: Suppose that there exist nonnegative smooth

functionsVi
(
x, x̂

)
, functions βij

(
x, x̂

)
≤ 0, smooth functions

µij
(
x − x̂

)
with µij (0) = 0 and µii

(
x − x̂

)
= 0, matrices

Qi = QTi ∈ Rm×m, Si ∈ Rm×p,Ri = RTi ∈ Rp×p and
constants ci ≥ 0, λi > 0 for all i, j ∈ I such that for any
two inputs ui and ûi, any two solutions of system (1) x and x̂
corresponding to these two inputs and the respective outputs
y and ŷ

∂Vi
∂x

fi (x, ui)+
∂Vi
∂ x̂

fi
(
x̂, ûi

)
+

M∑
j=1

βij
(
x, x̂

) (
Vi − Vj + µij

)
≤ 1yTQi1y+ 21yT Si1ui +1uTi Ri1ui + ci − λiVi, (8)
∂µij

∂x
fi (x, ui)+

∂µij

∂ x̂
fi
(
x̂, ûi

)
+ µijλ≤0, λ = min

i∈I
{λi} , (9)

µij
(
x−x̂

)
+µjk

(
x−x̂

)
≤min

{
0, µik

(
x − x̂

)}
, ∀i, j, k (10)

hold, where 1ui = ui − ûi, 1y = y − ŷ. Design the
state-dependent switching law as follows:

σ (t) = i if σ
(
t−
)
= i and

(
x (t) , x̂ (t)

)
∈ �i,

σ (t) = min
{
j
∣∣(x (t) , x̂ (t)) ∈ �ij

}
if σ

(
t−
)

= i and
(
x (t) , x̂ (t)

)
∈ �̃ij, (11)

where �i =
{(
x, x̂

)∣∣Vi (x, x̂)− Vj (x, x̂)+ µij (x − x̂) ≤ 0 ,
j ∈ I

}
and

�̃ij=
{(
x, x̂

)∣∣Vi (x, x̂)−Vj (x, x̂)+µij (x − x̂) = 0, i 6= j
}
.

(12)

Then, system (1) is quasi-incrementally (Q, S,R)-
dissipative under the switching law (11).

Proof: Similar to [47], we can show that {�i| i ∈ I }
makes a partition of R2n.

When Vi
(
x, x̂

)
− Vj

(
x, x̂

)
+ µij

(
x − x̂

)
≤ 0, namely,(

x, x̂
)
∈ �i, differentiating Vi

(
x, x̂

)
together with (8) gives

V̇i =
∂Vi
∂x

fi (x, ui)+
∂Vi
∂ x̂

fi
(
x̂, ûi

)
≤ −λVi +1yTQi1y+ 21yT Si1ui +1uTi Ri1ui + ci,

(13)

where λ = min
i∈I
{λi}. Multiplying both sides of (13) by eλt ,

respectively, yields:

d
dt

(
eλtVi

)
≤ eλt

(
1yTQi1y+ 21yT Si1ui +1uTi Ri1ui + ci

)
. (14)

Integrating (14) over [s, t] for ∀t > s ≥ t0 gives:

eλtVi(x(t), x̂ (t))− eλsVi(x(s), x̂ (s))

≤

∫ t

s
eλτ

(
1yTQi1y+21yT Si1ui+1uTi Ri1ui + ci

)
dτ

(15)

By the switching law (11), we can obtain the switching
sequence (2) with the property

Vik+1
(
x (tk+1) , x̂ (tk+1)

)
− Vik

(
x (tk+1) , x̂ (tk+1)

)
= µik ik+1

(
x (tk+1)− x̂ (tk+1)

)
. (16)

(9) tells us that eλtµik j
(
x (t)− x̂ (t)

)
are decreasing on

[tk , tk+1) .
Let V

(
σ (t) , x, x̂

)
= Vσ(t)

(
x, x̂

)
. For t0 ≤ t < ∞, there

exists positive integer k such that t ∈ [tk , tk+1). From (15)
and (16), we have

eλtV
(
σ (t) , x (t) , x̂ (t)

)
− eλt0V

(
σ (t0) , x (t0) , x̂ (t0)

)
= eλtVik

(
x (t) , x̂ (t)

)
− eλtkVik

(
x (tk) , x̂ (tk)

)
+

k−1∑
p=0

(
eλtp+1Vip

(
x
(
tp+1

)
, x̂
(
tp+1

))
− eλtpVip

(
x
(
tp
)
, x̂
(
tp
)))

+

k∑
p=1

eλtp
(
Vip

((
x
(
tp
)
, x̂
(
tp
)))
−Vip−1

((
x
(
tp
)
, x̂
(
tp
))))
(17)

≤

∫ t

t0
eλτ
(
1yTQσ1y+21yT Sσ1uσ+1uTσRσ1uσ+cσ

)
dτ

+

k∑
p=1

eλtpµip−1ip
(
x
(
tp
)
− x̂

(
tp
))
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≤



∫ t

t0
eλτ

(
1yTQσ1y+ 21yT Sσ1uσ

+1uTσRσ1uσ + cσ
)
dτ if k is odd∫ t

t0
eλτ

(
1yTQσ1y+ 21yT Sσ1uσ

+1uTσRσ1uσ + cσ
)
dτ

+ eλt0µi0i1
(
x0 − x̂0

)
if k is even

(18)

where α (s) = max
‖x−x̂‖≤s

{ ∣∣µij (x − x̂)∣∣ |i, j ∈ I } is a class

GK function. Then, system (1) is exponentially quasi-
incrementally (Q, S,R)-dissipative under switching law (11).
Consider a switched system of the form

ẋ = fσ (x)+ gσ (x) uσ ,

y = hσ (x)+ Jσ (x) uσ . (19)

Theorem 3: Suppose that there exist nonnegative smooth
functions Vi

(
x, x̂

)
, continuous functions βij

(
x, x̂

)
≤ 0,

li
(
x, x̂

)
: R2n→ Rq,Wi

(
x, x̂

)
: R2n→ Rq×m, constants ci ≥

0, λi > 0 and smooth functions µij
(
x − x̂

)
with µij (0) = 0

and µii
(
x − x̂

)
= 0 for all i, j ∈ I and some integer q such

that inequality (10) and

∂Vi
∂x

fi (x)+
∂Vi
∂ x̂

fi
(
x̂
)
−
(
hi (x)−hi

(
x̂
))T Qi (hi (x)− hi (x̂))

+ λiVi +
M∑
j=1

βij
(
Vi
(
x, x̂

)
− Vj

(
x, x̂

)
+ µij

(
x − x̂

))
≤ −lTi li + ci, (20)

1
2
gTi (x)

∂Vi
∂x
− ŜTi

(
x, x̂

) (
hi (x)− hi

(
x̂
))

= W T
i
(
x, x̂

)
li
(
x, x̂

)
, (21)

∂Vi
∂x

gi (x)+
∂Vi
∂ x̂

gi
(
x̂
)
= 0, R̂i

(
x, x̂

)
= W T

i
(
x, x̂

)
Wi
(
x, x̂

)
, (22)

∂µij

∂x
fi (x)+

∂µij

∂ x̂
fi
(
x̂
)
+ µijλ ≤ 0,

∂µij

∂x
gi (x)

=
∂µij

∂ x̂
gi
(
x̂
)
= 0 (23)

hold, where

R̂i
(
x, x̂

)
= Ri +

(
Ji (x)− Ji

(
x̂
))T Si + STi (Ji (x)− Ji (x̂))

+
(
Ji (x)− Ji

(
x̂
))T Qi (Ji (x)− Ji (x̂))

Ŝi
(
x, x̂

)
= Qi

(
Ji (x)− Ji

(
x̂
))
+ Si.

Then, system (19) is exponentially quasi-incrementally
(Q, S,R)- dissipative under the switching law (11).
Proof: When Vi

(
x, x̂

)
− Vj

(
x, x̂

)
+ µij

(
x − x̂

)
≤ 0,

differentiatingVi
(
x, x̂

)
together with (20), (21) and (22) gives

V̇i −
(
1yTQi1y+ 21yT Si1ui +1uTi Ri1ui

)
=
∂Vi
∂x

fi (x)+
∂Vi
∂ x̂

fi
(
x̂
)
+
∂Vi
∂x

gi (x)1ui

−

(
1yTQi1y+ 21yT Si1ui +1uTi Ri1ui

)

= −1uTi R̂i
(
x, x̂

)
1ui +

1
2
Bi
(
x, x̂

)
1ui +

1
2
1uTi B

T
i
(
x, x̂

)
+Ci

(
x, x̂

)
≤ −

(
li
(
x, x̂

)
+Wi

(
x, x̂

)
1ui

)T
×
(
li
(
x, x̂

)
+Wi

(
x, x̂

)
1ui

)
+ ci − λVi

≤ ci − λVi,

where 1ui = ui − ûi, 1y = y − ŷ,Bi
(
x, x̂

)
=

∂Vi
∂x gi (x) +

2
(
hi (x)− hi

(
x̂
))T Ŝi and

Ci
(
x, x̂

)
=
∂Vi
∂x

fi (x)+
∂Vi
∂ x̂

fi
(
x̂
)

−
(
hi (x)− hi

(
x̂
))T Qi (hi (x)− hi (x̂)) .

The rest proof is similar to that of Theorem 2.
If R̂i

(
x, x̂

)
> 0 the Hamilton-Jacobi inequalities to judge

quasi-incremental (Q, S,R)- dissipativity property of sys-
tem (19) can be obtained as follows.
Theorem 4: Suppose that there exist nonnegative smooth

functions Vi
(
x, x̂

)
, continuous functions βij

(
x, x̂

)
≤ 0

and smooth functions µij
(
x − x̂

)
with µij (0) = 0 and

µii
(
x − x̂

)
= 0 for i, j ∈ I such that (10), (23) and

∂Vi
∂x

fi (x)+
∂Vi
∂ x̂

fi
(
x̂
)
−
(
hi (x)−hi

(
x̂
))T Qi (hi (x)− hi (x̂))

+

(
1
2
∂Vi
∂x

gi −
(
hi (x)− hi

(
x̂
))T Ŝi) R̂−1i

×

(
1
2
∂Vi
∂x

gi −
(
hi (x)− hi

(
x̂
))T Ŝi)T + λiVi

+

M∑
j=1

βij
(
x, x̂

) (
Vi
(
x, x̂

)
− Vj

(
x, x̂

)
+ µij

(
x − x̂

))
≤ ci,

(24)
∂Vi
∂x

gi (x)+
∂Vi
∂ x̂

gi
(
x̂
)
= 0, R̂i

(
x, x̂

)
> 0 (25)

hold, where

R̂i
(
x, x̂

)
= Ri +

(
Ji (x)− Ji

(
x̂
))T Si + STi (Ji (x)− Ji (x̂))

+
(
Ji (x)− Ji

(
x̂
))T Qi (Ji (x)− Ji (x̂))

and Ŝi
(
x, x̂

)
= Qi

(
Ji (x)− Ji

(
x̂
))
+ Si. Then, system (19)

is incrementally (Q, S,R)- dissipative under the switching
law (11).

Proof: Similar to the proof of Theorem 3, when
Vi
(
x, x̂

)
−Vj

(
x, x̂

)
+µij

(
x − x̂

)
≤ 0, differentiatingVi

(
x, x̂

)
together with (24) and (25) gives

V̇i −
(
1yTQi1y+ 21yT Si1ui +1uTi Ri1ui

)
= −1uTi R̂i

(
x, x̂

)
1ui +

1
2
Bi
(
x, x̂

)
1ui +

1
2
1uTi B

T
i
(
x, x̂

)
+Ci

(
x, x̂

)
= −

(
1uTi R̂

1
2
i −

1
2
Bi
(
x, x̂

)
R̂
−
1
2

i

)

×

(
1uTi R̂

1
2
i −

1
2
Bi
(
x, x̂

)
R̂
−
1
2

i

)T
146418 VOLUME 9, 2021



H. Pang, S. Liu: Exponential Quasi-Incremental-(Q, S, R)-Dissipativity

+
1
4
Bi
(
x, x̂

)
R̂−1i

(
x, x̂

)
BTi
(
x, x̂

)
+ Ci

(
x, x̂

)
≤ ci − λVi.

The rest of proof is similar to that of Theorem 3.
Remark 5: (8), or (20) or (24) tells us that exponentially

quasi-incremental (Q, S, R)-dissipativity is unnecessary for
each subsystem. If ci = 0, λ = 0 in (8) then the conditions
in Theorem 3 can degenerate into incremental (Q, S, R)-
dissipativity conditions [41].
Remark 6: The conditions (8), (20), (24) are commonly

adopted for switched nonlinear systems [39]–[47]. However,
checking these conditions may be difficult in practice, so that
some literatures proposed an associated sufficient condition
corresponding to a feasibility problem over Linear Matrix
Inequalities. In general, it is very hard to get the exact analyti-
cal solution of PDIs (Partial Differential Inequalities). Hence,
several methods for finding approximate solutions on a com-
pact set or numeral solutions were proposed in [48]–[53].
In some special cases, this problem can be recasted as a con-
vex optimization problem or state-dependent matrix inequal-
ity problem over bilinear matrix inequality. These problems
can be solved by the developed approaches in [48] and [49].
Moreover, Sum of Squares method is an effective analytic
tool for constructing storage functions of systems described
by polynomial vector fields [50]–[53].

V. EXAMPLE
Example 2: This section will give an example to demonstrate
the effectiveness of the results. Consider system (1) with two
subsystems described by

f1 (x, u1)

=

(
−x1

(
x21 + 4.3

)
+ 0.5x2 − 0.6x22 + 3.2+ 0.45u1

0.3x1 + 0.6x2 + 7.8x21 + 0.3u1

)
,

y = x1 + 2x2 + 0.5u1,

f2 (x, u2)

=

(
0.78x1 + 0.781111x2 − 2.984+ 0.549u2
1.6x1 − 20.39798x2 + 38.4+ 0.92u2

)
,

y = x1 + 0.99495x2 − 0.2u1. (26)

The storage functions are selected as

V1
(
x, x̂

)
=

1
2

(
x − x̂

)T P1 (x − x̂) and

V2
(
x, x̂

)
=

1
2

(
x − x̂

)T P2 (x − x̂) , (27)

where P1 =
[
1 0
0 3

]
and P2 =

[
2 −0.01
−0.01 1

]
.

The derivative of Si is given as follows:

V̇1 ≤ −β12 (V1 − V2)− 2V1 + 1.2+ 0.6
(
y− ŷ

)2
+ 0.5

(
u1 − û1

) (
y− ŷ

)
− 0.3

(
u1 − û1

)2
,

V̇2 ≤ −β21 (V2 − V1)− V2 + 1

+ 1.2
(
u2 − û2

) (
y− ŷ

)
+ 0.3

(
u2 − û2

)2
. (28)

FIGURE 1. State response x1, x̂1 of the switched system.

FIGURE 2. State response x2, x̂2 of the switched system.

FIGURE 3. Switching signal.

where β12 = −3.5, β21 = −10. The switching law is
designed as

σ (t)=1, when V1 − V2≤0, σ (t)=2, when V2−V1≤0.

(29)

By Theorem 2, system (26) is quasi- incrementally
(Q, S,R)-dissipative.

According to Theorem 1, the resulting closed-loop system
is practically incrementally stable.

Let u1 = û1 = −10, u2 = û2 = 2.59 and the initial
states (x1 (0) , x2 (0)) = (−11.2, 19.4) ,

(
x̂1 (0) , x̂2 (0)

)
=

(−12.9, 45.5). The simulation of system (26) was performed
in MATLAB using the ’’ode45s’’ solver. The simulation
results are presented in Figs. 1 - 3. Figs.1, 2 show the state
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response of the switched system is bounded under the switch-
ing signal described by Fig. 3. Figs.1, 2 imply that two system
trajectories x (t) and x̂ (t) converge to a ball, which indicates
that the closed-loop system is practically incrementally sta-
ble. Thus, the simulation results well illustrate the theory
presented.

VI. CONCLUSION
This paper has investigated quasi-incremental (Q, S,R)- dis-
sipativity and practicallly incremental stability for switched
nonlinear systems. A state-dependent switching law has
been designed to establish exponential quasi-incremental-(Q,
S, R)- dissipativity criterion. The designed state-dependent
switching law is more general than the well-known
min-switching or max-switching. This gives more design
freedom of stabilizing switched systems. However, the state-
dependent switching law may cause frequent switching. How
to design a state-dependent switching law with a desirable
dwell time is a significant issue. This issue will be our future
topic of research.
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