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ABSTRACT The integration of simulation-based optimization and data mining is an emerging approach to
support decision-making in the design and improvement of manufacturing systems. In such an approach,
knowledge extracted from the optimal solutions generated by the simulation-based optimization process
can provide important information to decision makers, such as the importance of the decision variables and
their influence on the design objectives, which cannot easily be obtained by other means. However, can
the extracted knowledge be directly used during the optimization process to further enhance the quality
of the solutions? This paper proposes such an online knowledge extraction approach that is used together
with a preference-guided multi-objective optimization algorithm on simulation models of manufacturing
systems. Specifically, it introduces a combination of themulti-objective evolutionary optimization algorithm,
NSGA-II, and a customized data mining algorithm, called Flexible Pattern Mining (FPM), which can extract
knowledge in the form of rules in an online and automatic manner, in order to guide the optimization to
converge towards a decision maker’s preferred region in the objective space. Through a set of application
problems, this paper demonstrates how the proposed FPM-NSGA-II can be used to support higher quality
decision-making in manufacturing.

INDEX TERMS Manufacturing, decision making, simulation-based optimization, data mining, evolutionary
algorithms.

I. INTRODUCTION
It is widely acknowledged that manufacturing is the engine
of the modern economy, due to its leading contribution to
overall productivity and its multiple effects on growth in
the rest of the economy [1]. For manufacturing companies
to stay competitive, efficient manufacturing operations are
required, both in their design phase and during continuous
improvements that necessitate changes and investments to
improve their efficiency. Central to the decision-making pro-
cess in designing or improving manufacturing operations
is the concept of knowledge – the more a decision maker
understands the relationship between how to design and run
a system and how it performs, the better are the decisions
that can be made [2]. However, knowing what actions to
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perform to maintain and improve efficiency can be hard, due
to the complex nature of manufacturing processes. One of
the tools for analyzingmanufacturing processes is simulation,
where a model is built to depict a real-world process or sys-
tem. Simulation has historically been used for prediction and
performance analysis of different aspects of manufacturing,
for example, workforce planning, supply chain management
and capacity planning [3], as well as improving resource
efficiency [4]. Some recent comprehensive reviews of the use
of simulation in manufacturing can be found in [5] and [6].
Although simulation is often used as an evaluative tool, it can-
not generate any optimal solution when used on its own.
Consequently, researchers have shown a significant interest
in merging optimization and simulation in order to find the
optimal or near-optimal design and/or operating policies for
manufacturing systems [5]. In such a simulation-based opti-
mization (SBO) procedure, an optimization algorithm is used
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FIGURE 1. Simulation-based optimization process.

together with a simulation model for evaluating candidate
solutions in an iterative manner as shown in Figure 1. It has
huge potential to generate optimal or near-optimal solutions
that can be used to assist decision-making in designing and
improving manufacturing systems [7], [8].

Optimization problems within manufacturing as well as
many other domains often involve multiple conflicting objec-
tives [9]. A multi-objective optimization problem can be
defined as:

Minimize F(x) = {f1(x), . . . , fM (x)}

subject to gj(x) ≥ 0 ∀j = 1, 2, . . . , J

hk (x) = 0 ∀k = 1, 2, . . . ,K

x(L) ≤ x ≤ x(U) (1)

where fi: Rn
→ R are two or more objectives (M ) that are

conflicting and need to be minimized. The vector of variables
x = [x1, x2, . . . , xn]T belongs to the non-empty feasible
region formed by the inequality constraints gj(x), equality
constraints hk (x) and variable bounds. The feasible region is
defined by the constraints of the problem and bounds on the
variables. An important concept within multi-objective opti-
mization is that of dominance which can be used to compare
two solutions. A variable vector x1 is said to dominate another
variable vector x2 (x1 � x2) if and only if:
1) fi(x1) ≤ fi(x2), ∀i ∈ {1, 2, . . . ,M},
2) ∃j ∈ {1, 2, . . . ,M} such that fj(x1) < fj(x2).

If neither x1 � x2 nor x2 � x1, then they are said to be
non-dominated with respect to each other and denoted as
x1 || x2. A feasible solution x∗ is said to be Pareto-optimal
if there does not exist any other feasible solution dominating
x∗. The manifold containing the Pareto-optimal solutions is
called the Pareto-optimal front.

The n-dimensional space formed by the variables is called
the decision space. Each solution in the decision space maps
to a point in the M -dimensional space formed by the objec-
tives, which is called the objective space. Figure 2 shows the

FIGURE 2. Decision and objective space.

mapping between the decision space and objective space in a
problem with two variables and two conflicting minimization
objectives. The Pareto-optimal solutions are shown in dark.

Simulation-based multi-objective optimization problems
are difficult to solve using classical optimization methods
due to various reasons. Firstly, as explained above, multiple
objectives lead to multiple solutions. Most classical opti-
mization methods can only generate one solution at a time,
therefore, in order to find the Pareto-optimal set, several opti-
mization runs have to be carried out. Secondly, by definition,
a simulation model has non-analytical objective functions.
Classical optimization techniques often rely on objective and
constraint function gradients which are either unavailable or
difficult to calculate for simulated outputs. Thirdly, due to
the stochastic nature of objective and constraint function,
the resulting multi-objective optimization problem can have
several locally optimal solutions and classical optimization
techniques are prone to such solutions.

The three main issues described above can be over-
come using evolutionary algorithms. Evolutionary algorithms
aim to mimic principles of natural evolution observed in
the nature by using a population of individuals (solutions)
that evolve over several generations (iterations) to gener-
ate the optimal solutions [10]. Evolutionary algorithms do
not require gradient information and, due to their stochas-
tic nature, they also have the ability to recover from local
optima. Evolutionary algorithms are especially popular in
solving multi-objective optimization problems due to their
population-based approach which allows obtaining multiple
optimal solutions simultaneously. Evolutionary algorithms
are also better suited for parallelization.

A decision maker’s expert knowledge can be advantageous
when solving complex multi-objective optimization prob-
lems, if his/her preferences can somehow be embedded into
an evolutionary multi-objective (EMO) algorithm [11]–[13].
There are many different ways of incorporating decision
maker’s preferences. For example, by using different weights
for each objective, the decision maker can define the relative
importance of one objective over another, and then minimize
the weighted sum of the objectives, essentially converting the
multi-objective optimization problem into a single objective
optimization problem. However, such scalarization methods
have some drawbacks and do not always work as expected.
For example, the simple weighted sum approach described
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here is only applicable to problems where the Pareto-optimal
front is convex [14].

Combining SBO with evolutionary algorithms and data
mining can be advantageous as a tool for extracting knowl-
edge about a manufacturing system. The manual use of these
techniques can be a complex undertaking and, therefore, they
should be integrated into a decision support system. However,
to our best knowledge, there are hitherto no decision support
systems that combine these techniques [15].

The aim of this article is therefore to study how knowl-
edge extracted from combining data mining methods with
SBO can be used to better understand the implications of
optimal solutions in manufacturing system problems for
the purpose of decision-making. The study also explores
how online knowledge extraction can be used to guide the
SBO process based on the decision maker’s preference. The
paper is structured as follows: Section II reviews previous
related research studies. Section III describes a technique
that uses data mining to extract knowledge during and after
an optimization run. Section IV proposes an extension of a
multi-objective evolutionary algorithm that uses knowledge
extracted through data mining to automatically guide an
optimization towards the preferences indicated by a decision
maker. Then, in Section V, the proposed methods are demon-
strated with applications from the manufacturing industry.
The obtained results are discussed in Section VI, and finally,
the paper concludes in Section VII.

II. RELATED WORK
In this section, we present a review of previous works related
to the three methodological aspects of this work. Section II-A
discusses data mining methods that can generate knowl-
edge in a form suitable for integration with an optimiza-
tion algorithm. Section II-B covers existing preference-based
evolutionary algorithms and their corresponding preference
articulationmethods. And finally, Section II-C explores exist-
ing approaches to combining data mining methods with evo-
lutionary algorithms.

A. DATA MINING METHODS FOR KNOWLEDGE
DISCOVERY
Several data mining approaches have been used in the liter-
ature for knowledge discovery from the solutions obtained
throughmulti-objective optimization. A recent survey of such
methods [16] classifies them based on the representation of
the obtained knowledge: (i) descriptive statistics, which are
simple numerical measures that summarize data, leads to
explicit knowledge, (ii) visual data mining techniques rep-
resent knowledge through various graphical means such as
clusters or heatmaps, thus they have an implicit representa-
tion, (iii)machine learning methods can represent knowledge
in both implicit and explicit forms.

Implicit knowledge is knowledgewithout a formal notation
and therefore it is often presented visually, which not only
leads to subjective interpretations, but also makes it difficult
for an algorithm to use the knowledge automatically. Explicit

knowledge, on the other hand, uses mathematical notation
which is well-defined and complete so that no information
is lost [17]. Explicit forms of knowledge have a fixed mathe-
matical notation and are therefore easy to store, transfer and
process automatically within a computer program. Hence,
here we only focus on data mining methods that can discover
explicit knowledge.

The most common type of explicit knowledge takes the
form of if A then B rules involving the variables in the
antecedent A and objectives in the consequent B. The earliest
application of rule extraction in multi-objective optimization
can be found in [18], where each objective is discretized
into different levels and the rules involving the variables
are obtained using classification trees. A similar method
involving regression trees is used in [19] and [20] to gen-
erate rules describing a preferred region in the objective
space. Both works demonstrate how the obtained rules can
provide a better understanding of complex SBO problems
to decision makers. Rough set theory and association rule
mining have also been used to obtain if-then rules. The former
has been applied to multi-objective design optimization of a
centrifugal impeller in [18], [21], while the latter has been
shown to be effective in [22] on the same problem. Another
approach calledMulti-Objective Rule Extraction, specifically
designed for obtaining rules for SBO problems in production
systems, is proposed in [23]. The method extracts rules by
finding critical values for each variable that give significant
jumps in objective function values. This gives the decision
maker information about which configuration is best suited
for production system given the desired level of investment.
The authors show the application of the method in real-world
production system optimization.

Another common type of explicit knowledge takes the
form of mathematical relationships involving variables,
objective functions and constraint functions. The simplest
form ofmathematical relationships are linear correlations and
these can easily be obtained through methods like Principal
Components Analysis (PCA) and Linear Discriminant Anal-
ysis (LDA). These methods have traditionally been used for
graphical representation of solutions [24], [25], but can also
be used for knowledge extraction. For example, a closely
related method called Proper Orthogonal Decomposition has
been employed in [26] and [27] to extract design knowledge
from the Pareto-optimal solutions of an airfoil shape opti-
mization problem.

While linear correlations are indeed insightful when
present in optimization data, often the relationships between
any given set of variables are nonlinear. Moreover, the nature
of the relationships may be different in different regions of
the search space. Innovization or (innovation through opti-
mization) proposed in [28] can handle such nonlinearities
through a manual approach of analyzing scatter plots of dif-
ferent variable combinations and performing regression with
appropriate models on the correlated parts of the data. Later,
an automated innovization approachwas developed [29], [30]
which uses unsupervisedmachine learning to extract multiple
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nonlinear relationships simultaneously without human inter-
vention [31]. This approach was further extended in [32] to
obtain mathematical relationships of arbitrary kinds using
genetic programming. Automated innovization has been used
for knowledge discovery in several real-worldmulti-objective
optimization problems [33].

B. PREFERENCE-BASED EVOLUTIONARY ALGORITHMS
Preference-based evolutionary algorithms use information
about the decision maker’s preferences to obtain a preferred
set of solutions on the Pareto-optimal front. These algorithms
can be classified into three categories based on when the user
input is needed, a priori, a posteriori and interactivemethods.
A priori methods take the decision maker’s preferences into
account right from the start of an optimization run. It is
assumed that the decisionmaker is able to elicit the preference
information accurately at the outset. On the other hand, a
posteriori methods require preferences only after obtaining
a representative set of trade-off solutions. While this helps
the decision maker to realistically set his/her expectations,
generating the entire trade-off front in the first place can itself
be a challenging task, particularly when many objectives are
involved. Interactive methods try to combine aspects of a
priori and a posteriori methods by involving the decision
maker during the optimization run in an iterative manner
to guide search towards his/her preferences [34]. While this
generally reduces the computational effort required to obtain
preferred solutions, it drastically increases the number of
times the decision maker’s inputs are needed, thus risking
cognitive overload.

Preference-based evolutionary algorithms can also be clas-
sified based on how the user specifies his/her preferences.
One of the most common ways of articulating preferences
is to use one or more reference points. A reference point
is a point in the objective space which specifies the aspi-
rations of the decision maker for each objective function.
Depending on its location, the reference point can either
be attainable (achievable) or unattainable (unachievable).
An attainable point is one that lies in the feasible space and
it is therefore possible for an optimization algorithm to reach
the point. An unattainable point is one that is specified in the
infeasible region, in which case the optimization algorithm
can approach it only as close as the feasible space allows.
Preferences can also be obtained through pairwise compar-
isons between representative solutions. However, in practice,
this approach can be time-consuming and too demanding of
the decisionmaker. Amore recent method of preference artic-
ulation involves specifying a region of the objective space
through the action of brushing usingmouse input as presented
in [35]. This is a visual and interactive method and as in
the case of reference points, the decision maker does not
need to have prior knowledge of the range of values in the
objective space. Other common ways of articulating prefer-
ences is through reference directions, light beams and value
functions [36]. Here, we specifically review preference-based

evolutionary algorithms that use reference point(s), since the
algorithm proposed in this paper is of a similar nature.

The reference point-based NSGA-II or R-NSGA-II intro-
duced in [37], uses the weighted Euclidean distance of each
solution from the reference point as ametric to promote diver-
sity close to the reference point. It also employs a clearing
strategy to avoid overcrowding of solutions at a particular
reference point by controlling the extent and distribution of
obtained solutions. While R-NSGA-II uses a priori elicita-
tion of preferences, an interactive version of the algorithm
proposed in [38] relies on pairwise comparisons between
selected solutions at regular intervals. Based on the inputs
from a decision maker, the algorithm creates a utility function
which in turn guides search.

The Preference-Based Evolutionary Algorithm (PBEA),
introduced in [39], incorporates preferences into an evo-
lutionary algorithm using modified quality indicators. The
decision maker’s preference is expressed as reference points
which are used in the selection operator of the algorithm
together with an achievement scalarizing function to guide
the search towards the region of interest. A weighted form of
achievement scalarizing function (WASF-GA) [40] has also
been developed where the weights are chosen so as to project
the reference point onto a region of interest on the Pareto-
optimal front.

The concept of g-dominance proposed in [41] works by
redefining Pareto-dominance such that solutions that domi-
nate or are dominated by the reference point are considered
to be preferable to solutions that non-dominated with the
reference point. The proposed g-NSGA-II algorithm requires
minimal changes to the base algorithm and can be utilized in
both a priori and interactive manner. However, the reference
point needs to be fairly close to the Pareto-optimal front in
order to avoid obtaining a large region of interest.

The concept of r-dominance introduced in [42] also rede-
fines Pareto-dominance such that a strict partial order can
be obtained among non-dominated solutions. This allows
solutions closer to the reference point to be preferred over
other solutions of the same rank. The authors demonstrate
that the approach is effective in both a priori and interactive
forms.

The recently proposed RMEAD2 [43] and
MOEA/D-NUMS [44] integrate user-preferences into the
decomposition-based evolutionary algorithm MOEA/D by
biasing the weight vectors towards the given reference point.

It is noteworthy that most of the preference-based evo-
lutionary algorithms in the literature use NSGA-II as the
underlying multi-objective optimizer. Since this is also true
for the algorithm proposed in this paper, for completeness we
briefly describe NSGA-II later in Section III-A.

C. COMBINING EVOLUTIONARY ALGORITHMS WITH
DATA MINING
The main purpose of combining evolutionary algorithms
with data mining methods is to improve the performance
of the algorithm through the knowledge extracted during
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the optimization process. Such algorithms may be referred
to as online knowledge-driven optimization algorithms as
proposed in [16]. Since the knowledge needs to be processed
automatically by an algorithm, only explicit representations
can be used.

One of the early works in this area is the Learnable Evolu-
tion Model (LEM) proposed in [45]. It uses machine learning
to obtain rules that differentiate between high-performing
and low-performing solutions. These rules are used in turn
to generate new solutions. While LEM was only applied to
single-objective optimization problems, it showed the poten-
tial of embedding extracted knowledge into the optimization
algorithm. Later, the method was extended in [46] to handle
multi-objective optimization problems.

Linear correlations obtained by PCA can also be uti-
lized to enhance search. For example, the approach proposed
in [47] detects correlations in the decision space and builds
a probability model that is used to generate solutions in
subsequent iterations. Identification of linear and nonlinear
correlations in the objective space can also help the search
process when redundant objectives are removed online as
demonstrated in [48]. This approach is especially useful for
solving many-objective optimization problems.

The interactive method presented in [49] uses Dominance-
based Rough Set approach to build a preference model based
on the decision maker’s ranking of certain representative
solutions. The preference model consists of if-then-else rules
which are in turn added as constraints to the original opti-
mization problem, thus guiding the algorithm towards pre-
ferred regions of the search space.

III. ONLINE KNOWLEDGE EXTRACTION
In this section, we first describe the NSGA-II algo-
rithm, a well-known multi-objective evolutionary algorithm,
to facilitate our discussion later on how it can be extended
with online knowledge extraction based on the decision
maker’s preference. Next, we present the Flexible Pattern
Mining (FPM) approach that is used in this work for extract-
ing knowledge. Thereafter, we first describe how FPM is
used in a decision support system to extract knowledge in
an offline manner, i.e. after the optimization run is complete.
And finally, we present the extension of FPM-based decision
support system to facilitate online knowledge extraction, i.e.
during the optimization run.

A. THE NSGA-II ALGORITHM
Genetic algorithms are inspired by the process of evolution
seen in nature. A typical genetic algorithm starts with ini-
tialization of a set of random solutions called the parent
population. Based on their fitnesswith respect to the objective
function, a subset of these solutions is selected to form the so
called mating pool. A child population is generated from the
mating pool by applying the genetic operators, crossover and
mutation on the solutions. Based on a crossover probability,
each crossover operation recombines two parent solutions
to form two recombinant solutions. Similarly, based on the

mutation probability, the mutation operator mutates each
recombinant to form a child solution. The parent and the child
population are then merged and the new parent population is
formed by selecting the best fitness solutions while maintain-
ing the population size. This process is repeated for a fixed
number of iterations or generations.

There are many multi-objective optimization techniques
based on genetic algorithms. Non-dominated Sorting Genetic
Algorithm II (NSGA-II) [50] is once such technique that
has been used as a template for many other multi-objective
optimization algorithms in several different application
areas [9]. NSGA-II has been chosen in this work because
it is well-known and has relatively good performance on
multi-objective test problems as well as real world optimiza-
tion problems [50]. Like genetic algorithms, NSGA-II is also
a population based technique, which allows it to converge to
multiple Pareto-optimal solutions in a single algorithmic run.
The solutions in the population are evolved with crossover
and mutation and each new set of individuals is called a
generation. The individuals in a generation is evaluated with,
in our case, a test function for a test problem or a simulation
model. To create a set of individuals for a new generation
the current generation is sorted based on the concept of
dominance and crowding distance. Based on this sorting a
new population is selected and the process is repeated until a
stopping criterion is met, for example, maximum number of
generations or running time. This process of selecting a new
generation is shown in Figure 3 [50]. The child population Ct
is created from the population Pt . These two populations is
combined (Rt ) and are sortedwith non-dominated sorting into
fronts (F1, F2, F3,. . . , Fl) where the individuals from the best
fronts are used to create the new generation. If a front does not
fit into the new generation it is sorted with crowding distance
and the individuals with the highest crowding distance is kept
for the new generation (Pt+1). The algorithm is described in
detail in [50] and pseudo-code for the algorithm can be seen
in Algorithm 1.

Algorithm 1 Pseudo-Code for NSGA-II
population← GenerateRandomSolutions
while termination criteria not met do

EvaluateObjectiveValues(population)
parents← Select(population)
recombinants← Crossover(parents)
children←Mutate(recombinants)
combinedPopulation← population+ children
NonDominatedSorting(combinedPopulation)
population← SelectBest(combinedPopulation)

end while

B. FLEXIBLE PATTERN MINING
Flexible Pattern Mining or FPM is a recent extension [51]
to the popular sequential pattern mining (SPM) algorithm
proposed in [52]. The original SPM algorithm was designed
to extract frequent customer sequences (also known as
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FIGURE 3. NSGA-II algorithm as shown in Algorithm 1.

sequential patterns) from market basket data. Given a dataset
of transactions of different customers, called the transaction
database, the SPM algorithm first generates a database of
customer sequences. A customer sequence is essentially a
chronologically ordered list of itemsets, each itemset itself
being a group of items bought together by the customer.
Frequent customer sequences are those that meet a minimum
support threshold. FPM uses a similar approach, by consid-
ering the solutions generated during optimization as transac-
tions and the variables as items. Thus, each transaction will
have the same number of items, which is not the case in SPM.
When the variable values are continuous or ordinal in nature,
FPM can also generate sequential rules instead of sequential
patterns by transforming the optimization data into a truth
matrix. For each possible value dij of a variable xi present
in the solution set, FPM adds three binary columns in the
truth matrix corresponding to the logical expressions xi < dij,
xi == dij and xi > dij. Frequent patterns can then be found
within the truth matrix. For example, if x1 > d12 is true for
100% of the solutions and x2 < d24 is true for 80% of the
solutions, then the sequential rule x1 > d12 ∧ x2 < d24 has a
support of 80%.

C. DECISION SUPPORT SYSTEM FOR KNOWLEDGE
DISCOVERY
To support decision makers with the task of SBO in manu-
facturing applications, the authors have previously proposed
a Decision Support System (DSS) in [15]. This DSS, imple-
mented in C++, has the ability to perform multi-objective
optimization using NSGA-II on discrete event simula-
tion models of real-world production systems and there-
after explore the obtained Pareto-optimal solutions. Here,
we describe how FPM was integrated into this DSS to enable
both offline and online knowledge discovery.

FIGURE 4. Integration of SBO with online and offline knowledge
discovery through FPM.

FIGURE 5. Experiment Browser showing visualization of solutions on
parallel coordinate and scatter plots. The rules obtained by FPM at the
last generation are visualized as colored vertical bars. For example, here
x3 > 0.35 ∧ x3 < 0.625.

The FPM algorithm is added as the third component of the
DSS as shown in Figure 4. It uses the traditional SBO process
to feed optimization data to the FPM algorithm in real-time
through an SQL database containing an archive of solutions
from all generations. The archive also contains the rules
generated by the FPM algorithm at the end of each generation
of NSGA-II in Algorithm 1. The solutions and rules from any
generation can be visualized by the decision maker through
another interface called the Experiment Browser.

The Experiment Browser is simply a piece of software,
implemented in C#, that connects to the internal storage of the
DSS and provides the user with different tools to visualize and
analyze the results. The Experiment Browser has scatter plots
for two and three dimensional optimization data, parallel
coordinates, as well as a table that displays the raw data from
experiments. Figure 5 shows a screen-shot of the Experi-
ment Browser with three open diagrams: parallel coordinates,
scatter plot, and FPM rule plot. The FPM rule plot (shown
as ‘Online Analysis’) is used to visualize the rules obtained
by the FPM algorithm at the last generation. Each vertical
bar represents the bounds of a variable in the optimization
problem. Since FPM rules are of the form xi < dij or xi > dij,
they can be interpreted as subsets of the original variable
bounds and shown in color on the vertical bars.

IV. FPM-NSGA-II: A PREFERENCE GUIDED
EVOLUTIONARY ALGORITHM
The FPM algorithm described in Section III-B is capable
of generating knowledge in the form of explicit rules from
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FIGURE 6. FPM-NSGA-II uses FPM to generate rules that describe
solutions close to the reference point. The k nearest Euclidean neighbors
in the normalized [0, 1] objective space are passed to FPM as
selectedSols.

intermediate generations of an evolutionary multi-objective
optimization algorithm. As mentioned before, a unique
advantage of explicit knowledge is that it can be processed
automatically by an algorithm. Our proposed preference
guided evolutionary algorithm is called of FPM-NSGA-II
due to the integration of FPM into NSGA-II. Like most
other a priori and interactive methods, FPM-NSGA-II uses a
reference point for articulating user preferences. After every
T generations, where T is set by the user, FPM-NSGA-II
calls a function called RunFPM() shown in Algorithm 2.
This function first retrieves the current non-dominated from,
currentNDF from the archive A of evaluated solutions.
After normalizing the objectives to [0, 1], the k nearest
Euclidean neighbors of the reference point, refPoint , are
selected from the currentNDF as shown in Figure 6 to form
the set selectedSols. This set of solutions is assumed to rep-
resent the current preferences of the decision maker. Any
significant rules extracted from this subset of non-dominated
solutions will thus capture the decision maker’s preferences
in the decision space. The solutions that do not repre-
sent the decision maker’s preferences, unselectedSols, are
obtained by taking the set different between currentNDF and
selectedSols. Next, FPM is used to obtain rules corresponding
to selectedSols. The support for each rule in both selectedSols
and unselectedSols is also calculated.

Algorithm 2 Pseudo-Code for RunFPM(A, k)

currentNDF ← GetNonDominated(A)
selectedSols← kNN(currentNDF , refPoint)
unselectedSols← currentNDF \ selectedSols
rules← FPM(selectedSols, unselectedSols)

In order to guide the optimization towards the preferred
regions (in this case, towards refPoint), the rules obtained
by FPM are added as probabilistic constraints to the current
generation. In subsequent generations, the probabilistic con-
straints penalize solutions that do not conform to the deci-
sion maker’s preference, while promoting solutions close to
refPoint . Probabilistic constraints act like regular inequality
constraints, with the only difference that not all solutions
are affected by the same constraints. Each rule from FPM

FIGURE 7. A schematic of the FPM-NSGA-II algorithm.

that is added as a probabilistic constraint has an associated
probability equal to its support. Thus, a support value of 95%
means that the rule acts as a constraint with a probability of
0.95 on each solution in the current generation. A solution
that adheres to the rule is not affected by this constraint.
However, on the average 95% of the solutions that do not fol-
low this rule will be penalized. Such probabilistic constraints
help in maintaining some diversity among the solutions, that
avoiding premature convergence.

The crossover and mutation operators are also modified
using the rules to promote creation of children that adhere
to the rules obtained from FPM. Simulated binary crossover
(SBX) [50] and polynomial mutation operators are used in
this work. Both the operators are modified by altering the
bounds of the variable being recombined or mutated based on
the FPM rule corresponding to that variable. For example, if
a variable xi with original bounds

[
x(L)i , x(U )

i

]
is associated

with the FPM rule xi > pi, then the bounds are modified
as

[
pi, x

(U )
i

]
in SBX and polynomial mutation. The support

of the rule is again used as the probability with which this
modification is applied. The net effect is a change in the
probability distributions of the offspring in the current and
subsequent generations.

Together, the probabilistic constraints and modified SBX
and polynomial mutation operators guide the solutions
towards the preferred region as specified by the reference
point. The complete FPM-NSGA-II algorithm is shown in
Figure 7.
In this work, we set the number of generations between

FPM calls to T = 10 generations. After every T gener-
ations, existing probabilistic constraints are purged and all
modifications to the crossover and mutation operators are
reversed. Thus, theoretically the algorithm has the ability
to recover from premature convergence towards refPoint .
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FIGURE 8. Simulation model depicting the PSU2 production system.

Note that since the online knowledge extraction procedure
is a module attached to the regular NSGA-II algorithm, the
latter can therefore easily be replaced with any other state-of-
the-art multi-objective optimization algorithm.

FPM-NSGA-II is fundamentally different from exist-
ing preference-based evolutionary algorithms in two main
ways. Firstly, as discussed in Section II-B, algorithms such
R-NSGA-II, PBEA and g-NSGA-II work via the selec-
tion mechanism by modifying the dominance operator to
emphasize solutions closer to refPoint . On the other hand,
FPM-NSGA-II works via the variation mechanisms by mod-
ifying crossover and mutation operators as described above.
It also affects the selection process indirectly through proba-
bilistic constraints that change every T generations. A more
important distinction however is the fact that unlike existing
preference-based evolutionary algorithms, FPM-NSGA-II
also generates a set of rules at the end that capture decision
maker’s preferences in the variable space.

A. COMPUTATIONAL COMPLEXITY OF FPM-NSGA-II
The time complexity of NSGA-II algorithm is determined by
the non-dominated sorting procedure depicted in Figure 3,
which is known to be O(MN 2) [50], whereM is the number
of objectives and N is the population size. The computational
runtime of FPM is determined by the underlyingApriori algo-
rithm [53] and depends on four factors [54], namely (i) sup-
port threshold, (ii) number of transactions (N ), (iii) number
of unique items (d) and (iv) average transaction width (w).

Asmentioned before, in FPMall transactions (solutions) have
the same number of unique items (variables). Therefore, the
average transaction width is w = d = n, n being the number
of variables. Theworst case complexity ofO(2n) occurs when
support values for all possible variable combinations need to
be calculated. However, this upper bound is practically only
possible when support threshold is zero. In FPM-NSGA-II,
only unary rules of the forms xi < dij, xi == dij and xi > dij
are sought, which only requires O(Nn) operations. Thus,
the overall computational complexity of FPM-NSGA-II is
either O(MN 2) or O(Nn), whichever is greater. From this
we can conclude that the FPM part of FPM-NSGA-II scales
linearly with the number of solutions and number of vari-
ables. In the application problems used in this paper, we have
N > n, so the runtime of FPM-NSGA-II is limited by the
non-dominated sorting procedure itself.

V. APPLICATION STUDIES
In this section, we describe two different production system
design problems that are used in this work to demonstrate
(i) online knowledge extraction through the developed DSS,
and (ii) the proposed FPM-NSGA-II algorithm.

The first problem is based on a machining cell model
extended from the one presented in [55] and is called ‘PSU2’.
Although themodel is hypothetical, it is realistically designed
based on the authors’ experience in working with real-world
complex models and decision-making situations in industry.
This model makes use of three so-called selection objects
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FIGURE 9. The 5S scalable simulation model.

in the simulation software FACTS Analyzer (or FACTS
hereafter) [56] that can enable several design alternatives to
co-exist in amodel. By changing the values of the correspond-
ing decision variables, the optimization module in FACTS
can then alter the selection objects into various combinations.
The analysis of such a model can then be conducted effi-
ciently, by letting the optimization algorithm seek the optimal
combination of design alternatives with their optimal settings,
together with the optimal values of other decision variables
(e.g. buffer spaces), in a single optimization run. The model is
shown in Figure 8. The optimization problem formulation can
be found in [15] with a complete description of the objectives
and variables. Here it suffices to say that the model involves
three objectives, minimize payoff time for investments (cal-
culated as the ratio of total investment to profit per year),
minimize work-in-process (WIP) and maximize throughput.
The variables, their possible values and investments costs
associated with them are shown in Table 1.

TABLE 1. Decision variables, their ranges and associated cost for
calculating Payoff time.

The second problem under consideration is based on a scal-
able simulation model depicting simple flow lines that manu-
facture a single product type. Although the simulation model
is simple, it has the interesting property of being scalable to
any desired number of stations (operations). This allows the
model to be used for benchmarking SBO algorithms and for
understanding the behavior of other complex models under
scaling. In this paper, we consider simulation models with
four different number of stations: 5, 10, 15 and 20, hereafter
referred to as 5S, 10S, 15S and 20S respectively. Between
every two stations, there is one buffer whose capacity can be
adjusted. Thus, for s stations, the total number of buffers is
s− 1. Figure 9 illustrates the 5S scalable model which starts
and ends with a source and a sink, and with the operations
and buffers alternating in between.

An optimization problem is set-up for each of the scaled
models with the same type of configuration. The variables
for each station are the processing time, availability and mean
time to repair. The buffer capacities are also included as vari-
ables. Table 2 shows the notation and possible values for each
variable. The subscript i in the notation refers to the operation
or buffer number, starting from i = 1 immediately after the
source. The total number of variables is n = 3s + (s − 1).
Thus, 5S, 10S, 15S and 20S respectively involve 19, 39, 59
and 79 variables to be optimized. The optimization problem

TABLE 2. Variables for optimization of scalable models.

has three objectives: (i) maximizing the throughput of the
line, (ii) minimizing the total number of improvements in
processing time, availability and mean time to repair from
the base values of Ti = 80, Ai = 90 and Ri = 300 ∀ i, and
(iii) minimizing the total number of buffer spaces required.
An optimization of this problem should achieve the optimal
trade-off between the throughput, number of improvement
actions, and total buffer capacity.

VI. RESULTS AND DISCUSSION
Each experiment is composed of a simulation model, the
experiment type and the parameter settings. To account for the
stochastic nature of evolutionary algorithms, each experiment
is replicated 10 times. The evaluations and the FPM rules
from each generation of all optimization runs are stored in
the database, which can be retrieved and plotted either during
or after the optimization run. Both the original NSGA-II
algorithm and the proposed FPM-NSGA-II algorithm use
the parameter settings shown in Table 3. For the mutation
probability, the 1/n rule-of-thumb, where n is the number of
variables, is used.

In addition to the above mentioned NSGA-II parameters,
FPM-NSGA-II involves two other parameters, namely, (i) the
number of nearest neighbors k from the given reference
point refPoint to be selected from the current non-dominated
front currentNDF , and (ii) the support threshold ST for FPM
rule generation. The value of k determines how well the
decision maker’s preferences are captured in the objective
space. When too many solutions are selected, the prefer-
ences may not be adequately emphasized to guide search
towards the reference point. On the other hand, selecting too
few solutions may mean that no rules are found that meet
the support threshold. Ideally, the two parameters should
be adaptively controlled during runtime, with a high k and
low ST at the beginning when relatively fewer solutions
are non-dominated, and a low k and high ST towards the
end when a majority of the population is expected to be
non-dominated. This way the emphasis on the preferences
is gradually increased with each generation. However, the
control algorithm for an optimal balance between the two
parameters is a matter for future research. In this paper,
we keep both k and ST static thoruhgout the runtime. In our
experiments, we found that using a low k and moderate ST
allows preferences to be emphasized right from the start while
still allowing rules satisfying the support threshold to be
found. The following results were generated with k = 20%
the size of currentNDF and ST = 50%. Small changes to
k ∈ [20%, 30%] and ST ∈ [50%, 60%] have shown to have
negligible effect on the region and rate of convergence for all
problems considered.
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TABLE 3. Parameter settings for optimization experiments.

The results are generated as follows:

1) Set up experiment

a) Set simulation model (5S, 10S, 15S, 20S, PSU2)
b) Set experiment type (Online knowledge extrac-

tion / FPM-NSGA-II)
c) Set optimization algorithm parameter settings

2) Run optimization with replications
3) Retrieve evaluations and FPM rules to generate plots

Each optimization run requires 200,000 evaluations (Pop-
ulation size × Max generations × Number of replications).
The DSS developed in this work has an architecture that
enables parallelization to distribute the evaluations of solu-
tions on several computers, which reduces the total runtime.
The implementation uses 100 computation nodes to parallely
evaluate all solutions in a given generation, thus achieving a
speed-up of nearly 100x. The generation of rules with FPM
cannot be efficiently parallelized, and is hence performed on
the local machine.

In Section VI-A, we demonstrate the online knowledge
extraction process through the developed DSS from the solu-
tions obtained by solving the above problems with the orig-
inal NSGA-II algorithm. In this first scenario, the obtained
rules apply to the whole non-dominated front and therefore
can be interpreted as IF ‘non-dominated’, THEN
‘rule’. Section VI-B presents how the FPM-NSGA-II
algorithm uses the same DSS for online knowledge extrac-
tion and incorporates that knowledge to converge towards a
specified reference point, thus meeting the decision maker’s
preferences. Thus, the second scenario allows finding rules
that apply to a preferred region of the Pareto-optimal front,
without having to generate a representation for the whole
front. These rules can be interpreted asIF ‘preferred’,
THEN ‘rule’.

A. VISUALIZATION OF FPM RULES
When the experiment type is set to ’Online knowledge extrac-
tion’, the non-dominated fronts from all generations of a
complete optimization are analyzed. The final non-dominated
front contains the trade-off solutions obtained by the original
NSGA-II algorithm. By applying FPM to these solutions,
knowledge about what makes a solution perform well can be
discovered.

In order to visualize the FPM rules obtained from multiple
optimization runs, a visualization method called the rule map
has been developed. Figure 10 shows the rule map for the
final non-dominated front from all ten replications of the
5S model. The diagram shows, for each input parameter,
the range of variable values described by the FPM rules.

FIGURE 10. Rule map for final generation of 5S model.

The figure is divided into four parts representing the four
groups of input parameters: processing time, availability,
mean time to repair (MTTR), and buffer capacity. The y-axis
represents the station/buffer number. For each rule in a repli-
cation, a translucent rectangle representing the value range
of the rule and parameter is added to the diagram. Due to the
stochastic nature of optimization, the rules from the last non-
dominated front may vary from one replication to another.
However, when rules from multiple replications are added
on top of each other, the overlapping areas become darker
indicating the most reliable values for each variable.

In Figure 10, it can be seen that MTTR variables follow
several rules which makes their map darker. For process
times, availability, and buffer capacities, there are very few
rules, which means that FPM could not find many significant
rules for these variables when considering the whole trade-off
front.

Figure 11 shows the same analysis for the 10S variant of
the scalable models. The behavior of the MTTR parameters
is similar to the 5S model, but it has more significant rules
for the other parameters. Rules obtained from the 15S model,
presented in Figure 12, shows even more rules for process
times, availability, and buffer capacities. Most processing
time values are centered around 70 seconds. For the 20 station
model, Figure 13 shows that the rules are approximately
the same as for the 15S model. Such rule maps can help
decision makers easily visualize the most frequent optimal
values when dealing with a large number of variables. For
example, the rule map of PSU2 in Figure 14 shows that B1
and B2 usually take values between 1 and 10, while B3 and
B5 mostly take values between 10 and 30.

B. RESULTS FROM FPM-NSGA-II
The proposed preference guided evolutionary algorithm,
FPM-NSGA-II, is now tested on the five application prob-
lems. The experimental setup is the same as described before,
except that FPM-NSGA-II also requires a reference point for
each simulation model. These reference points, which are all
unattainable, are shown in Table 5. Our DSS can currently
only handle one reference point as this is the most common
use-case. The algorithm itself is not restricted with respect to
the number of reference points.
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TABLE 4. Top 20 significant rules from final generations of all five models.

FIGURE 11. Rule map for final generation of 10S model.

FIGURE 12. Rule map for final generation of 15S model.

The top 20 significant rules obtained from the last gener-
ation of FPM-NSGA-II are shown in Table 6. The table also
shows the number of times the rules appear in 10 replications
of FPM-NSGA-II. Note that due to the specification of a

FIGURE 13. Rule map for final generation of 20S model.

TABLE 5. Reference points (unattainable) of all five models used in
FPM-NSGA-II.

preferred region (through reference points), the obtained rules
are very different from those in Table 4.

Similar to the previous sub-section, the rule maps can
be generated for all five models. These are shown in
Figures 15-18. Note that there are more distinct and darker
regions in these figures than in Figures 10-14. This is a
graphical manifestation of the difference in rules observed
in Table 6. The visual nature of rule maps helps decision
makers to easily make sense of multiple variables at a single
glance. For example, Figure 17 shows that processing times
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TABLE 6. Top 20 significant rules from final generations of all five models using FPM-NSGA-II.

FIGURE 14. Rule map for final generation of PSU2 model.

FIGURE 15. Rule map for final generation of 5S model using FPM-NSGA-II.

usually have to be high while availability values should be
relatively low for solutions close to the reference point of 15S
model. More specifically, the decision maker can also see that
B4, B7 and B13 should be close to their upper bounds (10).
The relative darkness of the regions tell how important the
variables and their values are.

Next, we show the non-dominated solutions obtained using
FPM-NSGA-II. In Figures 19-23, ‘+Ö’ represents the refer-
ence point and the solutions obtained by FPM-NSGA-II are
shown in blue. For the sake of comparison, the blue solutions
are overlaid on the trade-off solutions obtained from original
NSGA-II. The figures show that the FPM-NSGA-II solutions
have converged close to the Pareto-optimal front and are also

FIGURE 16. Rule map for final generation of 10S model using
FPM-NSGA-II.

FIGURE 17. Rule map for final generation of 15S model using
FPM-NSGA-II.

clustered close to the reference point in each case.While there
are other reference point based algorithms in the literature,
the unique feature of FPM-NSGA-II is that in addition to
solutions close to the preferred reference point, the algorithm
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FIGURE 18. Rule map for final generation of 20S model using
FPM-NSGA-II.

FIGURE 19. Non-dominated front (blue solutions) for 5S model obtained
using FPM-NSGA-II.

FIGURE 20. Non-dominated front (blue solutions) for 10S model obtained
using FPM-NSGA-II.

can also generate rules that describe these solutions. In the
classical sense, decision making is almost always performed
in the objective space. FPM-NSGA-II allows decisionmakers
to simultaneously understand the implications of their deci-
sions in the decision space. This is not possible with any of
the reference-point based evolutionary algorithms that exist
in the literature.

FIGURE 21. Non-dominated front (blue solutions) for 15S model obtained
using FPM-NSGA-II.

FIGURE 22. Non-dominated front (blue solutions) for 20S model obtained
using FPM-NSGA-II.

FIGURE 23. Non-dominated front (blue solutions) for PSU2 model
obtained using FPM-NSGA-II.

VII. CONCLUSIONS
Although a combination of simulation and multi-objective
optimization has previously been shown to be effective for
supporting decision making in manufacturing, higher quality
decisions can be assured when the optimal solutions are
supplemented with the knowledge about what makes them
optimal in terms of the variable values. Such knowledge
can be automatically extracted using data mining techniques.
In this paper, we first extended an existing DSS, that com-
bines a discrete event simulation engine and an optimization
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module, with a data mining module that implements the
recently proposed Flexible Pattern Mining algorithm. The
DSS is capable of replicating optimization runs on a parallel
architecture and online knowledge extraction. Also part of
the DSS is an Experiment Browser for visualizing the solu-
tions and the obtained knowledge. In order to visualize the
rules generated by FPM, we developed the concept of rule
map, which allows FPM rules from multiple replications of
the experiments to be shown on a single plot. The decision
maker can obtain an overview of knowledge pertaining to the
trade-off solutions at a glance.

The paper also proposes a new preference guided multi-
objective optimization algorithm called FPM-NSGA-II. The
new algorithm incorporates the decision maker’s preferences
by (i) selecting solutions that are close to the specified
reference point in intermediate generations, (ii) using the
DSS to obtain FPM rules specific to the selected solutions,
and (iii) adding probabilistic constraints and modifying the
crossover/mutation operators of NSGA-II to promote the gen-
eration of solutions that satisfy the rules. In this way, the
algorithm is able to converge towards a preferred region on
the Pareto-optimal front. While there are several preference-
based evolutionary algorithms in the literature, the advan-
tage of FPM-NSGA-II is that in addition to the set of
preferred solutions, the algorithm also generates knowledge
that describe those solutions in the form of explicit and easily
interpretable rules.

The DSS for online knowledge extraction and
FPM-NSGA-II, are applied to SBO problems involving dis-
crete event simulationmodels of realistic production systems.
We observed that knowledge extracted from the complete
trade-off front can be different from that pertaining to a
specific region of the trade-off front. In either case, the rule
maps were found to be an effective way of communicating the
extracted knowledge to the decision maker. The results shows
that FPM-NSGA-II is able to extract relevant knowledge in
an automatic and iterative manner to guide the evolutionary
algorithm towards the decision maker’s preferences. In each
application study, we found that the rules generated by
FPM-NSGA-II throw new light on understanding the impli-
cations of choosing a solution from the preferred optimal set.
Such an approach to decision making is believed to provide
the decision maker with additional information that cannot be
obtained by any existing industrial practice today.
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