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ABSTRACT The performance of data aggregation in industrial wireless communications can be degraded
by environmental interference on Industrial Scientific Medical (ISM) channels. In this paper, cognitive
radio (CR) was applied to enable devices to share primary channels with the aim of enhancing the
transmission performance of theWirelessHARTnetwork.We considered a linear convergecast system,where
the packets generated at each device were routed to the gateway (GW) through the aid of neighboring devices.
The solar-powered cognitive access points (CAPs) were deployed to improve the network performance by
opportunistically allocating the primary channels to the devices for data transmissions. Firstly, we formulate
the scheduling problem of long-term throughput maximization as a framework of a Markov decision process
with the constraints of the minimum delay, the number of required ISM channels, and the harvested energy
at the CAPs. Then, we propose a deep reinforcement learning-based scheduling scheme to optimally assign
multiple ISM and primary channels to the field devices in each superframe. The simulation results confirmed
the superiority of the proposed scheme compared to existing methods.

INDEX TERMS WirelessHART, cognitive radio, Markov decision process, industrial scientific medical.

I. INTRODUCTION
Wireless technologies have been considered a promising
alternative for automotive control systems, industrial and
factory automation, and other interconnected embedded sys-
tems [1], [2]. They offer several advantages over traditional
wired communication systems, such as fewer infrastructure
requirements, reduced connector trouble, and simplicity for
future upgrading [3], [4]. On the other hand, there have been
concerns regarding the network latency and reliability, which
hampered the deployment rate owing to the stringent commu-
nication requirements in industrial control applications. Thus,
the control performance might be deteriorated significantly
because of increasing latency, jitter, and packet loss rate.

WirelessHART [5], the first open wireless communi-
cation standard designed for industrial process monitor-
ing was introduced to address these issues. In particular,
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WirelessHART uses a tightly integrated medium access and
networking layer for multi-hop multipath routing based on
multi-channel TDMA, in which centralized resource allo-
cation is implemented to guarantee network performance.
The WirelessHART architecture was developed for the wire-
less mesh networking protocol by leveraging time diversity,
path diversity and frequency diversity to support advanced
process monitoring and control applications. WirelessHART
networks require multiple sensor nodes to report data of their
measurements to the controller periodically for supervisory
control. Aggregating data from multiple sources to a single
destination is a many-to-one transmission paradigm whose
corresponding networking primitive is called convergecast.
The major difference between industrial WirelessHART net-
works and wireless sensor networks lies in the characteristics
of flows. In wireless sensor networks, the traffics are usually
generated with a random or unpredictable generating time,
which leads to the challenge of capturing the delay of each
specific data packet. In many industrial applications, data are
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generated periodically [6]. For instance, in industrial wireless
monitoring scenarios, sensors are usually configured with
certain sampling periods to periodically perform measure-
ments of some external signals to report data to processing
and decisioning units. In such cases, the packets delivered in
each discrete-time period are given. This feature can help the
network manager to make fine-grained scheduling decisions
for the network performance optimization in terms of delay
and spectrum efficiency.

In CSMA-based ISM band protocols, the devices verify the
absence of other traffic before transmitting on a shared trans-
mission medium to avoid the collisions with other devices.
However, the ISM bands are only narrow portions of the
frequency spectrum reserved internationally for industrial,
scientific and medical purposes. Therefore, equipments oper-
ating in ISM bands have to tolerate high interference gen-
erated by other ISM applications. There is no regulatory
protection from ISM devices operating in the ISM bands.
Furthermore, in recent years, the increasing use of microelec-
tronics devices as well as the attraction of unlicensed use has
been leading to an overload in ISM bands [7].

Meanwhile, according to a Federal Communications Com-
mission spectrum policy task force report [8], utilization
of the licensed spectrum varies between 15% and 80%.
A new communication paradigm, i.e., dynamic spectrum
access whose key enabling technology is referred to as Cog-
nitive Radio (CR), was recently proposed to tackle spectrum
inefficiency issues. CR is a form of wireless communication
in which a radio can sense the surrounding environment
and automatically alter its characteristics such as power,
frequency, modulation, and other operating parameters to
dynamically reuse whatever spectrum is available. On the
other hand, CR is regarded as a promising technology to
improve the spectrum utilization of wireless users via het-
erogeneous wireless sensor networks by enabling secondary
users to share the spectrum with primary users [9]. Variant
functionalities of CR including spectrum sensing, spectrum
management, spectrum sharing, and spectrum mobility, have
been well investigated in literature [10]. CR technology was
applied to enhance the reliability in wireless industrial net-
works [11]–[13]. Particularly, devices can detect and avoid
interference by integrating CR principles into the lower layers
of the industrial wireless sensor networks, which opens the
possibility of utilizing additional radio spectrum channels.

To reduce the overload in ISM bands as well as obtain the
better licensed spectrum utilization, a CR-based scheme [14]
was proposed by utilizing vacant licensed frequency for data
transmissions. The licensed frequency blocks are regarded as
primary channels such as television broadcast, digital televi-
sion broadcast bands [15], or cellular frequency bands [16].
However, to access a licensed frequency channel, CR network
must ensure that its transmission does not impact on the qual-
ity of service (QoS) of licensed network. For instance, accord-
ing to IEEE 802.22, the acceptable probability of interference
with the primary networks should be less than 0.1 [17]. The
reliability of using licensed bands is highly dependent on the

spectrum sensing, and the secondary users decide their trans-
missions according to the sensing results. Thus, designing a
scheme of switching between ISM and licensed channels for
wireless devices in industrial networks are needed to be inten-
sively investigated, such that the transmissions are assigned
with higher reliability among the ISM/licensed channels.

A. RELATED WORKS
Several study efforts have focused on multi-channel con-
vergecast protocols [18], [19]. Zhang et al. [18] proposed
joint link scheduling and channel assignment approaches for
both cases of single-packet buffering and multiple-packet
buffering constraints in a linear convergecast topology. The
latency-optimal link scheduling problem was investigated for
a tree-routing topology with and without a restriction on the
number of channels [19]. Although the solutions proposed
in these studies can optimize the latency and channels in
the convergecast operation, the system performance is still
degraded remarkably by interference, such as noise or other
devices that affect the connectivity and induce low reliability
on the ISM channels. Some techniques have been directly
applied to improve the convergecast reliability, such as allow-
ing retransmissions [20], [21] or constructing multiple rout-
ing choices [22]. Nevertheless, these methods might only
enhance the convergecast reliability to some extent but gen-
erally cannot maximize the reliability under stringent latency
constraints.

In addition, Yunhuan et al. [23] studied the cognitive
radio-based interference tackling scheme to obtain the best
available channel set for direct sequence spread spec-
trum/channel hopping transmission link. Lyu et al. [24] pro-
posed a redundant transmission approach in industrial
cyber-physical systems by exploring spectrum opportuni-
ties in licensed channels to guarantee transmission reli-
ability for state estimation. With the advancement of
artificial intelligence (AI) algorithms, especially deep rein-
forcement learning (DRL), several studies to obtain effi-
cient resource scheduling in industrial scenarios have been
proposed [25], [26]. Specifically, the authors in [25] pro-
posed a green resource allocation framework for the industrial
internet of things under 5G heterogeneous networks, while
the reinforcement learning schemes were developed in [26]
to maintain the aggregated interference from both upstream
and downstream transmissions to the desired value. As a
result, these DRL-based schemes are proven to efficiently
deal with the dynamics of environments. Furthermore, high-
dimensional problems in practical scenarios can be solved by
using DRL, which might be a big challenge for conventional
reinforcement learning. Among the aforementioned litera-
ture, most studies focused on designing a transmission sched-
ule for devices to either increase the transmission reliability of
devices or optimize channels and latency in the convergecast
operation. On the other hand, only a few studies examined
ways of improving the resistance of the WirelessHART con-
vergecast network to interference by integrating CR prin-
ciples into a WirelessHART protocol standard [23], [24].
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TABLE 1. Table of literature summary.

Table 1 shows the literature summary for industrial wireless
sensor network.

Along with challenges in spectrum management, energy-
efficient utilization is one of the main concerns in wire-
less communications. Energy harvesting can ensure energy
autonomy by renowned renewable energy, such as radio fre-
quency power [27] and solar power [28], [29], to recharge
the limited-capacity battery of the devices. Among the
different types of existing renewable energy, solar power,
which is harvested directly from sunlight, is considered
the most effective energy resources, even though the den-
sity of solar energy is strongly dependent on the envi-
ronmental conditions. Therefore, the efficient utilization of
solar energy harvested from ambient environment needs to
be investigated intensively to improve the performance of
the WirelessHART convergecast system. Nevertheless, the
energy harvesting distribution is difficult to obtain in prac-
tice to devise an energy-efficient approach for devices in
industrial cognitive radio networks. Consequently, design-
ing the transmission schedule to enhance the performance
of energy harvesting-powered WirelessHART convergecast
systems with an unknown distribution of energy arrivals is
the primary motivation of this paper.

B. MAIN CONTRIBUTIONS
To the best of the authors’ knowledge, this paper is the
first attempt to formulate the joint ISM/primary channels
schedule for the transmission of the devices in the Wire-
lessHART linear convergecast network with solar energy
harvesting. Specifically, we focused on the joint ISM/primary
channel allocation scheme for a linear convergecast system,
in which the primary channels are exploited opportunistically
to improve the long-term throughput considering the interfer-
ence on ISM channels. Moreover, by taking the limited ISM
channels and dynamics of primary channels into account,
this study developed a deep reinforcement learning-based
scheduling scheme to efficiently schedule the transmission
of devices under the constraints of harvested energy, buffer-
ing capacity, minimum latency, and the number of required
ISM channels. The main contributions of this paper can be
summarized as follows:

• We first investigate an energy-harvesting linear con-
vergecast model that contains field devices with sensing

data needed to send to the GW. The solar-powered cog-
nitive access points (CAPs) are deployed to determine
the availability of the primary channels. The constraints
of single-buffer capability in devices, the limited energy
harvesting in CAPs, minimum latency, and the num-
ber of required ISM channels for the scheduling are
considered.

• Secondly, long-term throughput maximization is formu-
lated as a framework of the Markov decision process
(MDP). Subsequently, the deep Q-learning scheduling
scheme is proposed to achieve an optimal policy of the
MDP problem. Thereby, the agent (i.e., the GW) can
interact directly with the environment and learn the opti-
mal scheduling via trial-and-error. As a result, the field
devices can be scheduled with the proper ISM/primary
channels and time slots through each superframe by
using the proposed approach.

The remainder of this paper is organized as follows.
Section II presents the network model. Next, we present
the joint ISM channel, device and data flow scheduling in
Section III. Section IV outlines the proposed deep reinforce-
ment learning approach. Subsequently, the joint time and
ISM/primary channel scheduling and sub-schedule extrac-
tion are given in Section V. We discuss simulation results in
Section VI. Finally, this work is concluded in Section VII.

II. NETWORK MODEL
A. BRIEF OVERVIEW OF WirelessHART
A WirelessHART system contains the following basic com-
ponents: (a) field devices connected to process equipment;
(b) gateways that are responsible for communication between
field devices and host applications; and (c) a network man-
ager which provides network configuration, system health
monitoring, routing table managing and communication
scheduling for all nodes. WirelessHART is a complete wire-
less mesh networking protocol based on low-power radios
using the IEEE 802.15.4-2006 standard that supports 16
channels in the 2.4 GHz license-free ISM band with the
total data rate of up to 250 kbits/s. To minimize the influ-
ence of noise in the channels with high interference levels
(e.g. due to the coexistence with IEEE 802.11), channel
blacklisting is utilized by considering the wireless channel
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FIGURE 1. Linear convergecast system model.

quality [30]–[32]. The MAC layer enables channel-hopping
at each slot boundary to arbitrate and coordinate network
communications. The transmission is based on the TDMA
protocol where each time slot has a fixed duration of 10 ms
for transmitting a small packet with a maximum size
of 133 bytes and receiving an associated acknowledgment.
To appropriately establish the global transmission schedule,
WirelessHART supports multiple superframes for data com-
munications. A superframe is comprised of multiple time
slots, where the network manager determines the number of
time slots. In a superframe, each time slot can be assigned one
or more links [33], [34].

B. COGNITIVE RADIO-ASSISTED LINEAR CONVERGECAST
MODEL
Figure 1 presents the considered linear convergecast network.
The industrial wirelessHART topology was modeled as a
graph G = (V ,E), in which vertices in V = {vo, v1, . . . , vN }
denotes the network devices, and the edges in E represent
communication links (device pairs). There is a set of N field
devices, denoted byN = {v1, v2, . . . , vN }, in the network and
a gateway (GW) denoted by vo. In this paper, the field devices
and the GW are powered by grid energy. For simplicity, the
terms ‘‘device’’ and ‘‘field device’’ are used interchangeably
throughout this paper. The TDMA transmission protocol was
adopted, in which time is synchronized and slotted with the
standard duration of 10 ms, enabling exactly one packet
transmission and its corresponding acknowledgement. In the
linear convergecast network, each field device generates one
data packet at the beginning of a convergecast operation (i.e.
at the start of each superframe) and transmits it to the GW.
This kind of convergecast is used for periodic data collection
in WirelessHART. Each device has a single-packet buffering
capacity. The field device has a half-duplex capability from
which it can either transmit or receive a packet at a time slot.
Furthermore, each device is only scheduled on one channel
at a given time slot. Channel hopping is carried out in a

time slot basis and parallel transmissions can be scheduled
concurrently in different channels.

In this article, we consider the interference constraint of
the ISM channels on each link (e.g., the interference levels
with other devices using IEEE 802.11 standard). For the GW
to receive a data flow from a device, it must be successfully
transmitted via all links routed to the GW. Hence, the suc-
cessful transmission rate of each link should be enhanced
such that the GW can obtain as many packets as possible
through each superframe. For this reason, the CR technique is
exploited such that the devices can opportunistically switch to
primary channels to achieve more reliable data transmissions
because each device-to-device link can be assigned additional
primary channels to improve the transmission reliability.
In addition, it was assumed that the signaling information
among the GW, CAPs, and devices could be exchanged
securely and reliably using a common control channel made
up of one dedicated primary channel or a couple of dedicated
primary channels depending on the network implementa-
tion. This work does not focus on guaranteeing the common
control channels for CRNs because they have been well-
studied [35], [36]. In the present study, the terms ‘‘common
control channel’’ and ‘‘dedicated primary control channel’’
are used interchangeably.

According to the IEEE 802.15.4-2006 standard, the
2.4 GHz license-free ISM band is divided into a set
of U (U = 16) ISM channels, denoted by U =

{C1, . . . ,Cu, . . . .CU } where Cu represents the ISM chan-
nel u. We consider a set of M primary channels, denoted
by M = {CU+1, . . . ,CU+m, . . . ,CU+M }, where CU+m is
the primary channel m, as shown in Figure 1. A primary
network comprises a primary base station (PBS) and mul-
tiple primary users (PUs). PBS and PUs have the licensed
right to utilize M primary channels while the devices can
opportunistically share the primary channels to transmit their
packets. We assume that K CAPs are sequentially connected
to the GW by which one CAP is connected to the GW and
each CAP is connected to its next CAP leading towards the
GW. The communication on this connection can be done via
a dedicated primary control channel, such that the sensing
results and signaling information can be shared among CAPs
and the GW.

In our industrial network setting, the CAPs are deployed
to assist the utilization of primary channels for the trans-
missions of the devices. However, advancement in recent
wireless technology has triggered the device demand of
running on independent fixed power sources, and green
communication becomes the utmost importance nowadays.
This can be accomplished via harvesting energy from the
surrounding environment such as solar. Moreover, provid-
ing wired power in an industrial wireless network may be
hard in some circumstances or even extremely costly when
retrofitting extra devices in buildings. Energy-harvesting can
offer power autonomy to wireless devices, which can bring
simpler deployment and long-term energy supply. Unfortu-
nately, with solar energy harvesting, the energy arrival can be
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FIGURE 2. Activity model of primary channel m.

substantially affected by the ambient practical environment,
thus the randomness of energy arrival is taken into account
when developing a resource allocation scheme. Although the
system suffers from the uncertainty of the harvested energy,
the benefit of solar-powered wireless networks has been well
investigated to improve the network performance [37]. Fur-
thermore, solar cells are proven to perform well under indoor
light conditions for these applications [38]. Therefore, this
work is designed for indoor industrial sensor networks, where
the illuminance level might be low and solar energy is hard to
collect than outside environments. To facilitate the harvest-
ing, the energy-harvesting devices (i.e., Access points) can
be placed in high light-intensity locations (e.g., the roof-tops
of the building) for higher harvesting capacity. For the above
reasons, allowing opportunistically use of primary channels
with the help of the solar-powered CAPs can increase the
number of packets received by the GW. Therefore, it results
in the higher reliability compared to only-ISM-band uti-
lization where the ISM channels have a low transmission
quality.

In this paper, CAPs are assumed to be placed in the
roof-tops of the buildings so they can harvest solar energy for
their operation while the devices and the GW are powered
by grid energy. Each CAP is used to supervise the region of
the groups of Ks field devices. In addition, CAPs can also
perform the cooperative spectrum sensing on several assigned
primary channels at the beginning of each superframe to
check whether the primary channels are free or not. Subse-
quently, local sensing results at CAPs are sent to a fusion
center, denoted by FC, where the global sensing results are
determined and sent back to the CAPs to broadcast them to
the devices through the control channel. In this paper, the
network manager was assumed to be integrated into the GW.
Hence, the GW is responsible for scheduling all devices in
each superframe.

C. ACTIVITY MODEL OF MULTIPLE PRIMARY CHANNELS
In practice, modeling the activity of PUs on each primary
channel is sophisticated and may not properly be investigated
because the secondary system is working independently from
the primary system. Furthermore, it is challenging to obtain
prior knowledge of the existence of ambient primary users in
the network. Therefore, instead of investigating PUs’ activ-
ities on a primary channel, researches in the literature have
been focusing on modeling primary channel behavior (i.e.
busy when the channel is occupied by PUs or free when the
channel is vacant) [39]. Besides, the primary channel behav-
ior is often considered as a 2-state Discrete-Time Markov

Chain process, in which the transition probabilities between
two states (busy or free) were well-studied in the litera-
ture [40]. Thereby, the activities of multiple primary users
were already represented in the primary channel behavior.
Hence, we do not investigate the impact of the activity of
the PUs as well as the number of PUs on the network perfor-
mance. Instead, we focus on the spectrum occupation prop-
erties of the PUs on the licensed channels by modeling the
primary channel behavior as a 2-state discrete-Time Markov
Chain process, in which that state of the primary channel
in a superframe can be represented by ‘‘busy’’ or ‘‘free.’’
Thereby, these states can indicate the occupation of the PUs
on the primary channels in each superframe. Thus, by using
the transition probabilities of the Markov Chain process, the
GW can update the probabilities that the primary channels are
free in each superframe to assign the proper primary channels
to the devices, which results in the performance improvement
of the WirelessHART network.

We consider the cognitive system with M uncorrelated
primary channels. The state of each primary channel (either
vacant or occupied by the primary users) is assumed to be
unchanged within a cognitive frame and can be changed
between two consecutive cognitive frames. In this paper, it is
supposed that the cognitive frame has the same length as
each superframe. In the superframe, the state of the primary
channel is denoted as either A or I , which represent the
hypothesis that the primary channel is ‘‘active’’ (i.e., busy) or
‘‘inactive’’ (i.e., free), respectively. Furthermore, this paper
assumes that the state transition probability of each primary
channel between two adjacent cognitive frames follows a
discrete-time Markov chain model, as depicted in Figure 2.
Pxy,m |x, y ∈ {A, I } refers to the state transition probability
of primary channel m from state x in a current frame to
state y in the next frame. The interference with the primary
users may happen according to the dynamic behavior of the
licensed channels. We assume that a packet is dropped when
transmitted on a primary channel if and only if it is actually
busy (i.e., the transmission collision between the devices and
primary network occurs). Furthermore, we do not focus on the
channel switching delay, which was well investigated in [41].

D. SENSING IMPERFECTION
In this paper, the sensing error of the CAPs was taken into
account. At the start of a superframe, the CAPs perform
the cooperative spectrum sensing on the primary channels
assigned by the GW and then send the local results to the FC
to make a global decision [42]. The global sensing result is
denoted as H [τ ] = [H1 [τ ] ,H2 [τ ] , . . . ,HM [τ ]], in which
Hm [τ ] ∈ {A, I } indicates the status (active or inactive)
of primary channel m in superframe τ . Nevertheless, the
sensing error is inevitable in the wireless channel, partic-
ularly in cooperative spectrum sensing. Two metrics that
represent the sensing performance are false alarm probability,
Pf ,m = Pr (Hm[τ ] = A |I ), and detection probability, Pd,m =
Pr (Hm[τ ] = A |A ). The former represents the probability
that the channel m is sensed as ‘‘active,’’ but it is actually
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‘‘inactive.’’ The latter indicates the probability that the chan-
nel is sensed correctly as ‘‘active.’’

Generally, the performance of the WirelessHART system
can be lowered by the values of false alarm probability and
misdetection probability that represents the channel is actu-
ally ‘‘active’’ but is sensed as ‘‘inactive.’’ More particularly,
the false alarm results in the missing opportunity for the
devices to use the primary channel because the devices trust
the sensing outcome ‘‘active’’ andwill not utilize the assigned
primary channel. On the other hand, the misdetection event
leads to transmission collision on primary channelm between
the devices and PUs. For instance, when the false alarm event
happens, the devices will not use the primary channel m for
transmissions, which can result in a low successful transmis-
sion probability to the GWby using the ISM channels. In case
of misdetection, the devices will transmit data on primary
channel m because the sensing outcome is ‘‘inactive’’; how-
ever, the primary channel is actually ‘‘active,’’ leading to the
transmission collision between the devices and PUs on the
primary channel. In this paper, the probabilities of all primary
channels are updated by the GW at the end of each super-
frame. Given the maximally allowable collision probability
between the devices and PUs, the detection probability, Pd,m,
can be maintained to be greater than a threshold, ς , by mod-
ifying sensing parameters to protect the PU communications
on the primary channels [17], [43].

E. ENERGY HARVESTING
Each CAP is powered by a rechargeable battery that can be
recharged by a solar energy harvester. Let EB be the battery
capacity of a CAP, which is assumed to be limited. Herein,
the harvested energy in superframe τ of each CAP, denoted
as Eh[τ ], is finite, in which Eh[τ ] ∈

{
Eh,1,Eh,2, . . . ,Eh,ξ

}
;

0 ≤ Eh,z < EB, and z ∈ {1, 2, . . . , ξ}, and is assumed to
follow a Poisson distribution with a mean harvested energy,
Eh,mean. The harvesting modeling and the impact of daytime
and nighttime on solar harvesting performance were well
studied [44], [45]. In literature [44], the empirical measure-
ments were conducted to model the energy harvesting for
solar-powered wireless devices and the results verified that
the harvested energy highly depends on properties such as
harvesting time, light intensity, and deployment operating
environment. As a result, the Poisson distribution model for
solar-powered energy harvesting can achieve a near fit with
the practical measurements. Therefore, we adopt the Poisson
distribution model for solar-energy harvesting in this paper.
In the real-time implementation, the mean value of harvested
energy,Eh,mean, may change according to daytime, nighttime,
or different time intervals in a day. However, the system can
alsomeasure the value ofEh,mean to update the policy in every
different time intervals. Thus, the proposed scheme can work
efficiently with the considered energy harvesting model.

F. PROBLEM FORMULATION
There are N data flows during a convergecast operation,
in which the data flow pn |n ∈ {1, 2, . . . ,N } is defined as

the data packet generated by device vn. In this paper, the
throughput of the network (i.e., reward), which is defined as
the total number of successfully received packets at the GW
in superframe τ , can be described as

R [τ ] =
N∑
n=1

Rn [τ ], (1)

where

Rn [τ ] =

{
1 pn is succesfully received by GW
0 otherwise

represents the result indicator of the transmitted packet pn in
superframe τ . Some ISM channels might be blacklisted to
protect wireless services that share a fixed portion of the ISM
band, so the number of ISM channels available for use by
WirelessHARTmight be restricted to less than 16. Therefore,
efficient ISM channel utilization is critical for scheduling.
The scheduling length was also considered, in which the
scheduling is made to finish a convergecast with a minimum
number of time slots. Thus, the CR technique is leveraged
to enhance the performance of the WirelessHART system by
opportunistically using the free primary channels. Obviously,
the network will achieve better immediate throughput in the
current superframe if the GW assigns more assisted pri-
mary channels to the CAPs for sensing and utilizing. On the
other hand, the CAPs may lack of energy for use in future
superframes due to the limits of battery capacity and energy
harvesting capability. Therefore, the trade-off between the
number of primary channels for sensing at the beginning of
each superframe and the maximum long-term throughput is
critical.
Im [τ ] ∈ {0, 1} is denoted as the sensing indicator of

primary channel m in superframe τ . If it is selected to be
sensed, Im [τ ] = 1, and otherwise Im [τ ] = 0. In addition,
let Es denote the amount of energy required to sense each

primary channel, and the term
M∑
m=1

EsIm [τ ] represents the

total amount of sensing energy required in superframe τ ,
which may change due to the dynamics of primary channels.

Considering the foregoing analysis, the objective was to
find the optimal joint ISM/primary channel assignment to all
devices for maximizing the throughput of the WirelessHART
in the long-term operation under the constraints of energy har-
vesting capacity, radio frequency resource, minimum size of
the superframe, and buffering capacity at the devices. There-
fore, the problem formulation can be expressed as follows:

max
S[τ ],SD[τ ]

(
∞∑
τ=1

R [τ ]

)

s.t.
M∑
m=1

EsIm [τ ] ≤ Emax

Nsl and NISM are minimized

S and SD satisfy buffer constraints, (2)
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where Emax is the maximum amount of energy required for
sensing at each CAP.

S =


C1,1 C1,2 . . . C1,Nsl
C2,1 C2,2 . . . . . .
...

... . . . . . .

Clmax,1 . . . . . . Clmax,Nsl


represents the joint time and ISM/primary channel sched-
ule for superframe τ , where Ci,t = u ∪ m |u ∈

{1, 2, . . . ,U} ,m ∈ {U + 1, . . . ,U +M} is the ISM/primary
channel assigned for the link i of the slot t . lmax is the
maximum number of parallel links assigned in a time slot of
each superframe.

SD =


v1,1 v1,2 . . . v1,Nsl
v2,1 v2,2 . . . . . .
...

... . . . . . .

vlmax,1 . . . . . . vlmax,Nsl


is the device scheduling (i.e. assignment for transmitting
devices of links) for superframe τ , in which vx,t = n ∈
{1, 2, . . . ,N } denotes that the device n is assigned to transmit
data in time slot index t . Nsl denotes the number of slots in
the superframe. NISM represents the total maximum number
of ISM channels assigned in a superframe (i.e. the maximum
number of parallel transmissions using ISM channels in a
time slot of the scheduling S). By defining the proper S and
SD, we allow multiple parallel transmissions on ISM/primary
channels in each time slot to improve the latency and the data
transmission performance of the system.

The optimization in this paper is affected considerably by
the number of selected primary channels, which are used
to replace the ISM channel for the transmissions of the
devices. When the number of primary channels is large, the
energy required for sensing of CAPs will also be increased.
This may deteriorate performance of the system due to the
energy-constrained issue of CAPs. Thus, the primary chan-
nels should be used properly with an energy-efficient sensing
manner according to the dynamic activity of the primary users
on their licensed channels and the limit harvested energy of
CAPs. However, it is difficult to directly obtain the solution
for the problem (2) due to the dynamics of the primary chan-
nels and the complexity of the joint time slot and ISM/primary
channel allocation for all devices. Therefore, problem (2)
can be decomposed into three processes: joint ISM channel
and data flow allocation process, primary channel allocation
process, and joint time and ISM/primary channel schedul-
ing process. The main idea is that, the ISM channels will
be scheduled offline first with a minimum number of ISM
channels and time slots in the superframe. Subsequently, the
primary channels will be allocated according to the dynamics
of the primary channels and the remaining energy of the CAPs
in each superframe.

In particular, in the joint ISM channel, device and data
flow scheduling process, the GW determines the ISM chan-
nel scheduling, device scheduling, and data flow scheduling,

which are respectively denoted by SISM, SD and SDF, in which
only ISM channels are assigned to transmit the respective
data flows for all the devices. The objective of this process
is to determine SISM, SD, and SDF with a minimum number
of required ISM channels and time slots, which is expressed
as

min
SISM,SD,SDF

NISM and min
SISM,SD,SDF

Nsl

s.t. SISM,SD, and SDF satisfy buffer constraints, (3)

where

SISM =


C ISM
1,1 C ISM

1,2 . . . C ISM
1,Nsl

C ISM
2,1 C ISM

2,2 . . . . . .

...
... . . . . . .

C ISM
NISM,1

. . . . . . C ISM
NISM,Nsl


is the ISM channel scheduling, where C ISM

i,t = u |u ∈ {1, 2,
. . . ,U} indicates that the device n is assigned to transmit data
on ISM channel i in time slot index t .

SDF =


p1,1 p1,2 . . . p1,Nsl
p2,1 p2,2 . . . . . .
...

... . . . . . .

pNISM,1 . . . . . . pNISM,Nsl


is the data flow scheduling, in which pi,t = n |n ∈

{1, 2, . . . ,N } denotes that packet n is transmitted on ISM
channel i in time slot index t .
It is noted that the joint ISM channel, device and data

flow allocation process are determined off-line by the GW
according to the system parameters, which will be presented
in Section III. These are, then disseminated to all field devices
to store in their local memory storage. Furthermore, once
the logical ISM channels are assigned in SISM, they can be
mapped easily to the actual ISM channels for real-time con-
vergecast operation. After defining SISM,SD, and SDF, the
second process, called the primary channel allocation pro-
cess, will be implemented based on the dynamics of primary
channel activity. In the second process, the primary channel
allocation, A, is determined, in which the primary channels
are allocated to the data flows through each superframe based
on the system state and predefined SISM and SDF using deep
reinforcement learning as follows:

max
A[τ ]

(
∞∑
τ=1

R [τ ]

)

s.t.
M∑
m=1

EsIm [τ ] ≤ Emax, (4)

where A [τ ] = [A1 [τ ] ,A2 [τ ] , . . . ,AN [τ ]] represents the
primary channel assignment for data flows in superframe τ ,
with An [τ ] ∈ {0, 1, 2, . . . ,M} |n ∈ {1, 2, . . . ,N } denotes
the assigned primary channel for data flow n. An [τ ] = 0
indicates that the data flow n is not allocated to any primary
channel. In the third process, the joint time and ISM/primary
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FIGURE 3. Example of a joint ISM channel, device, and data flow
allocation (N = 4).

channel scheduling, S, is made by each device after receiving
the corresponding global sensing results H (broadcasted by
CAPs) such that only the primary channels sensed to be
free according to A, are used to replace the ISM channels
based on SISM. With joint ISM channel, device and data flow
scheduling, each data flow may be assigned on different ISM
channels and devices in a superframe. However, when once
a data flow is assigned to a primary channel, all the links
associated to that data flow will be assigned to the same
primary channel in the superframe.

Overall, to solve problem (2), the solution for prob-
lem (3) is first found through off-line scheduling to obtain
SISM,SD, and SDF. Subsequently, we leverage the deep rein-
forcement learning to deal with problem (4) by directly inter-
acting with the environment to learn the optimal scheduling
for each system state.

III. JOINT ISM CHANNEL, DEVICE AND DATA FLOW
SCHEDULING
At the beginning of each superframe, each node generates a
new data packet for forwarding to the GW. The objective is to
efficiently schedule in a superframe for all devices to transmit
their packets to the GW.Accordingly, this section investigates
joint ISM channel, device, and data flow scheduling that
requires a minimum number of ISM channels and time slots.
Each device is allocated to transmit a data flow on an ISM
channel with a time slot index, as shown in Figure 3. Because
each device has a single-packet buffering capacity, a device
with a data packet in its buffer needs to be scheduled for trans-
mission before receiving a new packet. For example, in the
first time slot of the scheduling in Figure 3, the only device
v1 can transmit its data packet (i.e., p1) to its destination (i.e.,
the GW) because at this time slot every device have their own
data flow generated by themselves, and there is no devicewith
an empty buffer at the beginning of the first time slot. In the
second time slot, v1 has an empty buffer, so v2 is assigned to
transmit p2 to its destination (i.e. v1).
The reliability of each link

(
vi, vj

)
on each ISM channel,

which is defined as the successful packet reception ratio

Algorithm 1 Joint ISM Channel, Device, and Data Flow
Scheduling
1: Input: N , G = (V ,E).
2: Output: SISM,SD, and SDF.
3: 1n = 0 |∀n ∈ V ; 1′ = 0.
4: for t = 1 : 2N − 1 do //
5: iISM = 1
6: if t mod 2 == 1 then
7: SISM(iISM, t) = 1.
8: SD (iISM, t) = iISM.
9: SDF(iISM, t) = 1′ + 1.
10: iISM = iISM + 1.
11: end if
12: for each vn scheduled in SD of time slot t − 1 do
13: if (n+ 1 ≤ N ) ∩ (1n+1 < N − (n+ 1)+ 1)

then
14: SISM(iISM, t) = iISM.
15: SD (iISM, t) = n+ 1.
16: 1n+1 = 1n+1 + 1.
17: if t mod 2 == 0 then
18: SDF(iISM, t) = SDF(iISM, t − 1)+ 1.
19: else
20: SDF(iISM, t) = SDF(iISM − 1, t)+ 1.
21: end if
22: end if
23: iISM = iISM + 1.
24: end for
25: end for

(i.e., successful transmission probability on ISM channel u),
is denoted as ρiju . In this paper, we consider the constraint
of interference on the ISM channels in each link. In a con-
vergecast operation, each data flow needs to be successfully
transmitted via all links that are routed to the GW. Thus,
the successful packet reception ratio on the ISM channels
becomes relatively low if the size of the network (i.e., the
total number of field devices) is large. To increase a number
of packets received at the GW, the primary channels are
exploited such that the devices can switch to currently the free
channels to achieve more reliable transmissions. By adopting
the jointly optimal convergecast time and channel scheme
reported elsewhere in [18], the design of the joint ISM chan-
nel, device and data flow scheduling to obtain the mini-
mum number of time slots and ISM channels is expressed
in Algorithm 1. In the algorithm, 1n denotes the number of
packets that field device vn has transmitted since the begin-
ning of a convergecast operation. The number of time slots
required for the single-buffer linear convergecast is 2N − 1.
Meanwhile, the minimum number of required ISM channels
to complete the convergecast in 2N−1 slots is 1

2N [18]. Note
that SISM,SD, andSDF will be used to generate the joint time
and ISM/primary channel scheduling, which is presented in
Section V.

In this paper, we do not investigate the mutual interference
management between the cognitive network and the primary
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network because the methods of mitigating interference in
CRNs have been well investigated in the literature [46].
Instead, we focus on reducing the impact of interference gen-
erated by the nearby devices using the same ISM bands on the
packet delivery process of the field devices inWirelessHART.
Therefore, we aim to design a spectrum allocation scheme,
in which the field devices can properly switch to primary
channels when they are sensed and estimated to be more
reliable than ISM channels by using CR.

In essence, CR is mainly used to solve the issue of spec-
trum under-utilization. However, allowing cognitive radios to
opportunistically share the licensed channels cannot always
guarantee the higher reliability than using ISM channels due
to the imperfect sensing characteristic of the realistic sce-
narios. The performance of a CR network can be degraded
significantly if the sensing engine of the cognitive radios
induces a lot of faults in detecting the state of the primary
channels. Therefore, the spectrum sensing techniques play
an important role to guarantee the reliability of the spectrum
sharing with two key metrics, probability of detection (Pd )
and probability of false alarm (Pf ), which is discussed in
Section II. D. In this paper we do not focus on designing spec-
trum sensing algorithms. The values of Pd and Pf are set to
guarantee an acceptable level of interference with the primary
networks, where the value of Pd should be greater than 0.9
as studied in [17]. Given these values, we design a scheme
to optimally use the primary channels for the transmissions
of the devices with estimating the probability that the pri-
mary channels are free in each superframe. Consequently,
our proposed algorithm allows the GW to learn the optimal
transmission policy on ISM/primary channels for the devices
inWirelessHART systems, inwhich a primary channel is only
selected when its estimated reliability is higher than that of
ISM channels.

IV. DEEP Q-LEARNING APPROACH FOR PRIMARY
CHANNEL ALLOCATION
In this section, the primary channel allocation problem in (4)
is reformulated as the framework of a MDP. Generally, the
MDP problem can be solved using the value iteration-based
dynamic programming in a partially observableMarkov deci-
sion process (POMDP) algorithm [47]. On the other hand,
the POMDP solution requires high formulation and com-
putational cost, reducing the system performance in prac-
tice. Another popular approach to the MDP problem is the
Q-learning algorithm, where the agent (i.e., the GW) is able
to learn the optimal policy by regularly interacting with the
working environment. By taking an action at a given state,
the agent makes the environment transit to another state.
The agent receives the corresponding reward according to
the quality of the action taken. In that way, the agent can
maximize the cumulative reward by interacting with the envi-
ronment on a trial-and-error basis. However, the Q-learning
method is unsuitable for the problems with high-dimensional
state and action spaces. Therefore, deep Q-learning was
adopted to solve the MDP problem, in which a deep neural

network, represented by a weight vector, was used to approx-
imate the Q-value of each state-action pair. Consequently,
a deep learning scheme is considered an effective approach
for the MDP problem, where the complexity is degraded
significantly and a nearly optimal solution can be acquired.

A. MARKOV DECISION PROCESS
Herein, the primary channel allocation problem in (4) is
reformulated as an MDP framework based on the decision-
making model. We first define the state and action spaces of
theMDP framework. The state space of the system is denoted
as S, in which each state of the system at superframe τ is
composed of the remaining energy of CAPs and the belief of
primary channels, as follows:

s [τ ] =
(
Erm [τ ] ,b [τ ]

)
, (5)

where Erm [τ ] =
[
Erm1 [τ ] ,Erm2 [τ ] , . . . ,ErmK [τ ]

]
is

the energy vector including the remaining energy of
CAPs at the beginning of superframe τ ; b [τ ] =

[b1 [τ ] , b2 [τ ] , . . . , bM [τ ]] represents the vector of the
probabilities that the primary channels are inactive (i.e.,
free) in superframe τ . The values of these probabilities
are updated by using equations (8-10) at the end of each
superframe according to the result of each action taken by
the GW (i.e., the GW successfully/unsuccessfully receives
the assigned packets on the primary channels). Thereby,
the GW can estimate the belief of the primary channels to
decide the channel allocation for the devices in the next
superframe.

Based on the system state, the GW, which is considered the
learning agent, is in charge of selecting an action. Particularly,
the GW makes the primary channel allocation, in which the
primary channels are assigned to the data flows such that the
number of successfully received packets is maximized over
the long run. Hence, the action space of the system can be
denoted as follows:

a [τ ] = A [τ ]

= [A1 [τ ] ,A2 [τ ] , . . . ,AN [τ ]] ∈ A, (6)

where An ∈ {0, 1, 2, . . . ,M} |n ∈ {1, 2, . . . ,N } is the pri-
mary channel allocation for data flow n, which is described
in Section II.F.

The operation of the system in a superframe can be
described as follows. At the start of a superframe τ , the agent
observes the system state and decides an action a [τ ]. The
agent then forwards it to CAPs through the dedicated primary
control channel. The CAPs sense the primary channels based
on a [τ ] and sends the local sensing results to the FC to
decide the global sensing results. Subsequently, the global
sensing resultsH [τ ] = [H1 [τ ] ,H2 [τ ] , . . . ,HM [τ ]], where
Hm [τ ] ∈ {I ,A,NA}, made by the FC, will distribute to the
APs and the GW. The notation I and A denote the ‘‘inactive’’
and ‘‘active’’ state of primary channel m, respectively, while
NA indicates that the primary channel m is not assigned to be
used in superframe τ .
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FIGURE 4. Example of the joint time and ISM/primary scheduling S [τ ]
with a [τ ] = [0,3,1,4] and H [τ ] = [A,NA, I, I].

Subsequently, the CAPs broadcast a [τ ] and H [τ ] to the
devices for their joint time and ISM/primary scheduling,
S [τ ]. Note that the primary channels assigned in a will
not be used by the devices if the global sensing results
shows the active state of the primary channels. This means
that the devices can only use the primary channels that are
currently sensed to be free in each superframe. Figure 4
gives an example of a joint time and ISM/primary chan-
nel scheduling, given the joint ISM and data flow allo-
cation in Figure 3, where a = [0, 3, 0, 4] and H [τ ] =
[A,NA, I , I ]. From the figure, primary channel 1 is assigned
for the data flow 3 in a, but three links of data flow 3 are
finally allocated to the channel ISM in the joint time and
ISM/primary channel scheduling S [τ ] because the global
sensing result of primary channel 1 is ‘‘active.’’ The links
of data flows 2 and 4 are assigned successfully to primary
channels 3 and 4, respectively, because the sensing results are
‘‘inactive.’’

After determining S [τ ], each device produces the sub-
scheduling Ssub [τ ] for itself, in which each device is set to
one of the possible states, such as ‘‘transmit,’’ ‘‘receive,’’ or
‘‘sleep’’ in the time slots of the superframe. As a result, the
devices perform their transmissions in the corresponding time
slot index based on Ssub [τ ]. At the end of a superframe, the
GW receives an immediate reward, R [τ ], which is defined as
the packets received at the GW in the current superframe τ
and is calculated using equation (1). At the end of a super-
frame, the GW updates the remaining energy information
reported by the CAPs and the belief of the primary channels.
This action makes the system transfer from state s [τ ] to
another state s [τ + 1], which is updated at the end of each
superframe as follows. The energy level at each CAP in the
next superframe can be expressed as

Ermk [τ + 1]

= min

(
Ermk [τ ]− Eb −

M∑
m=1

EsIm [τ ]+ Ehk [τ ] ,EB

)
, (7)

where Eb represents the broadcasting energy of each CAP for
broadcasting the scheduling information (i.e. the global sens-
ing results and primary channel assignment) to the devices.
Ehk [τ ] represents the total amount of harvested energy of the
APk during superframe τ , and

Im [τ ] =

{
0 if Hm [τ ] = NA
1 otherwise

is the sensing indicator of primary channelm in superframe τ .
In case Hm [τ ] = I , the devices then use primary channel m
for their data transmissions, and the GW successfully receives
and decodes the data flow transmitted on primary channel m
at the end of superframe τ . The belief of the primary channel
m is then updated by

bm [τ + 1] = PII ,m. (8)

In case Hm [τ ] = I , the devices then use primary channel
m for their data transmissions, but the GW unsuccessfully
receives and decodes the data flow transmitted on primary
channel m at the end of superframe τ . The belief of primary
channel m is updated by

bm [τ + 1] = PAI ,m. (9)

In case Hm [τ ] = A, the devices then do not use primary
channel m for their data transmission, then the belief of the
primary channel m is updated by

bm [τ + 1] =
bm [τ ]Pf ,mPII ,m + (1− bm [τ ])Pd,mPAI ,m

bm [τ ]Pf ,m + (1− bm [τ ])Pd,m
.

(10)

For example, in Figure 4, if the channel CU+3 is sensed to
be ‘‘active,’’ i.e. H3 [τ ] = A, then v2 and v1 will use channel
C1 in time slot indices 2 and 3, as defined in Figure 3, for
the current superframe. On the other hand, if Hm [τ ] = NA,
the CAPs did not sense the status of the primary channel m.
Hence, the updated belief of the channel m in this case is

bm [τ + 1] = bm [τ ]PII ,m + (1− bm [τ ])PAI ,m. (11)

This work aims to generate the joint time and channel
scheduling policy to maximize the long-term reward from the
current superframe. Accordingly, the proper primary channel
allocation is required in each superframe to maximize the
total discounted reward. We define the state−action value
function as expected sum of rewards when the system is in
state s and action a ∈ A =

{
a1, a2, . . . , a|A|

}
, as follows:

Q(s, a) = E

[
∞∑
i=τ

γ i−τR [τ ] |s [τ ] = s, a [τ ] = a

]
, (12)

where γ is the discount factor, and E [.] represents the expec-
tation operator. The goal is to find the optimal action, a∗,
in the current superframe to maximize the Q-value function,
as follows

a∗ = argmax
a∈A

{Q (s, a)} . (13)

Using the Q-learning algorithm, the agent calculates the
Q-value in each step (i.e., each superframe) and stores it in
a Q-table to find the optimal solution. The simplest form of
updating the state-action value function can be given as

Q(s, a) = Q(s, a)+ α
[
R+ γ max

a′∈A
Q
(
s′, a′

)
− Q(s, a)

]
,

(14)
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FIGURE 5. Structure of the proposed deep reinforcement learning for
transmission scheduling.

where α ∈ (0, 1) is the learning rate; s′ and a′ represent
the next state and action, respectively; R is the immediate
reward that the GW receives at the end of the current super-
frame. With the appropriate configuration, the Q-learning
can offer the optimal value function after the training phase,
from which the agent can choose the optimal action in each
superframe. Nevertheless, the traditional Q-learning method
might face with the wide variance in the function approx-
imation when system size increases, making the scheme
converge to a locally optimal policy. Therefore, we investi-
gate a method to approximate the Q-value function, which
is called deep Q-learning. Specifically, a neural network
was constructed with a vector of weight to approximate
the Q-value function, denoted by Q(s, a,w), such that the
proposed scheme can be applied effectively in large-size
systems.

B. DEEP Q-LEARNING BASED SOLUTION
This section presents the proposed DQL algorithm to solve
the problem of the MDP. DQL is a combination of a
value-based approach and a neural network. Herein, the
feed-forward neural network (FNN)was employed to approx-
imate the Q-value function of each action according to a given
state, named a Q-network. The network was composed of
an input layer, multiple hidden layers, and an output layer,
as illustrated in Figure 5, in which, the input of FNN is
defined as the system state swhile the output is the Q-value of
any state-action pair. The input layer contains (K +M) neu-
ron units representing the elements of each state. Each hidden
layer is a fully connected layer that includes a finite number of
neuron units where the rectified linear unit function is utilized
as a nonlinear activation function. The output vector of the
hidden layers can be expressed by

y = max (0,w.s+ u) , (15)

where w and u are the weight and bias parameters, respec-
tively. The output layer of the FNN is a vector with the size
of |A|, which matches the output values of the last hidden
layer to the estimated Q-value of each state-action pair by
applying the linear action function. During training, the net-
work parameters were modified to minimize the loss function

Algorithm 2 Training Process of Deep Q-Learning Algo-
rithm
1: Input: U , M , N , K , Eb, Es, EB, α, δ, γ , PAI , PII , Pd,m,
Pf ,m, dε, εmin.

2: Output: Q-network parameter w.
3: Initialize parameter w, w′.
4: Initialize exploration rate ε.
5: Initialize replay memory D.
6: while not converged do
7: Initialize a random action s ∈ S
8: for each superframe τ = 1, 2 . . . .T do
9: Observe the current state s[τ ].
10: Select an action for current step:

11:

a[τ ] = argmax
a[τ ]∈A

Q (s[τ ], a[τ ],w) w.p. 1− ε

any action a[τ ] ∈ A otherwise.
12: Perform the chosen action a[τ ], obtain the

reward R[τ ], and the next state s′.
13: Store the transition

〈
s[τ ], a[τ ],R[τ ], s′

〉
in

replay memory D.
14: Randomly sample the mini batches,〈

sj, aj,Rj, sj+1
〉
from replay memory D.

15: for j in mini-batches size do
16: Calculate the current Q-value Q

(
sj, aj,w

)
.

17: Calculate the target Q-value:

18:

Qtarget =
Rj final sj+1
Rj+
γ max

a′∈A
Q
(
sj+1, a′,w′

) otherwise

19: end for
20: Update Q-network parameter w.
21: Update next state s′.
22: Update exploration rate ε = max (ε × dε, εmin).
23: end for
24: Copy network parameter from w→ w′.
25: end while

defined as the mean square error between the current value
and the target Q-value, as follows:

L (w)=E

[(
R+ γ max

a′∈A
Q
(
s′, a′,w

)
−Q(s, a,w)

)2
]
, (16)

where R+ γ max
a′∈A

Q
(
s′, a′,w

)
denotes the target Q-value.

Two well-known methods were also adopted, namely expe-
rience replay [48] and fixed target network [49] to remove
the oscillation caused by the data correlations between con-
secutive transitions in Q-function approximation. Another
neural network with network weight w′ was used to calculate
the target Q-value while the network parameters remained
unchanged during some training iterations. In the experience-
replay technique, the transition tuples

(
s, a,R, s′

)
are stored

in the replay memory, D, in which the mini batches are
randomly selected to train the Q-network to increase sample
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Algorithm 3 Joint Time and ISM/Primary Channel Schedul-
ing
1: Input: NISM, SISM, SDF, a, and H.
2: Output: Scheduling S.
3: S = [].
4: for t = 1 : 2N − 1 do
5: for u = 1 : NISM do
6: n = SDF (u, t).
7: if n is not empty then
8: if An 6= 0 ∩ HAn == ‘‘I ’’ then
9: S (u, t) = U + An. // Primary channel

allocation
10: else
11: S (u, t) = SISM (u, t). // ISM channel

allocation
12: end if
13: end if
14: end for
15: end for

efficiency as follows:

L (w)=ED

[(
R+γ max

a′∈A
Q
(
s′, a′,w′

)
−Q(s, a,w)

)2
]
. (17)

The target network parameters are repetitively replaced by
those of Q-network in several training steps. The temporal
difference (TD) error between the current Q-value and the
target value was calculated by using the following equation:

δ = R+ γ max
a′∈A

Q
(
s′, a′,w′

)
− Q(s, a,w). (18)

Using the stochastic gradient descent to minimize the loss
function in the direction of gradient, the weight parameter w
can be updated as

w = w+ αδ∇wQ(s, a,w). (19)

During the training phase, the agent selects an action a at
the beginning of each superframe according to an ε−greedy
policy, in which 0 ≤ ε ≤ 1 represents the exploration
rate. The exploration rate ε decays over each time step at the
rate of dε. The training is repeated until convergence. Algo-
rithm 2 outlines the proposed deep Q-learning procedure.

V. JOINT TIME AND ISM/PRIMARY CHANNEL
SCHEDULING AND SUB-SCHEDULE EXTRACTION
This section presents the way the field devices generate the
joint time and ISM/primary channel scheduling S [τ ] and
the sub-scheduling Ssub [τ ] when receiving a [τ ] and H [τ ].
Algorithm 3 describes the joint time and ISM/primary
channel scheduling. In S [τ ], the ISM/primary channels are
assigned to data transmissions with the specific time slot
index. They then need to generate the sub-scheduling Ssub [τ ]
for itself based on the generated S [τ ] and SD in which the
sub-scheduling shows the assigned state for each device in
each time slot of the whole superframe τ . At each time slot
in a superframe, each device can operate in three states:

Algorithm 4 Extraction for Sub-Scheduling of Device vn
1: Input: NISM, SD and S.
2: Output: Sub-scheduling Ssubn .
3: S = [].
4: for t = 1 : 2N − 1 do
5: for u = 1 : NISM do
6: if SD(u, t) == n then
7: Ssubn (1, t) = Tr .
8: Ssubn (2, t) = S(u, t).
9: else if SD(u, t) == n+ 1 then
10: Ssubn (1, t) = Re.
11: Ssubn (2, t) = S(u, t).
12: else
13: Ssubn (1, t) = Sl.
14: end if
15: end for
16: end for

FIGURE 6. An example of the sub-scheduling generation of device v1
(a) and device v2 (b), based on the example of Figure 4.

transmit (Tr), receive (Re), and sleep (Sl). The sub-scheduling
of device vn, which is denoted by Ssubn [τ ], is a matrix with
the size of a 2 × 2N − 1, in which the first row indicates
the state of the device vn; the second row shows the allocated
channel. Algorithm 4 outlines the procedure for generating
the sub-scheduling of each device. Figure 6 gives an example
of the sub-scheduling generations of the device v1 and v2.
The process of convergecast operation using the proposed

scheduling is summarized as follows. At first, the ISM chan-
nel, device and data flow scheduling, i.e. SISM,SD, and SDF,
respectively, are designed offline by the GW and are stored
locally in each device. These tables of scheduling are fixed
in every superframe of the operation. At the beginning of
each superframe, GW assigns primary channels to devices by
generating a vector of the primary channel assignment, a, and
sends it to CAPs for cooperative spectrum sensing. Subse-
quently, the CAPs locally sense the assigned primary channel
and send the local results to FC. Next, FC will produce the
global sensing result H and send it back to CAPs. CAPs
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broadcast a and H through the dedicated primary control
channel. Based on a andH, each device generates a joint time
and ISM/primary channel scheduling, S, by itself usingAlgo-
rithm 3 and sub-scheduling, Ssubn [τ ], using Algorithm 4.
Finally, devices will transmit their packet according to the
assigned channel and slot obtained in Ssubn [τ ]. At the end of
each superframe, the GWwill update the remaining energy of
the CAPs and the belief of the primary channels for the next
superframe scheduling.

VI. SIMULATION RESULTS
In this section, we summarized performance of the proposed
scheme in comparisonwith a baseline scheme [18], inwhich a
myopic optimization is adopted for primary channel assign-
ment [43] and a random scheme through a numerical sim-
ulation using Python 3.7 with TensorFlow deep learning
libraries. For the baseline scheme, ISM channel scheduling
was implemented using the algorithm in [18]. The system
performed the primary channel assignment with the largest
amount of sensing energy in each superframe. For the random
scheme, the action of primary channel assignment was taken
randomly. The numerical simulation results can demonstrate
the efficiency of the proposed transmission scheduling under
various network parameters.

We consider the small-scale network area, where the inter-
ference generated by PUs transmissions on the primary chan-
nels is assumed to be large enough during forwarding time of
the devices, such that a received packet cannot be successfully
decoded by the receiving side (i.e., field devices and the GW)
due to the high interference from the PUs. Therefore, a packet
is successfully received at the GW on the primary channels
in a superframe if and only if no any collision generated by
the PUs. The simulation included four field devices and four
primary channels. The battery capacity in each CAP, EB, was
set to 20 µJ . The broadcasting energy was Eb = 3µJ and
the sensing energy for each primary channel was Es = 2µJ .
The neural network has four layers: an input layer, two hidden
layers with 64 nodes each, and an output layer. The learning
rate was α = 1.5×10−2. The state transition probability from
the ‘‘active’’ to ‘‘inactive’’ state of each primary channel was
set to 0.2 and 0.8 from the ‘‘inactive’’ to ‘‘inactive’’ state. The
values of detection probability and false alarm probability
were 0.9 and 0.1, respectively, from reference [17]. TheReLU
function and the linear function were used as an activation
function for the hidden layers and the output layer of the
DQN, respectively. Furthermore, an adaptive optimization
algorithm (i.e. the Adam optimizer) was used to update the
weights of the Q-network periodically. The sizes of the replay
memory and minibatch were set to 3000 and 300, respec-
tively. The initial exploration rate was set to 1; the decay
rate was 0.9999, and the minimum exploration rate was 0.02.
The mean value of harvested energy was Eh,mean = 5µJ
and each CAP was assumed to manage two field devices.
The successful packet reception ratio of a link on each ISM
channel was assumed to be identical, i.e. ρiju = ρu = 0.7.
The Q-network was trained over 200 episodes, each of which

FIGURE 7. Convergence behavior of the proposed method.

contained 4 × 103 superframes. The simulation results were
obtained by averaging 105 superframes.

We first examined the convergence rate of the proposed
algorithm with the increment of training episodes in Figure 7.
In the simulation, the ISM-channel-only scheme was imple-
mented by merely using the ISM channels, and the optimal
scheduling was obtained using the algorithm in [18]. For
the proposed scheme, we regularly calculated the average
value of the rewards received in a number of superframes
in each episode to plot a curve with less fluctuation during
the training phase, as shown in Figure 7. In this paper, the
Q-network keeps training until it meets the convergence con-
dition (≤0.001) or reaches the maximum number of prede-
fined training episodes. As a consequence, the throughput
of the system using the proposed scheme converged to an
optimal value after approximately 100 episodes. On the other
hand, the baseline and ISM-channel-only schemes offer a
lower reward at 2.16 and 1.7 (received packets), respec-
tively. The reason is that the baseline scheme always max-
imizes the current reward regardless of the status of the
CAPs battery and the primary channels in each superframe.
Consequently, it would have insufficient energy for future
utilization because the harvested energy and battery capacity
are limited. This leads to overlooking of the primary channels
when they are free. Furthermore, the curves show a signifi-
cant improvement in the data aggregation performance when
the primary channels are used in the network compared to the
ISM-channel-only scheme.

The throughput of the schemes was plotted as ρu changes
from 0.4 to 0.8 in Figure 8 to explore the impact the success-
ful packet reception ratio of the ISM channels on network
performance. The GW can receive more packets sent by the
devices when the ISM channels have lower interference for
all schemes. Because the GW can have a higher probability
of receiving the packets transmitted by the devices on the ISM
channels with a high value of ρm when the assigned primary
channels are sensed to be ‘‘active.’’ The performance of
proposed scheme was shown to be superior to other schemes
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FIGURE 8. Received packets versus the successful packet reception ratio
on the ISM channels.

FIGURE 9. Received packets according to the number of devices.

when ρm was low, but the improvement using the proposed
scheme became smaller as ρm was high. It is because the low
interference on the ISM channels affects the data aggregation
performance slightly. The system tends to frequently utilize
ISM channels with a higher successful transmission probabil-
ity than the primary channels with a lower belief. Thus, using
primary channels when the reliability of the ISM channels is
high will not greatly improve the throughput. Figure 9 shows
the network performance of the schemes versus the number
of devices employed in the network. The curves showed that
the total number of packets generated in field devices became
larger when the network size was increased, leading to the
higher received packets at the GW.

In Figure 10, we plot the received packets according to
the mean value of harvested energy of the CAPs along with
different values of detection probability, Pd = 0.9 and Pd =
0.95. The number of packets received at the CAP can be
enhanced gradually as the harvested energy increases. This
is because the CAPs have more chance to sense the pri-
mary channels. Accordingly, the devices can frequently share
the primary channels with primary users as they are sensed
to be free. Moreover, correctly detecting the actual state

FIGURE 10. Received packets versus the mean value of harvested energy.

FIGURE 11. Energy efficiency versus the mean value of harvested energy.

‘‘active’’ of the primary channels (i.e., with the high value
of Pd ) can help the system lower number of transmission
collisions between the field devices and primary users. This
results in a throughput improvement when detection probabil-
ity increases. Therefore, the proposed scheme always offers
higher packets received at the GW than the others.

Figure 11 plots to verify the energy efficiency of the pro-
posed scheme according to the various harvested energy and
the detection probability. In this article, the energy efficiency
is defined as the average received packets over the average
amount of utilized energy of CAPs. It is observed that when
the value of Pd is large, the harvested energy can be utilized
better by all schemes. For the various scenarios of Eh,mean

and Pd , the proposed scheme could efficiently utilize the
harvested energy, compared to the others. The reason is that
the proposed scheme not only considers the long-term reward
with energy consumption at CAPs, but also updates the belief
of primary channels using Pd to select the optimal scheduling
in each superframe.

Generally, in spectrum sensing, when the sensing param-
eters are fixed, an increase in Pd will result in an increase
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FIGURE 12. Received packets according to the false alarm probability.

in Pf . Therefore, the average packet delivery was examined
according to the different probability of the false alarm and
the various number of primary channels to evaluate the per-
formance of the proposed scheme compared to the others,
as shown in Figure 12. As can be seen from the figure, the
false alarm can significantly deteriorate the received packets
at the GW as Pf increases, while increasing the number of
primary channels can help improve the throughput of the
system. The reason for the degradation due to the false alarm
is that the devices might miss many opportunities for their
transmissions on the primary channels as Pf is large, which
leads to poor transmission performance. Therefore, the sens-
ing error is one of the key factors to consider when designing
a transmission scheme for joint ISM/primary channel alloca-
tion in the network. On the other hand, the devices can have
more opportunities of using multiple primary channels when
M increases. From the presented simulation, the proposed
scheme can outperform the traditional schemes under various
network parameters since it not only consider the current
reward, but also the future reward to obtain maximum long-
term throughput. Moreover, the proposed scheme can be
verified to work efficiently in industrial CR networks with
spectrum sensing errors by considering spectrum factors such
as, detection and false alarm probabilities.

We close this section by providing a concrete scenario
that the proposed scheme could be effectively applied. Let
us consider a big warehouse of a factory where the inside
temperature and air quality should be monitored and con-
trolled precisely. Since the placement of sensor nodes may
be changed frequently based on the re-arrangement of the
obstacles (e.g. goods and furniture) inside, it is quite chal-
lenging to deploy the conventional wired sensor networks
such as the SCADA system. For this circumstance, the wire-
less monitoring and controlled sensor networks could be an
effective option and the communication protocol could be the
WirelessHART, in which data transmissions are on the ISM
bands. Unfortunately, the increasing use of microelectronics
devices and the attraction of unlicensed use have been leading
to an overload in ISM bands recently. Since the proposed

scheme allows the sensor nodes or field devices to switch
between ISM channels and licensed channels for their trans-
missions, we can apply the proposed network settings to
attain the higher reliability of data transmissions between sen-
sor nodes. Furthermore, the wireless deployment flexibility
of the field devices and solar-powered CAPs in our network
setting help lower the long-term operating cost, especially
when the arrangement of machines or products is frequently
changed in the manufacturing facilities.

VII. CONCLUSION
In this article, we proposed deep reinforcement learning-based
transmission scheduling for joint ISM/primary channel allo-
cation to devices to maximize the throughput of the linear
convergecast network under constraints of the required num-
ber of ISM channels and delay. By considering the long-term
reward, the system can select the optimal scheduling policy
for field device transmissions through each superframe under
the awareness of limited energy in CAPs and the dynamics of
the primary channels. As a result, the maximum number of
packets received at the GW was obtained with a minimum
delay and number of ISM channels through a trial-and-
error action of the GW after training. The proposed method
was assessed by comparing the system performance of the
proposed scheme with those of other traditional schemes
where the context of long-term reward maximization was not
considered. The numerical simulation results were presented
to verify the effectiveness of the proposed scheme under the
various network parameters. From the simulation, the agent
in the proposed approach can adapt its policy to network
variations in terms of the harvested energy, successful packet
reception ratio on the ISM channels, number of devices,
probability of detection, and false alarm. Thus, a greater
reward was obtained compared to the others. As a result, the
optimal long-term throughput of the WirelessHART system
can be guaranteed with energy-efficient utilization.
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