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ABSTRACT In this study, a deep neural network (DNN) is implemented to soft computation of the dual-band
circularly polarized bone-shaped patch antenna (BSPA) at 28 GHz and 38 GHz for 5G applications. Via
a simulated database of 150 BSPAs, a DNN model is constructed on a 5-layer system using an adaptive
learning rate algorithm. The framework and hyper-parameters of the DNN model are optimized in the training
phase of a hybrid algorithm combining strengths of both particle swarm optimization (PSO) and a modified
version of the gravitational search algorithm (MGSA-PSO). To generate the database for training and testing
the model, 150 BSPAs with different geometrical are simulated in terms of the resonant frequency using a
precise electromagnetic analysis platform. A fabricated BSPA operating at 28 GHz and 38 GHz is used
to test and verify the DNN model. Then, the application of DNN with back-propagation algorithm and
weighted MGSA-PSO algorithm is used for beam-steering the main beam pattern of the designed uniform
circular antenna array with side-lobe level <= —30 dB by estimating the appropriate feeding phases of
the 16 elements. Several illustrative examples are placed to beam-steer the pattern in the desired direction to
check the validity of the technique.

INDEX TERMS Deep learning, artificial neural network, optimization algorithm, mm-wave antennas,

circular polarization, beamforming technique.

I. INTRODUCTION

Recently, the demand for increased capacity in mobile
and personal communications systems in addition to other
modern applications such as satellite and, multi-input multi-
output (MIMO) networks, biomedical imaging, remote sens-
ing, radio astronomy, and radar, have motivated researchers
towards the development of algorithms and standards that
exploit space selectivity [1]. In this regard, one pertinent
problem is finding antenna rotation for desired beam direc-
tion. Many techniques have been used to steer an antenna’s
radiation pattern over the years [2]. The mechanical phased
arrays rotated with motors started in military applications
several decades ago. But nowadays it became undesirable,
especially when factors such as weight, antenna size, and
weather conditions have been considered. In addition to its
limited use in static or very slow-changing environments due
to the limitation in steering speed [3]. Rotating mechanisms
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are also prone to mechanical failure due to fatigue and the
wearing of moving parts. The solutions for these problems
led to electronic ways of steering beams. As a result, there are
many efforts on the design of phased antenna array systems
that play an important role in shaping and scanning the radi-
ation pattern and constraining the adaptive algorithm used by
the digital signal processor. These methods of beam steering
based on controlling the phase values, the excitation ampli-
tudes only, and both amplitudes and phases have been exten-
sively considered in the literature [4]-[8]. The most important
method is based on controlling the complex weights since
the technique utilizes fully the degrees of freedom for the
solution space. On the other hand, it is also considered the
most expensive approach taking into consideration the cost of
both phase shifters and variable attenuators for all elements.
Therefore, beam pattern scanning based on controlling phase
values was the only valid method in this work.

In literature, many papers studied the synthesis of antenna
array using different optimization techniques, such as genetic
algorithm [9], particle swarm optimization algorithm [10],
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central force optimization [11], gravitational search algo-
rithm [12], in addition to hybrid techniques those have been
successfully used [5]-[8], [13]. However, the computational
time to find the optimum weights will increase by consider-
ing more antenna array elements. Therefore, the deep neu-
ral network (DNN) is an essential computational tool with
an unprecedented computational efficiency for these time-
critical applications.

Recently there is a great effort by researchers to find eas-
ier and faster analysis techniques such as developed neural
networks and optimization algorithms inspired by nature.
Therefore, any computational system can find a relationship
between inputs and outputs of an engineering system through
the association of multiple layers of nodes and each node
has its connection weight. This system is called the neural
network [14]. The neural network has a high performance
in accuracy and rapid if designed correctly. Even though
in cases with large and computationally complex problems,
their network structure may not be interconnected and deep
enough to duly train the model. Hence, an urgent need for the
emergence of DNNGs, or as they are called deep learning, as a
deep analytical method for difficult and complex simulated
problems.

In the beginning, DNN was used in the field of image and
speech recognition, as a modern tool for NN [15]. Recently,
DNN has been used in many applications and its effectiveness
has been proven with great success, for example, in anten-
nas designs and beamforming capabilities. As for traditional
neural networks, which can be described as shoal networks
compared to the features provided by DNN, the DNN is
more in-deep, complexity, number of layers, and neurons.
In addition to an essential feature that distinguishes DNN
from traditional NN, which is its ability to discover useful
and new features of the input data. This, in turn, makes DNN
have great computational depth and is more compatible with
major, large-scale, and complex systems. Therefore, when
DNN deals with difficult and complex problems that have a
large amount of data, they need further computing engines
to accelerate the process, such as a graphics processing unit.
Moreover, a smart network such as DNN can perform many
features such as simultaneous multi-layer processing, feature
selection, and monitoring of certain excessive parameters.
In the past few years, machine-learning scientists turned their
attention to the astonishing results of DNN that they have
achieved on the ground, particularly in audiovisual media
research and prediction [16], so they decided to apply it to
various engineering problems [17]-[19]. Recently, DNN is
provided to different electromagnetic applications included
antenna design, direction-of-arrival estimation, beamform-
ing, multi-input multi-output systems, forward/inverse scat-
tering, radar, and remote sensing due to its superior
capabilities [20]-[24].

DNN can supply a hurried beamforming synthesis pro-
cess while preserving high accuracy levels, minimizing error
and time saving, and a possible prediction of the antenna
behavior, a better computational efficiency, and a reduced
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number of necessary simulations. Therefore, the proposed
DNN model is an accurate and robust computing approach
as an alternative to expensive measurement and simulation.
[23] provides a detailed review of various research papers
that address the design and optimization of antennas using
machine learning, including the various techniques and algo-
rithms used to produce antenna parameters based on desired
radiation characteristics and other antenna specifications.
Also, [24] presents a novel modified efficient K-Nearest
Neighbors (KNN) method, the advantage of this method,
which is considered a type of neural network, is the reduction
in the number of training and testing data samples. When
applying this method to a model (the parameters of this model
are less than ten parameters), this model requires only a small
number of samples (only from the 10 to 100 samples), for
the dataset and some prior information at the beginning to
constrain the target domain. Then comes the self-learn stage,
and by using some types of rapid simulation, the optimum
value can be predicted quickly and accurately. One of the
important advantages of this method is its ability to generate
more valuable data samples during the training process, so the
efficiency of this method is very high.

The Multilayer Perceptron (MLP) with a single hidden
layer is a big implication that has been emerged in recent
years as interest in NNs has grown. Whenever a large number
of hidden layer neurons are used, this network can predict any
smooth nonlinear input-output mapping to an arbitrary degree
of accuracy [25]. Radial basis function (RBF) neural net-
works are used in [26] to refine the radiation pattern of non-
uniform linear arrays of high superconducting rectangular
microstrip antennas. In [27], a phased array in a coordinated
scheme based on Taguchi-neural networks is presented. The
authors of [28] presented a typical use of back-propagation
neural networks for antenna array synthesis and optimization.

In [29], the authors used an array 4 x 1 of the patch antenna
with an inter-element space of 0.28 A for synthesizing the
radiation patterns. A DNN was constructed with the input
being the radiation pattern and the output being the amplitude
and phase of the antenna elements. The proposed DNN has
been trained with a large number of samples of radiation
models that show reasonable performance in synthesizing the
radiation patterns. The radiation pattern produced by DNN
was quite similar to that of the input radiation. This proved
that deep learning can be used surely for radiation pattern syn-
thesis. In general, antennas are found to be ideal candidates
for DNNs because of the intrinsic nonlinearities involved with
their radiation patterns.

In this paper, a DNN-based model is optimized in the
training phase of a hybrid MGSA-PSO algorithm for the
dual resonant frequency computation of the bone-shaped
patch antenna (BSPA) with an axial ratio (AR) < 3 dB.
The accuracy of the model is further validated on a mea-
sured BSPA resonating at 28 GHz and 38 GHz simulta-
neously. Also, the DNNs are used to simplify the antenna
array modeling by assessing phases. The key challenge is
to find optimal antenna array element weights that result in
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FIGURE 1. Proposed antenna structure (a) Top view, (b) Back view.

a beam-steering radiation pattern with a minimum side-lobe
level (SLL) of less than —30 dB, thereby improving antenna
array efficiency. To verify the validity of the technique, sev-
eral illustrative examples are placed to beam-steering the
pattern toward the desired direction. The paper is organized
as follows. The antenna design and array configuration are
presented in Section II. Deep neural networks are described
in Section III. Section IV presents the results and discussions.
Finally, Section VI makes conclusions.

Il. DESIGNS AND CONFIGURATIONS

This section presents firstly the designed structure of the
proposed dual-band and circularly polarized antenna element.
Then, the geometrical arrangement of the uniform circular
array consists of 16 antenna elements is introduced.

A. CONFIGURATION OF ANTENNA ELEMENT DESIGN

Fig. 1 shows the proposed antenna structure which consists
of a bone-shaped linear array with sinusoidal length distri-
bution and connected through periodic rhombus structures
as shown in Fig. 1(a). The antenna ground plane consists
of a perfect electric conductor (PEC) layer etched with an
elliptical shape as illustrated in Fig. 1(b). Fig. 2(a) illustrates
the shape of bone structure with thickness and overall length
B and W, respectively. The radii of bone ends are R and C.
The Rhombus shape with a concave rib and the solid circle
which connects the groups is illustrated in Fig. 2(b) with the
corresponding dimensions.

As depicted in Fig. 1(a), the antenna mainly consists of
four bone shapes, which are Ay, Az, A1z, A1a. They are
arranged from largest to smallest, as shown in group index 1,
and this group of bones is repeated twice in group index 2.
The first time the lengths were repeated inversely, i.e. from
the small to the large bone, and also the position was reversed,
meaning that the left side replaces its right side and vice versa
the right side replaces its left side Az, A2z, A3, Aza. Then

VOLUME 9, 2021

V=

w

L

(a) (b)
FIGURE 2. (a) Shape of bone structure, (b) Rhombus shape with a
concave rib and a solid circle connects the groups to each other.

TABLE 1. The value of Initial and optimized dimensions (in millimeter).

Variable
Initial value
Optimum value

Wl] WIZ W13 Wl4 WZ] WZZ WZ} W24 W25 W26
35 3.1 235 1.4 14 235 3.1 35 35 3.1
35294 22 1251.15 1.9 238 2.5 238 1.95

Variable W27 Wzg W3 1 W32 W33 W34 L D K F
Initial value 235 14 1.4 235 31 35 10 04 21 7
Optimum value 2 08 07 1.1 14 159 99 038 1.9 6.57

Variable L Bu Cu S G L, Ry S Gy Ss
Initial value 255013 21 1.7 6.1 225 25 06 93 35
Optimumvalue 2.5 0.12 2 1.68 59 23 2.3 0.58 9.21 3.39

the group was repeated in the same order and placed group
index 1, which are the bones Ajs, Azg, A7, Azg. Finally,
we come to the last group, which is group index 3, which is
reversed in lengths and position as the first iteration in-group
index 2, which are A3y, Az», A3z, Aszg. A solid circle connects
the groups, which greatly affects the current distribution and
prevents eddy currents from occurring in the entire radiation
patch. There is also a rhombus shape with a concave rib that
starts from the beginning of the group index 2 to the end of
this group. Half of this state-inverse rhombus are found in
group index 1, and group index 2. So that the rhombus head
faces the other in the solid circle that connects the groups. The
purpose of having this rhombus is to increase the metallic area
to the radiated patch, leading to a direct improvement in the
antenna radiation efficiency. The antenna is fed by a coaxial
cable 50 ohm at a point in the antenna structure’s middle.
The antenna is designed then fabricated on the Rogers

DuroidTM RT5880 with a 0.508 mm substrate thickness,
relative permittivity €, = 2.2, and loss tangent fané = 0.0009
substrate. The antenna initial dimensions were illustrated in
Table 1.

B. ANTENNA ARRAY DESIGN

In this work, a uniform circular array (UCA) antenna geom-
etry is introduced as shown in Fig. 3. A strong justification
for this selection is the symmetry possessed which provides
UCAs with a major advantage: the ability to scan a beam
azimuthally through 360° with little change in either the beam
width or the SLL. The array consists of 16 CP elements of the
optimized BSPA antenna operating at 28 and 38 GHz simul-
taneously. The elements are uniformly distributed in a circle
configuration with inner ring radius R; = 1.273A, with equal
spacing of r = 0.5 between any two consecutive elements
has been considered, where A is the wavelength of 28 GHz.
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FIGURE 3. 2D view of UCA antenna structure, (a) front view, (b) back view.

The proposed 5G mm-wave antenna array is designed to syn-
thesize the beam patterns in different directions. The radiation
pattern can be steered in the desired direction with a high gain
and a side-lobe level less than —30 dB by adjusting the phase
of the input signal allocated to each antenna element. There-
fore, the MGSA-PSO algorithm is considered to optimize the
feeding phases for DNN learning.

lll. DEEP NEURAL NETWORK (DNN)

Deep learning distinguishes itself from machine learning by
combining feature collection and regression/classification,
having a larger number of neurons, processing simultane-
ously on several layers, inherently extracting features, and
evaluating optimum network hyperparameters. The data in
the DNN system is evaluated by moving it through the neu-
rons in the multi-layered hierarchy, and the evaluated infor-
mation is then passed on to the next layers, allowing a more
convenient learning model to be constructed.

In the beginning, we briefly introduce the DNN description
that was applied to the BSPA design. Multilayer perceptions
(MLPs) [31]-[33], which were successfully and frequently
employed in many engineering applications, are favored
in this investigation. Many algorithms, such as Levenberg-
Marquardt (LM), backpropagation, and delta-bar-delta, can
be used to train the MLP. MLPs are trained in this study using
the GSA-PSO algorithm [6], [7], which has quick learning
and high convergence capabilities. As shown in Fig. 4, the
MLP has five layers: an input layer, an output layer, and three
hidden layers. The neurons of the layer merely act as buffers
for distributing the input signals x; to the neurons of the
hidden layer. Each hidden layer neuron j sums its input signals
x; after weighting them with the strengths of the respective
input layer connections wj;, and computes its output y; as a
function f of the sum, namely

yi=f (Z wjixi> )]

where f(+) can be a simple threshold function, a sigmoid,
hyperbolic tangent, a radial basis function, a purelin function,
etc. [32], [33]. Similarly, the output of neurons in the output
layer is computed. When training a network, one of the
available learning algorithms is used to adjust the network’s
weights. At time t, the learning algorithm returns the change
Awj;(t) in the weight of a connection between neurons i and j.
The weights for the LM learning algorithm are updated using
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FIGURE 4. The proposed 5-layer DNN framework.
the formula below.
wji (t +1) = wji (1) — Awji(t) 2
Awi = T @] @)+l JT @E @) ©)

where, u, I, and E (w) are the Jacobian matrix, a constant,
identity matrix, and error function, respectively. The Jacobian
matrix contains the first derivatives of the errors with respect
to the weights and biases. After each successful step, the
value of u is dropped, and it is only increased when a step
would increase the sum of squares of errors. A DNN model
with five layers was applied in this work, including the input
layer, three hidden layers, and the output layer. The number
of epochs in the training procedure is 150. In addition, the
input layer, hidden layer, and output layer all used the tangent
sigmoid, tangent sigmoid, and purlin functions, respectively.

Secondly, we applied DNN on a circular disk antenna array
for beam-steering. As shown in Fig. 5, multi-layer networks
have an input layer whose neurons code the information
supplied to the network, a configurable number of “‘hidden”
internal layers, and an output layer. In the same layer, neu-
rons do not communicate with one another. These networks’
learning process is supervised. The input nodes make up the
first layer. A feed-forward neural network with one hidden
layer and a Multilayer Perceptron MLP node function at each
hidden node is known as an MLP network. The dimension of
the input vector is equal to the number of nodes, L [34]-[36].
Where j is the input layer’s index (j = 1, 2, ..., L) and i is the
hidden layer’sindex I = 1,2, ...,N). Withk=1,2,..., M,
k is the index of the output layer.

The interconnection weights are calculated using the mini-
mal error between the neural model output y; and the training
data dy. The goal of the training procedure is to fine-tune
the network interconnection weights @;; and wg; in order to
reduce the error function E(p), which is defined as:

M N L

1 2
E(P)=§ZZZD’1¢ (%, 0, 0ri) — di] “
k=1i=1j=1
where p = 1, 2, ..., P denotes the training set’s index. The

back-propagation technique described in [27] is used in this
iterative procedure. The weights w;; and wy; are updated for
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FIGURE 6. Neural network training procedure.

each iteration by:

Awy = —n— )
AWy,

Sector-width intervals of 15° and SLL intervals of — 30 dB
were used in the training set. Fig. 6 depicts the mean square
error performance of the MLP Network. The ability of neural
networks to generalize is one of their main advantages. This
means that even if a trained network has never seen data
from the same class as the learning data, it will classify it.
Developers of real-world applications typically only have
access to a small portion of all possible patterns of neural
network generation. The dataset should be divided into three
sections to achieve the best generalization: The training set is
used to train a neural network; during training, the dataset’s
error is minimized, the validation set is used to assess a neural
network’s success on patterns that have not been trained
during the learning process and a test set for determining a
neural network’s overall efficiency.

In such a case, we have two main steps called network
designing and network testing (generalization). In network
designing, the input vectors {xp,p =1, 2, ..., 16} is firstly
formed, then generating input/output pairs {x,, ¢,}, where
q = 1,2,...,18, then design the neural networks. In the
network testing, we form the vectors x’p for the testing input
samples. Then present input vectors x’p to the neural net-
works. Finally, we get the output of the network.

The number of hidden neurons chosen is heavily influ-
enced by the essence of the nonlinearity to be modeled.
In our situation, 30 hidden neurons ensured that the algorithm
converged quickly and that the neural model we created was
accurate as depicted in Table 2. The continuous nonlinear
neuron, whose activation function is a tan sigmoid function,
is the neuron employed in this network. To study the con-
cepts described in the preceding part, divide the space into
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TABLE 2. Typical values of parameters use in Back-Propagation algorithm.

Parameters Symbol  Value
Neuron in the input layer n 18
Neuron in the output layer m 16
Neuron in the hidden layer h 30
Coefficient of training n 0.02

24 sectors and repeat every 15 degrees between 0° and 360°
degrees inclusively. More exact space division sectors can
be achieved by increasing the number of element arrays.
A 24-bit binary code is used as the input vector for the
neural network (one bit for each sector). A bin input of (+1)
indicates a source in the sector that is exactly on (main lobe).
Convergence could then be completed faster.

IV. RESULTS AND DISCUSSIONS

In this section, the simulation results of the optimized dual-
band circular polarized BSPA antenna will be firstly pre-
sented, analyzed, and compared as the building block of the
antenna array. Then, the UCA array simulation results will
be offered to show their capabilities for steering the beam
patterns in different directions.

A. ANTENNA DESIGN

The authors in this work present for the first time a design for
the antenna called Bone-Shaped Patch Antenna (BSPA) that
consists of several parts each one is considered for a specific
function. The main objective is to resonate the antenna at 28
and 38 GHz simultaneously with an AR < 3 dB. Firstly,
the shape of the sinusoidal bones has been studied as shown
in Fig. 7a. It is found that changing the sinusoidal envelop
shape effect directly on the antenna reflection coefficient and
correspondingly on the antenna matching. Then the effect
of the oval shape defected in the ground plane (DGS) is
analyzed. The results revealed its effect on the antenna real-
ized gain as presented in Fig. 7b, whereas, the larger DGS
oval shape area leads to a higher realized gain value at the
operating frequencies. Regarding the rhombus shape located
in the middle of the antenna, it plays a major role in improving
the antenna radiation efficiency as shown in Fig. 7c. Finally,
the effect of radii bone ends has been studied as presented in
Fig. 7d. Whereas, the circular polarity and the axial ratio of
the antenna are greatly affected just by changing the direction
of the bone shape in each group.

In order to generate a database for modeling the DNN, sim-
ulations of 150 BSPAs with various geometrical parameters
are performed using CST-MWS [30]. The parameters of the
simulated BSPAs are topologically illustrated in Fig. 8. The
antenna parameters are considered in three ground plane slot
dimensions G| x S3 groups of 10 x 3.6 mm?,9.3 x 3.5 mm?,
and 8.5 x 3 mm?. Each group has 50 BSPAs that comprise a
parameter combination of Gy x S3. e.g. for the first group of
10 x 3.6 mm?, there are 50 ESPAs including the parameter
combination of (Wy: 3.5, 3.36, 3.22, 3.08, 2.94 mm) x
(W34: 3.5, 3.36, 3.22, 3.08, 2.94 mm) x (Wa4: 3.5, 3 mm).
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FIGURE 7. Test antennas radiation characteristics, (a) reflection
coefficient, (b) realized gain, (c) radiation efficiency, and (d) axial ratio.

The simulated resonant frequency f, of each BSPA with a
particular antenna parameter is determined by CST.

Fig. 9 shows the simulated resonant frequency variation
versus antenna number. Whereas the resonant frequencies
decrease with the antenna ground plane slot dimensions,
and hence there is a high nonlinearity between the antenna
parameters and the resonant frequencies. Therefore, comput-
ing the resonant frequency of BSPA is a complex and high
nonlinear problem. The simulations are performed between
the frequency range of 28-38 GHz at 300 points.

According to the relationship between the input and the tar-
get, the DNN model with three layers was trained to produce
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FIGURE 9. Simulated resonant frequency variation for each antenna
group defined in Fig. 8.

the resonant frequency for each parameter set of the antenna.
As many as 150 BSPAs were employed for training while 15
BSPAs were used for testing the DNN model. In order to
visually recognize the relationships between the results, the
scatter diagrams of simulated and computed resonant fre-
quency results are shown in Fig. 10 for the training and testing
datasets. The value of the average percentage errors (APE)
for the resonant frequencies has been computed by the DNN
model as depicted in Fig. 11 [37]. It is clear that, the APE
value is affected by the assigned number of training points for
any deep learning application. Whereas, the system accuracy
improves by increasing the number of training points and vice
versa. Based on Fig. 11, which illustrates the topology of
calculating the APE for CST models, an appropriate APE of
0.236 % was obtained as for the 150 BSPAs’ training data
which increased to 1.587 by decreasing the training data to
72.1tis clearly seen that the points will follow a linear pattern;
means there is a high linear correlation between the results.
To further investigate the validity of the present approach,
a BSPA operating at 28 and 38 GHz with the dimensions illus-
trated in Table 1 was designed via CST and then fabricated.
These parameters not used in the training process, whereas,
in the training data there is no antenna resonated simulta-
neously at 28 and 38 GHz as shown in the inset Fig. 10a.
Fig. 12 shows a good agreement between the measured and
simulated results. As shown in Fig. 12(a), the antenna can
achieve good matching at both frequency bands to be —26.61
and —24.54 at 28 and 38 GHz, respectively, with realized gain
of 8.97 and 8.65 dBi as depicted in Fig. 12b. Furthermore,
the antenna had an axial ratio less than 3dB for & = 90° and
¢ = (0° at the resonance frequencies, in addition, as shown in
Fig. 12c, the radiation efficiency is found to be 90.5 % and
87 % at 28 GHz and 38 GHz, respectively. Fig. 13 presents
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FIGURE 11. The topology of the calculating APE for CST models.

the simulated 3D radiation pattern of the optimized BSPA
antenna at 28 and 38 GHz.

B. ANTENNA ARRAY

The proposed approach has been thoroughly tested as shown
in Fig. 6, as seen by the examples below. For synthesizing
the 16-element antenna array, the feeding voltages were set
with constant amplitudes and variable phases [38], [39]. For
the reference antenna, the predicted simulation results must
demonstrate radiation patterns with low SLL (at —30 dB)
and major lobes pointing in the direction of valuable sig-
nal. The desired radiation pattern is given from 0° to 360°
in our application, and the database contains all the data
(input/output) produced through simulation with the MGSA-
PSO algorithm.

The proposed antenna array is analyzed using CST-MWS
and linked with MGSA-PSO algorithm, MATLAB-coded,
to optimize the antenna array phases. Accordingly, the fol-
lowing objective function is applied to achieve the goal. 24
desired directions of the UCA from 0° to 360° by step 15°
were optimized by this objective function as a training data
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FIGURE 13. 3D far-field gain pattern at, (a) 28 GHz and (b) 38 GHz.

for DL mechanism.
Obj = max [E; (6, ¢)| + min(SLLI5 — 30)  (6)

The graphical output of the regression is shown in Fig. 14.
The network outputs are placed against the targets as open
circles. The best linear fit is indicated by a dotted line. The
solid line indicates a perfect match (output equal to the tar-
gets). Because the fit is so superb in this case, it is difficult to
tell the difference between the best linear fit line and the ideal
fit line.

To demonstrate the effectiveness of the method identified
in the previous section for steering single beams in the desired
direction by controlling the phase excitation of each array
element, 24 desired directions of the disc array with N = 16
elements were performed. In various settings, the numerical
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{15
e

findings in Fig. 15 show that NNs with the MGSA-PSO algo-
rithm have outstanding phase control capabilities for beam
pattern synthesis. It is vital to test the neural network once it
has completed the training phase on a different database than
the one used for learning. This test allows you to evaluate
the neural system’s performance as well as identify the prob-
lematic data types. It will either update the network design
or adjust the learning base if the performance is not adequate
(each data class’s distinguishing traits or representativeness).

Many examples of simulations are explored at ¢ = 40°,
142°, 205°, and 320°, in order to test the proposed method-
ology for the synthesis of a circular disc array. It is evident
that the side-lobe level requirement of — 30 dB has been
met. Fig. 16 shows the simulated results for 3D antenna radi-
ation pattern synthesis using the DNN approach at 28 GHz
for the built antenna array system with 16 elements. The
results reveal that the desired and synthesized specifications
are extremely closely aligned. This proves the recommended
procedure’s efficacy. This shows that the proposed proce-
dures are effective. The DNN has superior learning, general-
ization, parallel processing, and error endurance properties,
resulting in ideal solutions in applications where nonlinear
mapping of complex data should be modelled. This method
employs a DNN, which can be trained to handle any amount
of elements, spacing, and excitation. The parameters with
respect to the input can be found once the network has been
trained.
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V. CONCLUSION

In this study, DNN is implemented to the computation of the
resonant frequency of the BSPAs, and hence a DNN-based
soft computing framework is modeled using a full-wave 3D
EM analysis platform. The network is trained with a set
of input-output data pairs based on MGSA-PSO algorithm.
A database enclosing the resonant frequency of 150 BSPAs
is defined by the simulations with different geometry and
electrical parameters. For training and testing the model, the
database is split into datasets #135 and #15, respectively. As a
result, the proposed DNN model was used to estimate the
resonant frequencies with the greatest precision, making it
an efficient and potentially viable alternative to costly mea-
surement and simulations. Then, the DNN model has applied
to beam-steer the radiation pattern of the designed antenna
array. Results show that there is an agreement between the
desired specifications and the synthesized ones.
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