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ABSTRACT This paper presents a lane change decision algorithm for predictive decision-making for
an autonomous vehicle using a Recurrent Neural Network (RNN) with a Bidirectional Long Short-Term
Memory (Bi-LSTM) cell. The proposed decision-making algorithmwas trained and validated by driving data
collected by vision, laser scanners, and chassis sensors of autonomous vehicles. The input features for the
Bi-LSTM based RNN consist of the clearance and relative velocity with the surrounding target vehicles, lane
measurements, and the velocity of the autonomous vehicle. The output features are configured to generate
the probability of three maneuvers, left lane change, right lane change, and lane-keeping. The Bi-LSTM
based RNN is configured to decide in advance two seconds before lane changes by using two seconds of
observation. The collected 20,108 datasets were accumulated in global coordinates. After processing and
resampling the collected datasets, 1,120, 320, and 160 datasets were generated to train, validate, and test
the Bi-LSTM based RNN. The proposed algorithm was evaluated by a case study and a driving data-based
prediction accuracy analysis. The results of the predictive lane change decision by the proposed algorithm
have been shown to be more accurate and similar to a driver than previous approaches.

INDEX TERMS Autonomous driving, lane change decision, machine learning, bidirectional long short-term
memory, recurrent neural network, decision making, motion planning.

I. INTRODUCTION
The development and mass-production of a driver assistant
system have had an important role in improving driver com-
fort, convenience, and safety. The Advanced Driver Assistant
System (ADAS) has been applied to various vehicle models
from many manufacturers, showing a high sales rate. The
success of the ADAS, which is a level 2 autonomous system,
led to extensive research on autonomous driving to develop a
level 3 or higher-level Autonomous Vehicle (AV). Generally,
the field of autonomous driving research is classified into per-
ception, localization, motion planning, and control [1]. These
functions are implemented sequentially in an AV to achieve
autonomous driving in the real world. The perception and
localization focus on the processing of sensor measurements,
such as radar, LiDAR, or a camera. The control function
generates actuator inputs to achieve the desired behavior
determined by the motion planning algorithm. Therefore, the
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performance of the sensor and actuator is the most important
consideration for designing the perception and control algo-
rithm, respectively. However, the motion planning algorithm
of an AV requires human-like behavior based on the intention
inference of surrounding traffic participants and the situation
awareness of the driving environment [2], [3]. Therefore,
motion planning covers not only generating the desired path
and velocity, but also the decision-making process for select-
ing the target maneuver. This is the reason why a part of the
motion planning is classified as task planning for the AV.
For example, in the case of a lane change, determining the
possibility and necessity of a lane change can be considered
as decision making [3], and generating a desired path and
velocity to change the lane can be regarded as motion plan-
ning in a narrow sense [4].

Among the various functions of ADAS and AVs, a lane
change function is the next step of the lane following and
distance control with the preceding vehicle. However, lane
change requires decision making for more complex driving
scenarios with many considerations, such as surrounding

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 144985

https://orcid.org/0000-0001-9193-7349
https://orcid.org/0000-0002-9352-0237


Y. Jeong: Predictive Lane Change Decision Making Using Bi-LSTM

vehicles, road shape, and dynamic state of ego vehicle, under
the assumption that communication between vehicle and
infrastructure is not available. This study developed a pre-
dictive lane change decision algorithm based on a Bidirec-
tional Long Short-Term Memory (Bi-LSTM) and Recurrent
Neural Network (RNN). The contribution of this study can be
summarized in threeways; (1) The proposed decision-making
algorithm focused on the maneuver decision between lane
keeping and lane changing to the left and right in multi-lane
driving conditions; (2) The goal of the proposed decision-
making algorithm is to determine the possible lane change
moment in advance based on the states of the surrounding
vehicles and the shape of the road. (3) The proposed method
can be applicable to various driver assistant systems and
autonomous driving vehicles, because only sensor informa-
tion mounted on the vehicle is used.

The predictive lane change decision can enhance the driv-
ing safety of autonomous driving when performing lane
change. In addition, the proposed algorithm can improve the
acceptance of the autonomous vehicle to passengers and traf-
fic participants, because the proposed algorithm can secure
the preparation time before initiating lane change. Therefore,
lane change can be performed more mildly and sufficient
guidance can be provided to passengers. In particular, it is
effective for level 3 or higher systems where the responsibil-
ity of the system increases.

Because the level 3 or higher-level autonomous driv-
ing system have more responsibility of driving task than
driver assistant system such as lane change assist, the lane
change function of autonomous driving system requires more
accurate and predictive lane change decision to secure the
preparation time to match the ego vehicle’s position and
speed to target lane’s traffic flow before performing the lane
change. Therefore, the proposed algorithm in this study can
be applicable to the autonomous driving system regardless
of the level. However, it is more effective for a higher-
level autonomous system, which should perform skillful
lane changes to improve the driver and traffic participants’
acceptance of autonomous driving. Therefore, the proposed
algorithm is trained using driving data collected by the envi-
ronment sensors on the AV and designed to predict the lane
change timing based on the observation of driving conditions.
The performance of the predicted lane change decision algo-
rithm is validated by the driving data-based analysis.

II. RELATED WORKS
Decision-making by AVs should increase the acceptance
of autonomous driving by drivers and traffic participants.
Researchers have introduced various approaches to design
the decision-making algorithm for lane change based onmea-
surements from the environment sensors and communication,
such as Vehicle to Vehicle (V2V) or Vehicle to Infrastructure
(V2I) [5]. The previous studies for lane change decision-
making can be classified into three categories: (1) rule-based,
(2) model-based, and (3) learning-based approaches.

Various rules have been proposed to design lane change
decision algorithms. Generally, clearance and relative veloc-
ity with a preceding vehicle and side lane targets have been
used frequently to configure the rules for lane change deci-
sions. Various methods have been used to design improved
rules. The mixed logical dynamical system modeling was
introduced to combine logical rules and physical laws [6].
In this study, safety constraints were considered as linear
inequalities. The utility function to evaluate the lane change
possibility has been defined based on the average travel
time, average time gap density, and remaining travel time
of the surrounding vehicles [7]. In addition, game theory
is utilized in lane change decisions with a pay-off matrix,
which divides the longitudinal motion into acceleration and
deceleration [8]. To quantify the lane change desire, incen-
tives for speed, route, and keeping right were evaluated by
integrating with an Intelligent Driver Model (IDM), and the
lane change decision was made based on the incentives [9].
An approach was introduced to subdivide lane changes and
set rules. Lane change behaviors were categorized into five
cases, and the lateral displacement of an AV for each case
is approximated as a 5th order polynomial. A lane change
decision was made by comparing the polynomial and the
physical threshold of the lane change maneuver [10], [11].
Furthermore, to consider the side lane vehicle inside the blind
spots, V2V communication was utilized in the lane changing
decision algorithm [12].

For model-based approaches, the driving characteristics of
human drivers have been modeled to define the reference
model for lane change decisions. Initially, a lane change
model based on a gap acceptance was proposed, and the
forced merging model was used for traffic jam situations
where acceptable gaps are hard to be found [13]. Similarly,
a gap acceptance model with the likelihood function of lane
changing actions was used to model the execution of lane
changes [14]. To respond to driving situations that are diffi-
cult to distinguish with Boolean logic, the fuzzy rule-based
lane changing decision model was introduced. A simple
binary decision was designed based on a fuzzy interface
system [15]. More complex fuzzy rules considering the space
gap with front and side lane targets and average speed in the
current lane were proposed to cover the lane changing to a
slower and faster lane [16]. Furthermore, an adaptive model
was proposed to reflect the different driving characteristics
of drivers. A Gaussian mixture model was used to adjust
the parameters of the sinusoidal lane change model, the time
needed to complete the lane change [17]. Stochastic model
predictive control was used to consider the uncertainty of the
predicted time-to-collision and safetydistance with surround-
ing targets into the lane change decision [18].

With the development of processors, learning-based
approaches have been utilized for lane change decision prob-
lems. Because the lane change decision can be considered as
a binary classification problem, the Support Vector Machine
(SVM) algorithm was trained to learn whether to maintain
lane-keeping or start a lane change [19]. To enhance the

144986 VOLUME 9, 2021



Y. Jeong: Predictive Lane Change Decision Making Using Bi-LSTM

performance of the SVM, Bayesian parameters optimization
was adopted to SVM [20]. Bayes classifier and decision
trees were combined to increase the decision accuracy using
a majority voting principle [21]. To consider the temporal
dependency of the vehicle behavior and traffic situation,
a dynamic Bayesian network was introduced to the situation
assessment for the lane change. This network estimated the
beliefs about the driving situations [22]. Random decision
forest is also utilized to estimate the probabilities of lane
following, left lane change, and right lane change [23], [24].
However, driving data collected by sensors have noise, and
some information is not measurable. To compensate for this
problem, a partially observable Markov decision process was
used for lane change decision-making in urban traffic [25].
An end-to-end learning approach was utilized to model the
relationships between the rear-side view images and the driv-
ing situations, which were classified as blocked, free, and
undefined [26].

Based on the advance of a simulation environment
for autonomous driving, the Reinforcement Learning (RL)
method has been introduced to design the decision-making
algorithm without labeled data. Multi-kernels least-squares
policy iteration was used to reduce the parameter complex-
ity of the lane change problem [27]. A Deep Q-learning
algorithm was also used to design the lane change decision
algorithm. The Deep Q Network (DQN) with real-time val-
idation was designed based on the assumption that the ego
vehicle states are fully observable [28]. This approach was
adopted to solve the lane change decision for a truck-trailer
combination [29]. In addition, DQN combined with the rule-
based constraints was applied to integrate high-level decision-
making and low-level trajectory generation [30]. Moreover,
the Q-making technique was applied to DQN to integrate
high-level policy and low-level control by forcing the agent to
explore a subspace of Q-values [31]. An integrated approach
between the RL-based lateral controller and IDM-based lon-
gitudinal controller was proposed. However, this approach
was initiated based on the results of a gap-selection module,
which was frequently used to define the lane change decision
rule [32].

FIGURE 1. Overall architecture of the proposed lane change decision
algorithm.

According to a careful review of the literature, various
approaches have been proposed to develop a decision-making
algorithm for lane-change maneuvers. Many studies have
formulated lane change decision-making as a binary classi-
fication problem [7], [9], [10], [12], [15], [16], [18], [21],
[24], [25]. This means that the target direction of the lane

change is already determined by the global path planning or
road structure. To cover the various driving situations, the
maneuver candidates increased [6], [8], [11], [13], [14], [17],
[22], [24], [26]–[32], and probabilistic concepts have been
introduced [14], [17], [18], [21]–[23], [25]. Some studies
used the Next-Generation Simulation (NGSIM) datasets to
train and validate the learning-based approaches [21], [24].
Because NGSIM datasets were generated from the images
from the camera installed in the infrastructure, the character-
istics of the measured target states and those of the datasets
are different. Therefore, the algorithm based on the exter-
nal datasets might be challenging to implement AVs. When
learning is carried out using a traffic simulator, the perfor-
mance of the developed algorithm depends on the degree of
simulation of the real world. In addition, previous studies
have focused on lane change decisions at the time of the
sensor measurement. The difference between the proposed
algorithm and previous learning-based approaches can be
summarized in three; (1) there is a time difference between
input and output data; (2) The proposed algorithm uses both
surrounding vehicle and road shape information; (3) Inputs
can be obtained from current autonomous vehicles.

III. OVERAL ARCHITECTURE OF THE BI-LSTM BASED
LANE CHANGE DECISION MAKING
The overall architecture of the proposed algorithm with the
input and output is described in Fig. 1. The proposed algo-
rithm uses the target vehicle states and lane measurements
to generate the lane change flag to the motion planner of the
AV. To achieve the objective, the proposed decision algorithm
consists of three sub-modules: (1) data encoder, (2) Bi-LSTM
based RNN, and (3) maneuver decision module. First, the
data encoder accumulates input data from upper modules and
standardizes the input data to generate an input sequence
suitable for the RNN. Second, the RNN with the Bi-LSTM
architecture is used to learn the driver’s characteristics of
the lane change decision. After the training is completed,
the RNN is used to predict the probabilities of lane-keeping
and left and right lane change based on the input sequences
from the data encoder. Finally, the probabilities from theRNN
modules are analyzed by the maneuver decision module to
generate a lane change flag consisting of lane-keeping, left
lane change, and right lane change commands. Then, the
motion planner of the AV decides the desired motion based
on the lane change flag.

IV. DATA COLLECTION
The first step in applying the learning-based methodology
is to collect data appropriate for the target driving scenario.
In this study, the learning and validation of the lane change
decision-making algorithm were conducted using collected
data instead of open-source data, such as NGSIM or Argo-
verse. In other words, it means that all data used in this
study were collected directly. The highway driving data of
the ego vehicle and surrounding targets were collected with
a data collection vehicle, which was the AV. In other words,
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FIGURE 2. Data collection target roads and collected driving trajectories.

training was performed only using measurable information
from the sensors of the AV so that the proposed algorithm
can be directly applicable to the autonomous driving system.
In other words, the target platform of the proposed algorithm
is AV and the data was collected by the manual driving of
AV to reflect the human factor for lane change decision.
In addition, the information of the data collection vehicle
can be acquired synchronously with the sensor measurements
which means that the interaction between the ego vehicle and

the surrounding vehicles can be considered in the training
process of the network. The details of the data collection
process will be described in the following sub-sections.

A. TARGET ROADS
The lane change to the left and right lane should be considered
as a different driving task of autonomous driving because the
possibility of each lane change maneuver is quite different
based on the driving conditions. For example, the average
speed of the left lane is generally higher than the right lane
in countries using the right-hand drive. This means that over-
taking a preceding vehicle can be performed frequently by
changing the lane to the left side. Meanwhile, the lane change
to the right lane could be safer than the left lane because the
velocity of the right lane driving vehicle is generally slower
than the ego vehicle, making it easier to match the velocity
with the targets by deceleration.

Based on these considerations, the driving data were col-
lected on the expressway in Seoul and Gyeonggi-do in
South Korea. Fig. 2 depicts the route of the data collection
road with a satellite map and the global trajectories acquired
by DGPS. The data collection road is a multi-lane road
with three or more lanes connecting Seoul and a satellite
city. Therefore, this section of the expressway has more
traffic and frequent lane changes than in rural areas. The
data collection road in the capital region consists of first a
ring expressway, 2nd the Gyeongin expressway, and finally,
the Seohaean expressway, which are connected with three
junctions, Anhyeon, Iljik, and Jonam.

B. DATA COLLECTION VEHICLE
Data collection was performed with a data collection vehicle,
whichwas configured to develop the autonomous driving sys-
tem. The sensor, processor, and actuator of the data collection
vehicle are summarized in Fig. 3with the sensor Field ofView
(FOV). Themajor perception sensor to detect the surrounding
vehicles is a laser scanner system, which consists of six
ibeo.LUXLiDAR from Ibeo Automotive SystemsGmbH and
a LiDAR processor to cover the 360-degree FOV around the
data collection vehicle. This LIDAR-based object detection
system provides a position, heading, and velocity in the local
coordinate system with class information such as passenger
cars, or truck/buses. The sampling rate and detection range of
the LiDAR is 25 Hz and 100 m. As a front camera, Mobileye
Q3 is used to detect the lane markers in the form of a lateral
offset, heading angle, curvature, and quality level. The lane
detection quality is evaluated from 0 to 3 for each lanemarker.
To accumulate the driving trajectories in the global coordi-
nates, OxTS RT3002 is used as an RTK-DGPS to measure
accurately the latitude, longitude, and altitude with a 0.02 m
accuracy. In GPS shaded sections such as a tunnel, the global
position was estimated using a localization algorithm with a
high-definition digital map, images from the Around View
Monitoring (AVM) camera, and static obstacles detected by
LiDAR.
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FIGURE 3. Configuration of the data collection vehicle.

The measurements from the chassis sensors, such as the
wheel speed, steering wheel angle, and yaw-rate sensors, are
collected using a gateway Electronic Control Unit (ECU)
and Controller Area Network (CAN) to USB interface
device. The collected data from the LiDAR, camera, AVM,
Real-Time Kinematic Differential Global Positioning System
(RTK-DGPS), and chassis sensors are stored in an industrial
PC with a timestamp for each measurement step. A Micro-
Autobox II is used to implement the lower-lever control algo-
rithm to actuate the Motor Driven Power Steering (MDPS)
and Smart Cruise Control (SCC) system, which are deacti-
vated during data collection by manual driving.

C. DATASET GENERATION
The driving data were collected by manually driving the data
collection vehicle on the target road discussed in the pre-
vious sections. Before using the driving data to train the
Bi-LSTM based lane change decision algorithm, it is neces-
sary to convert the driving trajectories to a dataset suitable
for lane change decision problems. Before discussing further,
it is necessary to define the expressions related to the data.
In this study, the accumulated time series array from the
sensor measurements and lane change flags, which is labeled
by offline data processing, is defined as a sequence. The accu-
mulated sensor measurement and lane change flag of specific
length become the input and output sequence, respectively.
Therefore, in learning and evaluation, both input and output
sequences are used. This group of one input sequence and the
corresponding output sequence are defined as a dataset.When
the proposed algorithm is applied to vehicles, lane change

decisions are made using the input sequence received from
the sensors.

As mentioned in Section IV.A, the target road is a multi-
lane expressway with three or more driving lanes. Because
the proposed lane change decision algorithm considers the
left and right lane change as a different maneuver, we selected
the driving data with left and right driving lanes. In addition,
the driving data with a lane quality level of 3 were selected for
clearly defining the criteria for a lane change. However, the
detection quality can fall below 3 in some driving situations
due to poor painting or backlighting occurs. In this case,
High-Definition (HD) map can be the solution to achieve
the redundancy of the lane marking detection. In addition,
if an HD map is not available, the virtual lane marking can
be estimated based on the lateral motion of the ego vehicle
using steering wheel angle, yaw-rate, and lateral acceleration.
These two methods allow the proposed algorithm to maintain
performance when used in the vehicular system. Therefore,
if the proposed algorithm is trained by high-quality lane mea-
surement, it can be applicable to various driving conditions.

The selected position of the ego vehicle and surrounding
vehicles and the lane markers in the local coordinate system
were transformed into the global coordinate system using the
global position from RTK-DGPS. Because the time stamp of
each data sample was assigned during the data collection pro-
cess, the entire trajectories accumulated in a global coordinate
system can be divided by the desired length. In this study, the
observation horizon is defined as the length of the data to be
accumulated for the lane change decisions, and the time until
the future time point at which the lane change is performed
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is defined as the prediction horizon. In other words, the pro-
posed algorithm determines whether to change lanes after the
prediction horizon based on the data during the observation
horizon. The dataset for training and validating the Bi-LSTM
based RNN network is generated by segmenting the vehicle
trajectories, lane makers, and corresponding vehicle states.

From the collected driving data, a total of 20,108 datasets
were generated when applying an observation horizon
of 20 steps and a prediction horizon of 20 steps. In order
to determine the observation and prediction horizon for the
Bi-LSTM based RNN. In this study, 6 candidates of 0.5, 1.0,
1.5, 2.0, 2.5, and 3.0s with a sampling time of 100ms are
used for the observation and prediction horizon, respectively.
A total of 36 combinations of observation and prediction
horizons were compared. Based on the accuracy comparison
of candidates, 20 steps were selected as observation and
prediction horizon in consideration of prediction accuracy,
computational load, and prediction time comprehensively.

The generated datasets are resampled to improve the train-
ing performance because the biased training data cause the
problem of overfitting a specific dataset. After the resam-
pling, the datasets have a similar number of lane-keeping
and left and right lane changes. Eight hundred datasets were
prepared for the lane-keeping maneuver while 400 datasets
were generated for each lane change maneuver, left and right,
respectively. The resampled datasets were divided into 70%
for training, 20% for validation, and 10% for testing. In other
words, 1,120, 320, and 160 datasets were used for training,
validating, and testing the proposed Bi-LSTM based RNN.

V. BI-LSTM BASED LANE CHANGE DECISION
The lane change decision algorithm was designed based on
the RNNwith Bi-LSTM cells. Conventional approaches have
focused on the lane change decision at the current moment
based on the states of the surrounding vehicles. In some stud-
ies, the prediction algorithm for the behavior of the surround-
ing vehicles is introduced to improve the performance of the
situation awareness and lane change decision. However, the
previous studies configured the prediction for the surrounding
vehicles and the lane change decision function separately.
Therefore, a process for integrating the algorithms is required.
Even if the performance of the individual algorithm is devel-
oped, it is difficult to guarantee the performance of the inte-
grated algorithm. This study introduces the Bi-LSTM based
RNN to consider the prediction of the surrounding targets and
the lane change decision simultaneously. The details of the
input feature, output feature, structure, and training process
of the network are presented in the following sections.

A. NETWORK INPUT AND OUTPUT WITH THE DATA
ENCODER
As mentioned in Section IV.B, the input data are acquired
from the LiDAR, front camera, and chassis sensors of the
data collection vehicle. Because the objective of the proposed
algorithm is a maneuvering decision between lane keeping
and lane changing, vehicle states from the LiDAR system are

processed to derive suitable parameters for the lane change
decision. The states of the target vehicle consist of the rela-
tive x position, y position, heading angle, and velocity with
respect to the local coordinate of the data collection vehi-
cle. The local coordinate system is the right-handed coordi-
nate system, which has an origin in the center of the front
bumper, and the x-axis is aligned toward the driving direction.
Therefore, the clearance between the subject vehicle and the
surrounding targets is defined as shown in Fig. 4. When
calculating the clearance, the lane information from the front
camera is considered to compensate for the curvature of the
road.

The surrounding targets are classified into five categories,
Front Center (FC), Front Left (FL), Front Right (FR), Rear
Left (RL), and Rear Right (RR) vehicle shown in Fig 4.
If two or more vehicles are classified in the same categories,
the target vehicle with the smallest clearance is selected to
prevent the increase of computational burden. In other words,
the proposed algorithm only considers the minimum number
of vehicles related to lane change decisions to reduce the
computation time. In addition, the classification of the target
could be changed during the observation horizon, which can
cause misinterpretation of the driving situation. To prevent
this problem, the classification results of each target are
maintained based on the first observation among the histories
of the 20 steps. The clearance and velocity of the selected FC,
FL, FR, RL, and RL vehicles are used as input features for
representing the surrounding vehicles. Because the relative
velocity between the AV and target is the important parameter
for the lane change decisions, the velocity of the ego vehicle is
also utilized as an input feature. In addition, the lateral offset
(c0,L , c0,R) heading angle (c1,L , c1,R), and curvature (c2,L ,
c2,R) of the left and right lane markers are selected as input
features to reflect the road shape in the input sequences.

FIGURE 4. Parameter definition for the input features.

As a result, the input features of the network at each time
are xk , and the input sequence during an observation horizon
is Xk , given by the following equations.

xk =
[
xk,tar xk,ego xk,lane

]T
where

xk,tar = [cFC , vFC , cFL , vFL , cFR, vFR, cRL , vRL , cRR, vRR]k
xk,ego = vx,k
xk,lane = [c0,L , c1,L , c2,L , c0,R, c1,R, c2,R]k (1)

Xk = [xk−h+1, xk−h+2, · · · , xk−2, xk−1, xk ]T (2)
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FIGURE 5. Conceptual diagram of the proposed Bi-LSTM based lane change decision algorithm with input and out features.

In summary, information from the classified targets, ego
vehicle, and lane markers are used as input features shown
in Fig 5, which describes the conceptual diagram of the
proposed network. In this case, the scales of the input features
are different, which degrades the performance of the neu-
ral network training based on the back-propagation method.
The data encoder standardizes the input features so that the
mean µ and standard deviation σ are matched to 0 and 1.
The parameters µi and σi for standardization were derived
from the training datasets and stored for use when testing and
implementing the proposed algorithm. In this study, 17 µi
and σi were determined based on the training dataset. The
standardization is performed as follows:

zi,k =
xi,k − µi
σi

(3)

where xi,k , and zi,k are the input and standardized input of
the n-th input feature at k-th sampling step. µi and σi are the
mean and standard deviation from the training datasets.

The outputs of the Bi-LSTM based RNN are the proba-
bility of Lane-Keeping (LK), Lane Change to Left (LCL),
and Lane Change to Right (LCR), which are denoted as
PLK , PLCL , and PLCR. The output sequences are given by the
following equation.

yk =
[
PLK ,k PLCL,k PLCR,k

]T (4)

Yk =
[
yk+1, yk+2, · · · , yk+p−1, yk+p

]T (5)

Because these probabilities are generated within the pre-
diction horizon, a total of 20 probability sets are obtained.
All these probabilities are considered using the following

equation to determine the lane change flag.

Pn =
20∑
k=1

ea·k · Pn,k (6)

Here, index n means the maneuver candidates such as
LK, LCL, and LCR. The index k is the prediction step
from 1 to 20, and a is the exponential decay rate to give
more weight to future outputs. Because the objective of the
proposed method is deciding the lane change as earlier as
possible, higher weights were assigned for further future
outputs. In addition, the probability of the three maneuvers
in near future is similar because the near future motion of
the vehicle is almost similar to the current state. Therefore,
we have increased the weight in the future outputs to increase
the performance of the predictive lane change decision. The
maneuver with the largest calculated probability is the output
as the final flag of the maneuver decision module.

B. NETWORK STRUCTURE
The conceptual and unrolled diagrams of the Bi-LSTM based
RNN structure are described in Figs. 5 and 6with the observa-
tion horizon h and prediction horizon p. Because the behavior
of the vehicles is one of the temporal dynamic behaviors, the
RNN is a suitable neural network to learn the time-dependent
characteristics and to consider the historical information. The
RNN enables previous outputs to be used as inputs shown in
Fig. 6. The recurrent structure of the RNN reduces the weight
and bias of the neural network. In addition, because RNN
can process an input sequence of any length, the output can
be determined even before all observations have been made.
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FIGURE 6. Unrolled diagram of the proposed Bi-LSTM based lane change
decision algorithm.

It is an important characteristic that the length of the input
sequence is not limited because, unlike images, the number of
detected surrounding vehicles is continuously changing [33].

However, a vanishing or exploding gradient problem often
occurs when we try to capture the long-term dependencies.
This is because a multiplicative gradient can be exponentially
decreasing or increasing with respect to the number of lay-
ers. LSTM is introduced to avoid the problem of vanishing
gradients [34]. Furthermore, not only future states but also
past states in the RNN also have information on the vehicle
behaviors. To utilize the past states and increase the amount
of input information, a bidirectional structure is introduced
to connect the hidden layers of opposite directions shown in
the unrolled diagram of Fig. 6. The updating equations of the
Bi-LSTM can be summarized as follows.

hf ,k = LSTM (xk , hf ,k−1) (7)

hb,k = LSTM (xk , hb,k+1) (8)

yk+p = Wf ,yhf ,k +Wb,yhb,k + by (9)

Here, LSTM(·) means the LSTM update process, which is
described in the Bi-LSTM layer block of Fig. 5. The forward
and backward LSTM layer output is denoted as hf ,k and,
hb,k respectively. Wf ,y, and Wb,y represent the weight of the
forward and backward LSTM layer. by is the bias at the output
layer.

FIGURE 7. Network structure of the proposed Bi-LSTM based lane change
decision algorithm.

An important issue when applying a neural network to a
specific problem is selecting hyperparameters, such as the

number of layers, hidden units, and layer types. The struc-
ture of the proposed RNN is described in Fig. 7, which
is determined by comparing the training accuracies of the
candidates. The proposed Bi-LSTM based RNN consists of a
combination of the Bi-LSTM layer, a fully connected layer,
and the SoftMax layer. Each layer of the RNN is expressed
in a different color, and the number of hidden units in each
layer is shown together.

C. NETWORK TRAINING
The proposed Bi-LSTM based RNNwas trained by the Adam
algorithm, which means adaptive moment estimation [35].
An element-wise moving average of the parameter gradients
mi and their squared values vi are updated as follows.

mi = β1mi−1 + (1− β1)∇E(θi)

vi = β2vi−1 + (1− β2)[∇E(θi)]2 (10)

Here, i is the iteration number of the training, and θi is the
parameter vector. E(θi) is the loss function, and ∇E(θi) is the
gradient of the loss function. β1 is the gradient decay factor,
and β2 is the squared gradient decay factor. In this study,
the value of β1 and β2 is 0.90 and 0.999, respectively. The
network parameter is updated as follows:

θi+1 = θi −
αmi
√
vi + ε

(11)

where an ε of 10−8 is used to avoid the singular case when
vi becomes a too-small value, and α is the learning rate. The
initial value of α is 0.005 with a learning rate drop factor of
0.2 after 10 iterations. Maximum epochs of 100 and a min-
imum batch size of 20 are used to train the proposed neural
network described in Fig. 7. The history of the accuracy and
loss of the training process of the proposed Bi-LSTM based
RNN using training datasets are summarized in Fig. 8. As can
be seen in Fig. 8, the accuracy and loss reach final values of
99.3% and 0.048.

VI. RESULTS
The proposed lane change decision-making algorithm was
evaluated by a driving data-based simulation to investigate the
timing and accuracy of the lane change decision of the pro-
posed algorithm compared with base algorithms. The simula-
tor used in this study was developed based on the MATLAB
environments. A case study was performed in Section VI.A.
Driving data for testing was used to analyze the lane change
decision accuracy in Section VI.B. In this section, three base
algorithms that include both rule-based and learning-based
methods are introduced to compare the performance with the
proposed algorithm. Each base algorithm is named ‘‘Base
#1,’’ ‘‘Base #2,’’ and ‘‘Base #3’’ in this study. Among the
base algorithms, Base #1 and Base #2 are the rule-based
approaches for lane change decisions. Base #1 is a clearance-
based approach and Base #2 uses a new parameter called
safety distance. Base #3 is the learning-based approach based
on the Hidden Markov Model (HMM). Through this, the
predictive lane change decision performance of the proposed
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FIGURE 8. Accuracy and loss history of the network training process.

algorithm is comparedwith the rule-based and learning-based
approaches. Details of each base algorithm will be described
in the following paragraphs.

Base #1 determines the necessity and direction of lane
change using only the current information of the surrounding
vehicles and lane measurement. When the AV follows the FC
target closer than the desired clearance and drives at a lower
velocity than the desired velocity set by the motion planner of
the AV or the driver, Base #1 determines that a lane change is
necessary to drive at the desired velocity. To prevent chatter-
ing between driving modes, a dead zone between lane change
activation and deactivation is introduced. The lane change
decision condition of Base #1 is summarized as follows:

cdes = tgap · vx,ego + cmin (12)

vLC,act = vdes − 10km/h (13)

vLC,deact = vdes − 5km/h (14)

where cdes, tgap, and cmin are the desired clearance, the desired
time gap and minimum clearance. A tgap of 1.4 s and a cmin
of 4 m are used. vLC,act and vLC,deact are the activation and
deactivation velocity criteria.

After a lane change request occurs, the target lane where a
lane change is possible is searched among the left and right
lanes from the left to the right. Because this lane change can
be regarded as overtaking, the possibility of a lane change is
determined first from the left lane. If the time gap with the
front and rear target is larger than 2 s, it is determined that the
lane change to the corresponding direction is possible.

Base #2 uses the concept of safe distance for the lane
change decision [36]. The same lane change activation

condition is used for Base #2. However, Base #2 uses different
conditions for the front and rear target in contrast to Base #1,
which only considers the time gap with the front and rear
target to check the possibility of a lane change. The safe
distance SDLC for the front and rear vehicle is defined as
follows:

SDLC,f = max
[
(vx,ego − vx,f ), 0

]
· tLC,1

+ max
[
vx,ego · tLC,2, cLC

]
(15)

SDLC,r = max
[
(vx,r − vx,ego), 0

]
· tLC,1

+ max
[
vx,r · tLC,2, cLC

]
(16)

where vx,f , and vx,r are the velocity of the side lane vehicle,
such as the FL, FR, RL, and RR vehicle; tLC,1 is the time gap
for the relative velocity between the ego vehicle and the side
lane vehicle; tLC,2 is the time gap for the minimum clearance
with the side lane vehicle, and cLC is the minimum clearance.
Based on the human driving data analysis, a tLC,1, tLC,2 and
cLC of 1.0 s 0.5 s and 12 m, respectively, were used in this
study.

Base #3 is based on the HMM, which is frequently used
to model the decision-making problem with discrete hidden
variables. The same input and output features are used to train
the HMM. Therefore, the driving states, LK, LCL, and LCR,
are defined asXt at time t . The five surrounding vehicle states,
lane measurements, and velocity of ego vehicle are used as
the vector of observations zt at time t . The joint distribution
between the hidden modes m0:t , and the observation o1:t is
written as follows:

P (m0:t , z1:t , u1:t)=P (m0)

t∏
k=1

[P (mk |mk−1) · p (zk , uk |mk)]

(17)

where uk is the driver’s control inputs at time t . In this
study, uk is the steering when angle applied by the driver
when collecting the driving data. P(zk , uk |mk ) is assumed as a
multivariate Gaussian distribution. The parameters of HMM
are learned from the training datasets using the Baum-Welch
algorithm.

Therefore, the most likely driving states given the observa-
tion of driving environments:

Xt = argmax
i∈{LK ,LCL,LCR}

M i∑
j=1

P
(
mt = mi,j|z1:t

)
(18)

where M i is the number of hidden nodes for each driving
states i. The details of the HMM are provided in [37].

A. DRIVING DATA-BASED CASE STUDY
The case study of the left lane change scenario to overtake
the preceding vehicle is described from Figs. 9 to 11. Fig. 9
shows the driving situations with the lane measurement and
the surrounding vehicles at 2.3, 5.1, and 7.1 s instants. The
classified vehicles are marked as different colors in Fig. 9.
First, the data collection vehicle is represented as a black
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FIGURE 9. Snapshots in the left lane change scenario.

FIGURE 10. Dash-cam log in left lane change scenario.

vehicle at the origin of the local coordinate system. The FC,
FL, FR, RL, and RR vehicles are the green, blue, red, yellow,
and purple vehicle with a current velocity and ID number,

respectively. The left and right lane markers are depicted
as a red and blue solid line. The longitudinal velocity (Vx),
longitudinal acceleration (Ax), SteeringWheel Angle (SWA),
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FIGURE 11. Driving data based simulation results.

and yaw rate of the data collection vehicle are shown in the
upper right corner of each figure. The front scene recorded
by the driving record camera of the data collection vehicle
at the same moment as in Fig. 9 is shown in Fig. 10. The
results of the driving data-based simulation are summarized
in Fig. 11. Fig. 11 shows the LC flag, ego vehicle velocity,
SWA, clearance, relative velocity, and lateral offset history.
The color of the clearance and relative velocity plot matches
the vehicle color in Fig. 9.

The proposed case is a situation in which a lane change
must be performed to the left or right lane to overtake the FC
vehicle. In this simulation, the desired velocity of the pro-
posed algorithm, Base #1, and Base #2 was set as 100 km/h,
i.e., 27.8 m/s, which is the speed limit of the data collection
road. As we can see in Figs. 9 and 11, the velocity of the
preceding vehicle is about 20 m/s, which is significantly
lower than the target speed. This low speed of the FC vehicle
is maintained until the ego vehicle crosses the lane shown in
Fig. 9 (c). Therefore, it is necessary to evaluate the possibility

of the lane change to the left and right lanes. Because the
velocity of the right lane vehicles is slower than the current
lane and the left lane vehicles drive at about 30 m/s, the lane
change to the left can be interpreted as reasonable decision
making.

Based on the situation analysis, the results of the lane
change decision-making of the proposed algorithm, Base #1,
and Base #2 are described in Fig. 11 (a). As we can see in
the SWA and lateral offset history, the driver started the lane
change at about 5 s. However, after 2 s, the driver accelerates
the ego vehicle, which leads to a decrease of the clearance
and relative velocity with the FC vehicle. This phenomenon
means that the driver was already performing a lane change at
this point. The proposed algorithm generated the lane change
flag from 2.3 s to 3.1 s and determined that the lane change
to the left lane is possible much earlier than 7.1 s, the time
when the ego vehicle crosses the lane. However, as can be
seen in Fig. 9 (a) and Fig. 10 (a), a safe distance was not
secured in the left lane, so Base #1 and Base #2 judged that
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the lane change is not possible. Base #2 generated the lane
change flag at 5.1 s after the RL vehicle overtook the ego
vehicle and became the FL vehicle. However, Base #1 could
not decide the lane change even when the driver performed
the lane change. This means that the lane change decision
algorithm based on the simple time gap is only applicable
to limited conditions. In the case of Base #2, which used a
safe distance, the lane change was decided. However, Base
#2 could not advance the lane change decision time to the
moment when the driver’s intention occurred. Meanwhile,
Base #3 showed a predictive decision similar to the proposed
algorithm. However, the lane change flag is generated at 2.7 s
to 4.0 s, which was later than the proposed algorithm.

The evaluation results showed an improved lane change
decision performance compared to the base algorithms.
In addition, it can be said that the proposed Bi-LSTM based
RNN approach canmake a lane change decision similar to the
driver, who makes a predictive decision based on the driving
situation. Particularly, the proposed algorithm decided the
lane change before the human driver’s lane change behavior
occurred. In the case study, the proposed algorithm predicted
the lane change 2.7 s earlier than the initiation of lane depar-
ture by the human driver. Meanwhile, Base #1 using the
concept of gap acceptance failed to decide a lane change.
Base #2 based on the safety guarantee distance determined
a lane change at the same moment as the human driver. Base
#3 based on HMM made a predictive lane change decision,
but decisionwas later than the proposed algorithm. Therefore,
it can be verified through this case study that the proposed
algorithm is more effective in predictive decision-making
than rule-based methods and can be determined faster than
HMM,which has beenwidely used for lane change decisions.
This decision-making is possible because Bi-LSTM, where
learning takes place in both forward and reverse directions,
is more effective in predictive decision-making than HMM,
which models probability transitions between hidden states.
In particular, since an RNN has a recurrent structure, better
performance than HMM is secured in predicting a future lane
change.

B. DECISION PERFORMANCE ANALYSIS
The lane change decision performance was analyzed by using
the testing data, which was not used for network training
and validation. The evaluation results of the proposed, Base
#2 and Base #3 algorithms are summarized in Fig. 12. The
accuracy of the lane change decision in advance for 2 seconds
was compared. For Base #3, the analysis was performed both
for the case of predicting the future lane change and deciding
the current lane change. In this analysis, ‘True’ means that
the decision-making of the driver and algorithm match, and
‘False’ means that the decisions of the driver and algorithm
are inconsistent.

As can be seen in Fig. 12 (a), the proposed algorithm
made an accurate decision for the lane change cases except
for 2 cases of the right lane change. Meanwhile, 12 cases of
lane-keeping were determined as a lane change. These false

TABLE 1. Confusion matrix of lane change decision algorithm.

FIGURE 12. Comparison of the lane change decision results with the
human driving data.

TABLE 2. Evaluation results of the performance indicators.

cases occur when the driver keeps the lane even though a lane
change is possible. Because the maneuver decision of the lane
change cases is accurately made, it can be confirmed that the
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proposed algorithm can make a lane change decision 2 s in
advance of the driver’s lane change attempt. However, Base
#2 could not make an accurate decision for the lane change
cases, especially the right lane change shown in Fig. 12 (b).
Therefore, it is difficult to decide 2 s earlier by using the rule-
based method. As shown in Fig. 12 (c), Base #3 performed
well in determining the lane change of the current moment.
Base #3 accurately judged all lane changes except for one
right lane change case. However, as shown in Figure d, Base
#3 showed lower accuracy than the proposed algorithm when
predicting 2 seconds in advance. As the result of the case
study, the accuracy of the decision has been lowered due to
the delay in determining the lane change of Base 3 than the
proposed algorithm. In other words, if the prediction time
was set to 1 second, it is highly likely that the proposed
algorithm and Base #3 produced similar performance. This
can be seen as a result of RNN’s recurrent structure and
BI-LSTM’s forward and backward learning.

To quantify the analysis results, the confusion matrix was
utilized. Because ‘True’ and ‘False’ are defined for the deci-
sion making, the lane change decision making can be con-
sidered as a classification problem for a future maneuver
between lane keeping and lane change. However, the lane-
keeping ‘True’ and lane change ‘True’ cases cause different
results in the vehicle behavior. Therefore, it is difficult to
apply the true false definition of the previous analysis to
a confusion matrix. This means that the confusion matrix
should be modified to reflect the importance of the maneuver
decision. In this study, lane change was considered as condi-
tion positive, and lane-keeping was considered as condition
negative. In this step, the left and right lane changes were
considered as one condition. The modified confusion matrix
is defined as shown in Table 1. The values of True Positive
(TP), True Negative (TN), False Positive (FP), and False
Negative (FN) of the proposed algorithm and Base #3 are
summarized in Table 1 based on the same input datasets,
which were prepared in terms of the predictive lane change
decision.

In the case of the proposed algorithm, an FP and FN
of 12 and 2, respectively, occurred in 160 testing datasets,
which are accurate results, and even the decision making
was performed 2 s earlier. Meanwhile, from the results, Base
#3 had a TP of 63, lower than the results of the proposed
algorithm. To evaluate the results of the lane change decision
making, the recall/True Positive Rate (TPR), False Positive
Rate (FPR), precision, and F1 score F1 were used and defined
as follows.

Recall/TPR =
TP

TP+ FN
(19)

FPR =
FP

TN + FP
(20)

Precision =
TP

TP+ FP
(21)

F1 =
2TP

2TP+ FP+ FN
(22)

The recall, FPR, precision, and F1 of the proposed and
Base #3 are summarized in Table 2. As can be seen in Table 2,
Base #3 for the current lane change decision showed the most
accurate results in all performance metrics. However, in the
predictive lane change, the proposed algorithm shows better
performance than Base #3. Therefore, the proposed algorithm
shows more accurate decision performance in predictive lane
change situations. This means that the proposed predictive
lane change decision algorithm can improve the safety and
the acceptance of autonomous driving by securing extra time
to plan the desired motion of AVs.

VII. CONCLUSION
A predictive lane change decision algorithm using a Bidirec-
tional Long-Short Term Memory (Bi-LSTM) based Recur-
rent Neural Network (RNN) was proposed and evaluated by
simulation with driving data. The collected driving data by
the AV consisted of surrounding target states, lane measure-
ments, and the velocity of the ego vehicle. Before using the
datasets, a data encoder accumulates and standardizes the
input data to make input sequences for the RNN. Then, 1,120,
320, and 160 driving datasets were used to train, validate
and test the Bi-LSTM based RNN to learn the lane change
decision of human drivers. The proposed algorithm predicts
the probabilities for lane keeping, lane change left, and lane
change right. A case study and testing data-based accuracy
analysis were conducted to evaluate the performance of the
proposed decision-making algorithm, and it was compared
with three base algorithms. The evaluation results showed
that the proposed algorithm determined the lane change
moment in advance based on the states of the surrounding
vehicles and the shape of the road. In addition, this study only
used the surrounding vehicles and lane information which is
measurable from the sensor of the autonomous vehicle.

Future works on the predictive lane change decision can be
summarized in four aspects; (1) The first aspect is to analyze
the effect on the motion planning of autonomous driving and
derive an improved lane change algorithm. In other words,
it is necessary to perform a quantitative analysis on how
much the time secured through the predictive decision of
the lane change will improve the safety and driver accep-
tance of the motion planning; (2) The second is the research
on situations, where it is difficult to recognize the shape
of the road with a camera or where more vehicles should
be considered in addition to the five surrounding vehicles
used in this study to improve the robustness of the proposed
algorithm; (3) The third aspect is to extend the coverage of
the proposed algorithm to more complex driving situations.
The target scenario of the predictive decision algorithm can
be expanded to situations such as uncontrolled intersections,
roundabouts, and merge/split road, where complex interac-
tions with surrounding vehicles occur similar to lane changes.
In particular, the improvement of safety is expected when
the proposed approach is applied to the intersection scenarios
where the driving directions of the vehicles are different and it
is difficult to detect objects due to blind spots. (4) Finally, it is

VOLUME 9, 2021 144997



Y. Jeong: Predictive Lane Change Decision Making Using Bi-LSTM

expected that performance can be further improved through
a combination with an attention-aware neural network or a
convolutional neural network.
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