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ABSTRACT Home appliances constitute an interesting source of flexibility for demand response programs.
However, their control and coordination are challenging, since typically a high number of such appliances
has to be aggregated in order to provide a sufficient amount of flexibility. Thus, an efficient and scalable
control approach is required. In a previous work, metaheuristic methods were evaluated for solving a control
problem,which considers the regulation and time shifting of home appliances. The present paper presents two
extensions of this problem, which consider a higher degree of flexibility, and which increase the practical
relevance of the problem. Linear and quadratic formulations of the basic problem and its extensions are
provided, which allow the use ofmathematical programming for their solution. In experiments, the scalability
of the proposed mathematical programming approach is evaluated and the impact of the problem extensions
on the resulting schedules is investigated. The results show that problem instances with up to several thousand
appliances can efficiently be solved and that aggregators can benefit from the additional flexibility considered
in the problem extensions.

INDEX TERMS Demand response, energy management, home appliances, flexibility management, load
shifting, mathematical programming, optimization.

NOMENCLATURE
PARAMETERS
1t Length of a time step.
cAk Remuneration for shifting appliance k ∈ A.
cBk Remuneration for regulating appliance k ∈ B.
cCk Remuneration for shifting appliance k ∈ C .
cDk Remuneration for regulating appliance

k ∈ D.
cDSO. Penalty for deviation of load from load

requested by DSO.
dCk Remuneration for switching mode of

appliance k ∈ C .

The associate editor coordinating the review of this manuscript and

approving it for publication was Tachun Lin .

dDk Remuneration for shifting appliance k ∈ D.

IB,max
k,i. Maximum intensity for i-th step in profile of

appliance k ∈ B.
IB,min
k,i. Minimum intensity for i-th step in profile of

appliance k ∈ B.

IB,pref
k,i. Preferred intensity for i-th step in profile of

appliance k ∈ B.
ID,max
k,i. Maximum intensity for i-th step in profile of

appliance k ∈ D.
ID,min
k,i. Minimum intensity for i-th step in profile of

appliance k ∈ D.

ID,pref
k,i. Preferred intensity for i-th step in profile of

appliance k ∈ D.
MC,max
k Number of modes of appliance k ∈ C .
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NA
k Length of load profile of appliance k ∈ A.

NB
k Length of load profile of appliance k ∈ B.

NC
k,m. Length of load profile of modem of appliance

k ∈ C .
ND
k Length of load profile of appliance k ∈ D.

PAk,i. i-th value in load profile of appliance k ∈ A.
PAk. Load profile of appliance k ∈ A.
PBk,i. i-th value in load profile of appliance k ∈ B.
PBk. Load profile of appliance k ∈ B.
PCk,m,i. i-th value in load profile of mode m of

appliance k ∈ C .
PCk,m. Load profile of mode m of appliance k ∈ C .
PDk,i. i-th value in load profile of appliance k ∈ D.
PDk. Load profile of appliance k ∈ D.
Preqt Load requested by DSO for time step t .
T Number of time steps.
T A,min
k Minimum start time of appliance k ∈ A.
T A,max
k Maximum start time of appliance k ∈ A.

T A,pref
k Preferred start time of appliance k ∈ A.
T Bk Start time of appliance k ∈ B.
TC,max
k Maximum start time of appliance k ∈ C .
TC,min
k Minimum start time of appliance k ∈ C .

TC,pref
k Preferred start time of appliance k ∈ C .
TD,max
k Maximum start time of appliance k ∈ D.
TD,min
k Minimum start time of appliance k ∈ D.

TD,pref
k Preferred start time of appliance k ∈ D.

SETS
A Type-A appliances (shift).
B Type-B appliances (regulate).
C Type-C appliances (shift and operation

mode).
D Type-D appliances (shift and regulate).

VARIABLES
At Load of type-A appliances in time step t .
Bt Load of type-B appliances in time step t .
Ct Load of type-C appliances in time step t .
Dt Load of type-D appliances in time step t .
FAk,t. Flag indicating start of appliance k ∈ A in

time step t .
FCk,m,t. Flag indicating start of appliance k ∈ C in

mode m in time step t .
FDk,t. Flag indicating start of appliance k ∈ D in

time step t .
IB,dev
k,i. Deviation from preferred intensity for

i-th step in profile of appliance k ∈ B.
IBk,i. Intensity for i-th step in profile of appliance

k ∈ B.
ID,dev
k,i. Deviation from preferred intensity for

i-th step in profile of appliance k ∈ D.
IDk,i. Intensity for i-th step in profile of appliance

k ∈ D.

MC
k Operation mode for appliance k ∈ C .

OCk Flag indicating mode switch for appliance
k ∈ C .

Pdevt Deviation from requested load in time step t .
Pt Load in time step t .
Pen Total penalty for deviation from requested

load.
RemA Remuneration for type-A appliances.
RemB Remuneration for type-B appliances.
RemC Remuneration for type-C appliances.
RemD Remuneration for type-D appliances.
SAk Flag indicating shift of appliance k ∈ A.
SCk Flag indicating shift of appliance k ∈ C .
SDk Flag indicating shift of appliance k ∈ D.
T Ak Start time of appliance k ∈ A.
TCk Start time of appliance k ∈ C .
TDk Start time of appliance k ∈ D.

I. INTRODUCTION
The proliferation of distributed energy resources based on
renewable energy is quickly transforming the power grid at
unprecedented rates [1]. This rapid penetration of uncon-
trollable variable energy generation is causing issues to grid
balancing services since the grid inertia is dropping as large
power plants are being displaced, consequently causing grid
operator concerns [2], [3]. The reason lies in the fact that most
of the renewable generation sources do not contribute to the
system inertia due to the electrically decoupling of the gener-
ator from the grid [2], [4]. To achieve a sustainable grid based
on – ideally close to 100% – renewable energy, substantial
measures and changes to system operation are required [4].
Flexibility from the consumer side appears as a promising
avenue to deal with increased levels of renewable energy
in the grid [5], [6]. Beyond the necessary technology to
enable demand-side flexibility, it is also important to engage
consumers to get involved and interested in the grid events.
A pilot study with 1232 participants conducted in Slovenia
and Germany showed promising results within the Flex4Grid
system [5]. The study suggests that the pilot’s participants are
engaged in the proposed system and reduced their demand by
10% on average during peak events. Previously, a study from
the LINEAR (Local Intelligent Networks and Energy Active
Regions) pilot project conducted in Belgium has quantified
the potential flexibility of different residential appliances [7].
The analysis concludes that smart wet appliances can provide
an average increase of 430W per household at midnight and
a maximum decrease of 65W in the evening.

In the present paper, we present an extension of the
work of Lezama et al. [8], who proposed an optimization
model to solve the flexibility procurement problem of a
distribution system operator (DSO). The DSO is looking to
solve grid operation challenges while aggregators can match
the procurement by accumulating the flexibility of their
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customers’ appliances and premises. Two types of appli-
ances are considered: appliances whose operation time can
be shifted and appliances whose energy consumption can
be regulated. Lezama et al. formulated the problem in the
form of a mixed-integer nonlinear programming (MINLP)
model and solved it usingmetaheuristics. In the present paper,
we propose and evaluate the use of an exact mathematical
programming approach. Available exact solvers for MINLP
models are prone to convergence issues. Hence, we con-
vert the original MINLP model into a mixed-integer linear
programming (MILP) model and solve it with an efficient
commercial solver. In numerical experiments, we evaluate
the approach on problem instances with up to 10,000 devices
(compared to 140 devices as originally reported in [8]). The
results show substantial improvements compared to the previ-
ously reported results achieved via metaheuristics. Therefore,
we make two major extensions to the original optimiza-
tion model to make the problem even more challenging and
realistic:
• Extension 1: The original problem does not consider
different operation modes, e.g., eco or express mode,
of appliances. We extend the problem by adding a fur-
ther class of appliances, whose operation modes can be
switched and whose operation times can be shifted.

• Extension 2: A new class of appliances is added, which
allows both, the shift of the operation time and the
regulation of the energy consumption.

These two extensions lead to an increased number of binary
variables (extension 1) and to quadratic terms (extension
2) in the optimization model, resulting in an increased com-
putational burden and complexity compared to the original
problem formulation. Hence, in the numerical experiments,
we also evaluate the scalability of the proposed extensions.
Furthermore, we investigate the impact of the extensions on
the optimization results.

The key contributions of this paper can be summarized as
follows:
• Consideration of (up to 10,000) appliances with DR
capabilities (shifting, mode switching, and real-time
reduction/increase capability) managed by an aggrega-
tor in response to DSO flexibility requests.

• Consideration of detailed consumption profiles
(i.e., baseline profiles) of devices and operation times of
each appliance in the home energy management system
(HEMS).

• An efficient and scalable MILP/mixed integer quadratic
problem (MIQP) optimization model solved using
Gurobi solver, which can handle thousands of
appliances.

• A systematic scalability analysis of the proposed
method, investigating the monetary compensation for
shifting devices using activation schemes (instead of
the volume transacted) and optimizing the operation of
appliances within a day-ahead horizon.

The rest of the paper is organized as follows: Section II
provides an overview to related work. In Section III, the

problem and its extensions are described and corresponding
MILP/MIQP formulations are provided. Section IV describes
the experiments and discusses their results. Finally, Section V
provides a summary and conclusion.

II. STATE-OF-THE-ART ON FLEXIBILITY MANAGEMENT
MODELS
Smart grid technologies are pushing the transformation
of the energy grid towards a more sustainable network,
in which energy flexibility plays a key role to achieve sus-
tainable energy goals [9]. In this context, end-users equipped
with modern information and communication technologies
have been identified as a source of flexibility, taking advan-
tage of the variable consumption patterns of some of their
resources (e.g., loads with demand response (DR) capabili-
ties) that can modify their profiles according to activation sig-
nals from an energy manager. Despite the low flexibility that
single resources can offer to upper levels of the energy chain,
different studies have pointed out that the aggregation of a
considerable number of devices can be sufficient to alleviate
some power grid issues [10]. Under these circumstances, the
role of the aggregator seems to be the solution to gather over-
all flexibility volumes coming from small resources, enabling
in this way the participation of end-users in local market
activities and unlocking the value of their flexibility [11].

Demand response, as a solution to take advantage of
the flexibility of resources, is a well-studied topic usually
targeting resources connected to themedium and high voltage
levels (i.e., big players having industrial loads) [12]–[16].
However, at the lower level, the aggregation and manage-
ment of small resources is still a topic of interest in which
researchers and facilities search for the most efficient way
to take advantage of the high variability and low capac-
ity of flexibility from end-users. Prieto-Castrillo et al. [17]
consider the optimization of social welfare and flexibil-
ity using linear programming from the perspective of an
aggregator that responds to the DSO, but they do not pro-
vide details about the scalability of the approach. Another
work considering the interaction between DSO and aggre-
gators is the one proposed by Lipari et al. [18], in which
the flexibility management of batteries, and controllable
and adjustable heat pumps (HPs) is analyzed in simulation.
This work, however, does not provide actual coordination
of flexible resources inside the house, and the study is
limited to 173 customers that are part of the aggregator’s
portfolio. Similarly, Henríquez et al. [19] proposed a bi-level
formulation for the profit maximization of DR aggregators
and solved it as a MILP problem. The authors reported
optimization times of around 1400 seconds for the base
case, reducing such times down to 90 seconds when a
single contract and 10 imbalance scenarios are considered.
However, the actual number of devices controlled by the
aggregators is not explicitly provided, so the scalability of
the approach is difficult to assess. The authors conclude
that the number of binary variables used to model DR
contracts scales with the number of contracts, generators,
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buses, lines, and scenarios and recommend scenario
reduction techniques to achieve acceptable computational
times. Müller and Jansen [20] also consider the optimization
of HPs by an aggregator, but from a large-scale demonstrator
perspective. They provide results of experimental simulations
considering 5 minutes granularity; however, despite calling it
large-scale, only 300 devices with DR capabilities are consid-
ered in this study. A work that considers a more diverse set of
devices (i.e., combined heat and power (CHP), auxiliary boil-
ers (AB), PV, absorption chiller (AChil), HPs, batteries, and
thermal energy storage) is presented by Di Somma et al. [21].
The maximization of aggregators’ profits is achieved using
clusters of local energy and the optimization times are kept
within 25 minutes using a stochastic MILP approach. A more
recent study presented by Olivella-Rosell et al. [22] proposed
a model for the optimization of PV-battery systems using
MILP. The problem is also solved using a decomposition
approach (based on the alternating direction method of mul-
tipliers (ADMM)) that can provide solutions 5 to 12 times
faster than the centralized approach. However, only 100 pro-
sumers were considered in this study, so the scalability of
the approach managing a larger number of devices was not
assessed. A similar study for the optimization of PV-battery
systems was introduced by Lezama et al. [23]. This study
presents a scalability analysis, increasing the number of
customers equipped with PV-battery systems to up to 10,000.
The problem is solved using MILP/CPLEX and optimization
times varied from 3.5 to 127 minutes depending on the
devices considered in the optimization. Some other works
have also explored the use of metaheuristics to leverage the
computational burden that these types of large-scale opti-
mization problems present [8], [24]–[26]. Recently, advanced
metaheuristics such as the quadratic particle swarm optimiza-
tion [27], or the enhanced leader particle swarm optimiza-
tion [28] were proposed to tackle the optimal scheduling
of appliances in smart homes, managing shiftable devices.
Despite promising results, the case studies consider only
up to 264 variables and 10 appliances, respectively, which
cannot be considered a large-scale complex problem. More-
over, there is no discussion about running times or optimal-
ity guarantees, which undermines the applicability of such
approaches under more realistic scenarios. In [29], a new
bi-trajectory metaheuristic is proposed to solve exactly the
same problem as the one proposed in [8]. While an improve-
ment of up 24% comparedwith the results published in [8] are
achieved, again, no scalability analysis or optimality guaran-
tees are provided. It is worth saying that metaheuristics have
the potential to become an alternative optimization method
when dealing with complex mathematical problems in the
new paradigm of power systems. However, such methods
still present as a main drawback an inability of guaranteeing
optimality, which hampers their acceptance and application
in real-world scenarios. Moreover, metaheuristic methods are
usually tailored for a specific application (taking advantage
of expert knowledge and tailored techniques), and despite
their effectiveness in solving particular complex problems,

their application to general mathematical models is limited.
As these limitations are overcome, metaheuristic optimiza-
tion can find its true value as an alternative method to solve
complex problems in the energy domain. As can be seen from
the literature review, many works focus on the development
of optimization models and solution methods that can handle
a considerable number of devices in acceptable optimization
times. Scalability is a critical aspect of such models since
the aggregator needs to guarantee access to a considerable
volume of flexibility coming from hundreds or thousand of
devices to unlock their value. For instance, in [30], direct
load control of appliances is used to solve a bilevel MILP
formulation using Dantzig–Wolfe decomposition. Thanks to
reducing the bilevel formulation to a single-level problem
and using a distributed approach, the method can handle
up to 10,000 users, compared to only 500 users without
decomposition. In fact, some studies such as the one pre-
sented by Salgado et al. [31] are already in the phase of
demonstration, implementing optimization models on, for
instance, Raspberry processors, to manage the flexibility of
resources. The work in [31] actually uses a two-stage MILP
approach to minimize the demand deviations of devices such
as thermal appliances, storage systems, and loads. Despite
showcasing the practicality of MILP formulations to address
such optimization problems, the demonstration only consid-
ers 4 different houses with 7 to 13 appliances, exposing the
lack of more efficient optimization methods to handle a more
considerable (and useful) number of devices. Table 1 summa-
rizes the related works, highlighting their main characteristics
and positioning our proposal. Considering the literature, our
paper proposes a MILP/MIQP mathematical model for an
aggregator that gathers the flexibility coming from residential
end-users to match DSO/BRP flexibility requests consider-
ing a day-ahead optimization horizon. Through an efficient
model, in contrast with [8] (that considers a MINLP model),
we are able to handle thousands of devices in acceptable
optimization times and with low optimization gaps.

FIGURE 1. System overview.

III. PROBLEM DESCRIPTION
We assume a setting as illustrated in Figure 1. Different
appliances of multiple households are under the control of
an aggregator, who provides demand response capacities to a
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TABLE 1. Summary of the state-of-the-art of flexibility management.

DSO. The owners of the appliances have certain preferences
regarding their operation (start times, load intensities, etc.).
The DSO sends DR signals to the aggregator, requesting

certain electrical loads for multiple time periods in the future.
If the actual load curve resulting from the operation of the
appliances does not match the DSO request, the aggregator
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has to pay a penalty fee. On the other hand, the aggregator
has to remunerate the owners of the appliances if they are
not operated according to the owners’ preferences. Thus, the
aggregator is interested in coordinating the operation of the
appliances to minimize the total cost.

In the following, the resulting scheduling problem is
described more in detail. We first provide a description and a
MILP formulation of the basic problem as considered in [8].
Then, the two extensions of the problem are described and
corresponding MILP/MIQP formulations are provided.

A. BASIC PROBLEM
We assume a time horizon of T time steps of length 1t , each.
An aggregator has access to two sets of appliances: A set A of
appliances of type A, which can be shifted in time and a set B
of appliances of type B, which can be down and up regulated.
Each of these appliances has to be operated exactly once
during the considered time horizon. Each appliance k ∈ A is
associated with a certain load profile PAk = (PAk,1, . . . ,P

A
k,NA

k
)

of length NA
k , where P

A
k,i is the load in kW of the appliance

in the i-th time step of its operation. Furthermore, there is a
time step T A,pref

k for each k ∈ A in which the owner of the
appliance prefers the start of its operation. Analogously, there
is a load profile PBk = (PBk,1, . . . ,P

B
k,NB

k
) and a start time step

T Bk for each appliance k ∈ B. Additionally, there is a preferred
intensity IB,pref

k,i ∈ [0, 1] for each step i in the load profile of
an appliance k ∈ B.

Operating all appliances according to the preferences of
their owners would result in the following load in time step t:

Ppreft =

∑
k∈A

Aprefk,t +
∑
k∈B

Bprefk,t , (1)

where

Aprefk,t =

{
PA
k,t−TA,pref

k +1
, if 0 ≤ t − T A,pref

k < NA
k

0, otherwise
(2)

is the contribution of appliance k ∈ A, and

Bprefk,t =

{
IB,pref
k,t−TBk +1

· PB
k,t−TBk +1

, if 0 ≤ t − T Bk < NB
k

0, otherwise
(3)

is the contribution of appliance k ∈ B.
It is assumed that the aggregator participates in a demand

response program and that for each time step t , the DSO
requests a certain load Preqt . If the actual load Pt in time step t
deviates from the requested load, the aggregator has to pay a
penalty of cDSO Euro per kWh of deviation. Thus, the total
penalty fee over the considered time horizon in Euros can be
computed as:

Pen =
T∑
t=1

cDSO · |Pt − P
req
t | ·1t. (4)

The aggregator can reduce the deviation from the requested
load, and thus the penalty, by shifting the start times T Ak of
each appliance k ∈ Awithin certain limits T A,min

k and T A,max
k .

Appliances, which are flexible in their start times, could be,
for example, washing machines or tumble dryers. If the start
time of appliance k ∈ A is set different from the preferred start
time T A,pref

k , the aggregator has to remunerate the owner of
the appliance by cAk Euro and thus, the total remuneration for
appliances of type A can be computed as

RemA =
∑
k∈A

cAk · S
A
k , (5)

with

SAk =
{
1, if T Ak 6= T A,pref

k
0, otherwise

. (6)

In addition to the start times of type-A appliances, the
aggregator can regulate the intensities IBk,i, i = 1, . . . ,NB

k ,
for appliances k ∈ B within certain limits IB,min

k and IB,max
k .

An appliance, which is flexible in the intensity, could be,
for example, a lighting system. A deviation in the energy
consumption from that resulting from the preferred intensities
has to be remunerated by cBk Euro per kWh of deviation
and the total remuneration for type-B appliances can be
computed as:

RemB =
∑
k∈B

NB
k∑

i=1

cBk · |I
B
k,i − I

B,pref
k,i | · PBk,i ·1t. (7)

The target of the aggregator is to set the start times of
type-A appliances and the intensities of type-B appliances in
order to minimize the total cost, resulting in the following
optimization problem:

min
TAk ,IBk,i

Pen+ RemA + RemB (8)

subject to

(4), (5), (6), (7), (9)

Pt = At + Bt ∀t, (10)

T A,min
k ≤ T Ak ≤ T

A,max
k ∀k ∈ A, (11)

At =
∑

k∈A|TAk ≤t<T
A
k +N

A
k

PA
k,t−TAk +1

∀t, (12)

IB,min
k ≤ IBk,i ≤ I

B,max
k ∀k ∈ B, i = 1, . . . ,NB

k , (13)

Bt =
∑

k∈B|TBk ≤t<T
B
k +N

B
k

IB
k,t−TBk +1

· PB
k,t−TBk +1

∀t.

(14)

The problem formulation (8)–(14) contains several nonlin-
ear terms. However, it is possible to linearize the problem in
order to solve it with a conventional MILP solver, as follows:

min
FAk,t ,I

B
k,i

Pen+ RemA + RemB (15)

subject to

Pen =
T∑
t=1

cDSO · Pdevt ·1t, (16)
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Pt = At + Bt ∀t, (17)

Pdevt ≥ Pt − P
req
t ∀t, (18)

Pdevt ≥ Preqt − Pt ∀t, (19)

FAk,t ∈ {0, 1} ∀k ∈ A, ∀t, (20)

FAk,t = 0 ∀k ∈ A, ∀t 6∈ {TA,min
k , . . . ,T A,max

k }, (21)
T∑
t=1

FAk,t = 1 ∀k ∈ A, (22)

SAk = 1− FA
k,TA,pref

k
∀k ∈ A, (23)

RemA =
∑
k∈A

cAk · S
A
k , (24)

At =
∑
k∈A

t∑
l=max{1,t−NA

k +1}

FAk,l · P
A
k,t−l+1 ∀t, (25)

IB,min
k ≤ IBk,i ≤ I

B,max
k ∀k ∈ B, i = 1, . . . ,NB

k , (26)

IB,dev
k,i ≥ IBk,i − I

B,pref
k,i ∀k ∈ B, i = 1, . . . ,NB

k , (27)

IB,dev
k,i ≥ IB,pref

k,i − IBk,i ∀k ∈ B, i = 1, . . . ,NB
k , (28)

RemB =
∑
k∈B

NB
k∑

i=1

cBk · I
B,dev
k,i PBk,i ·1t, (29)

Bt =
∑

k∈B|TBk ≤t<T
B
k +N

B
k

IB
k,t−TBk +1

· PB
k,t−TBk +1

∀t.

(30)

Binary flags FAk,t are introduced, representing the start
times of type-A appliances: If FAk,t equals one, the operation
of appliance k ∈ A starts in time step t . Constraint (22)
ensures that exactly one start time is set for each appliance
and (21) ensures that the start times are within their corre-
sponding limits. Helper variables Pdevt and IB,dev

k,i are used
in order to linearize the absolute terms in (4) and (7). The
MILP formulation of the basic problem contains |A|·T binary
variables.

B. PROBLEM EXTENSION 1
Appliances like dishwashers or washing machines, often pro-
vide the option to select between different operation modes,
like eco, normal and express mode, resulting in different load
profiles. Thus, in order to make the problem more realistic,
we extend it by appliances of type C, whose start times
can be shifted and whose operation modes can be selected
from different alternatives. Let C denote the set of type-C
appliances. We assume that each appliance k ∈ C provides

MC,max
k operation modes with corresponding load profiles

PCk,1,. . . ,P
C
k,MC,max

k
of different lengths NC

k,1, . . . ,N
C
k,MC,max

k
.

Thus, PCk,m = (PCk,m,1, . . . ,P
C
k,m,NC

k,m
) for each mode m =

1, . . . ,MC,max
k . The aggregator can select the operation mode

MC
k for each appliance k ∈ C and if it differs from the

operation mode MC,pref
k , which is preferred by the owner

of the appliance, a remuneration of dCk Euro has to be paid.

Similar to type-A appliances, the aggregator can also set the
start time TCk of appliance k ∈ C within limits TC,min

k and
TC,max
k and has to remunerate the owner by cCk Euro if it

differs from the preferred start time TC,pref
k .

In order to consider the described extension in the problem
formulation, we extend the objective function (15) to:

min
FAk,t ,I

B
k,i,F

C
k,m,t

Pen+ RemA + RemB + RemC , (31)

change constraint (17) to:

Pt = At + Bt + Ct ∀t, (32)

and add the following constraints:

FCk,m,t ∈{0, 1} ∀k ∈C, ∀t, m=1, . . . ,MC,max
k ,

(33)

FCk,m,t = 0

∀k ∈C, m= 1, . . . ,MC,max
k , ∀t 6∈ {Tmink , . . . ,Tmaxk },

(34)
MC,max
k∑
m=1

T∑
t=1

FCk,m,t = 1 ∀k ∈ C (35)

SCk = 1−
MC,max
k∑
m=1

FC
k,m,TC,pref

k
∀k ∈ C, (36)

OCk = 1−
T∑
t=1

FC
k,MC,pref

k ,t
∀k ∈ C, (37)

RemC = cCk · S
C
k + d

C
k · O

C
k , (38)

Ct =
∑
k∈C

MC,max
k∑
m=1

t∑
l=max{1,t−NC

k,m+1}

FCk,m,l · P
C
k,m,t−l+1 ∀t. (39)

Additional flags FCk,m,t are introduced. If a flag FCk,m,t
equals one, the appliance k ∈ C starts operation in time
step t and in mode m. The variable OCk indicates whether the
operation mode of appliance k ∈ C is set differently from
the preferred mode MC,pref

k . Each appliance k ∈ C adds
T ·MC,max

k binary variables to the MILP problem.

C. PROBLEM EXTENSION 2
As a further extension, we consider appliances, like, for
example, ventilation systems, which can be shifted and regu-
lated at the same time. LetD denote the set of such appliances
of type D and let PDk = (PDk,1, . . . ,P

D
k,ND

k
) be the load profile

of k ∈ D. Each appliance k ∈ D allows to set the start time TDk
within limits TD,min

k and TD,max as well as to set the intensity
IDk,i for each step i of the load profile within limits ID,min

k
and ID,max

k . Remunerations of cDk Euro per kWh and dDk Euro
have to be paid, if the intensities differ from the preferred

intensities ID,pref
k,i and the start time differs from the prefe-

rred start time TD,pref
k , respectively.
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The type-D appliances are considered in the problem
description by further extending the objective function (31)
to

min
FAk,t ,I

B
k,i,F

C
k,m,t ,F

D
k,t ,I

D
k,i

Pen+ RemA + RemB + RemC + RemD,

(40)

extending constraint (32) to

Pt = At + Bt + Ct + Dt∀t, (41)

and adding the following constraints to the problem:

FDk,t ∈ {0, 1} ∀k ∈ D, ∀t, (42)

FDk,t = 0 ∀k ∈ D, ∀t 6∈ {TD,min
k , . . . ,TD,max

k }, (43)
T∑
t=1

FDk,t = 1 ∀k ∈ D, (44)

SDk = 1− FD
k,TD,pref

k
∀k ∈ D, (45)

ID,min
k ≤ IDk,i ≤ I

D,max
k ∀k ∈ D, i = 1, . . . ,ND

k , (46)

ID,dev
k,i ≥ IDk,i − I

D,pref
k,i ∀k ∈ D, i = 1, . . . ,ND

k , (47)

ID,dev
k,i ≥ ID,pref

k,i − IDk,i ∀k ∈ D, i = 1, . . . ,ND
k , (48)

RemD =
∑
k∈D

cDk · I
D,dev
k,i PDk,i ·1t + d

D
k · S

D
k , (49)

Dt =
∑
k∈D

t∑
l=max{1,t−ND

k +1}

FDk,l · I
D
k,t−l+1 · P

D
k,t−l+1 ∀t.

(50)

The constraint (50) contains a product of two decision
variables. Thus, the problem becomes quadratic. It is possible
to linearize the problem, but this requires a lot of additional
binary variables, and initial experiments have shown that
with the used solver (Gurobi), the linearization has a nega-
tive impact on the performance. Hence, we solve the MIQP
directly without linearization.

IV. EXPERIMENTS
A. USE CASE
We generated problem instances for the experiments in a sim-
ilar way as described in [8] in order to make the experimental
results comparable to those reported in [8]: We consider
a time horizon of T = 96 time steps with a length of
1t = 0.25 h (15min), each. As it can be seen from Table 1,
the choice of 15min intervals is in line with related work,
in which typically intervals of 15min or 1 h are assumed.
Furthermore, 15min intervals appear reasonable since bids
on the secondary reserve market typically apply for one or
more blocks of 15min [33]. The load profiles of the appli-
ances are generated based on different base profiles, which
are shown in Figure 2. These profiles are oriented on load
curves reported by Stamminger et al. [34]. Base profile A1_1
is assigned to the first third of type-A appliances, base profile
A2_1 is assigned to the second third of type-A appliances
and A3_1 is assigned to the last third of type-A appliances.

FIGURE 2. Base profiles used in the generation of load profiles of
appliances.

Analogously, base profiles B1, B2, and B3 are assigned to
type-B appliances and operation modes (A1_1,A1_2,A1_3),
(A2_1,A2_2,A2_3), and (A3_1,A3_2,A3_3) are assigned to
type-C appliances. The base profile D1 is assigned to all
type-D appliances. After assigning a base profile to each
appliance, the values in the profiles are varied by adding a
random value between -5% and +5%. For type-A and type-C
appliances, one random values is chosen for each individual
step of the profile and for type-B and type-C appliances, one
random values is chosen for the complete profile.

The (preferred) start times of the appliances are randomly
chosen as follows: With a probability of 10%, a time step
between 1 and 40 is chosen, with a probability of 30%,
a time step between 41 and 56 is chosen, with a probability
of 20%, a time step between 57 and 76 is chosen, and with a
probability of 50%, a time step between 77 and 96 is chosen.
Minimum and maximum start times for type-A, type-C, and
type-D appliances are set by substracting/adding a random
integer value between 0 and 32 from/to the preferred start
times.

The maximum intensities of all type-B and type-D appli-
ances are set to 1 and the minimum intensities are uniformly
sampled from the interval [0.6, 1]. The preferred intensities
are chosen uniformly distributed between the corresponding
minimum and maximum.

The preferred operationmodes of the type-C appliances are
randomly selected from their (three) available modes.

The load requested by the DSO is computed by first com-
puting the base load resulting from operating all appliances
with their preferred settings and then adding a flexibility in
the form of percentage values as shown in Figure 3 to the
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FIGURE 3. Flexibility requested by the DSO in each time step as
percentage of the base load.

TABLE 2. Costs assumed in the experiments. Remuneration costs are
selected randomly in a range of -/+ 30% around the shown values.

base load. The flexibility in the form of percentage load
de-/increases was derived from the absolute values of the
base load and the requested load assumed in [8]. An example
of the base load and the corresponding requested load is
illustrated in Figure 4. The example was generated consid-
ering 100 appliances of each type.

The penalty costs cDSO for the deviation from the requested
load is set to 0.2 Euro per kWh. The remuneration costs for
the different appliances are chosen uniformly random from a
range of -/+ 30% around the values shown in Table 2.

FIGURE 4. An example of the base load and the load requested by
the DSO.

B. EXPERIMENTAL SETTINGS
All experiments are run on a 3.8GHz Intel Core i5-7600K
quad-core CPU with 15.6GB RAM. Version 9.1.0 of the

Gurobi solver is used for the optimizations. If not otherwise
stated, a time limit of 1 h (3600 s) is set per optimization. All
other settings of the solver are left to their default values.
The binary variables of each problem instance are initialized
according to the preferred start times and operating modes.

TABLE 3. Results on the basic problem considering only appliances of
types A and B. For each problem size, the results on five problem
instances are summarized.

C. EXPERIMENTAL RESULTS
In a first experiment, we investigated the scalability of the
MILP approach on the basic problem, considering only appli-
ances of types A and B. We varied the total number of
appliances between 100 and 10,000 assuming that half of the
appliances is of type A and the other half is of type B. For
each problem size, five problem instances were solved. The
results are summarized in Table 3. The columns ‘‘Obj’’ and
‘‘Gap’’ show the average of the resulting objective value and
of the (worst-case) optimality gap, respectively, over the five
problem instances per problem size. The column ‘‘Optimal’’
lists, how many of the five instances were solved to proven
optimality (within the time limit of 3600 s). Furthermore,
in order to allow a better interpretation of the resulting objec-
tive values, the column ‘‘Objpref ’’ shows the objective value
resulting from keeping all integer variables (start times and
operation modes) at their preferred values and optimizing
only the continuous variables (intensities). Fixing the integer
variables results in a purely continuous linear programming
problem, which can be efficiently solved within a few sec-
onds. The shown values of ‘‘Objpref ’’ are again the average
over the five problem instances per problem size.

All five problem instanceswith 100 applianceswere solved
to proven optimality. Out of the five problem instances with
200 appliances, three could be solved to optimality. No prob-
lem instance with 1000 or more appliances was solved to
proven optimality within the time limit of one hour. However,
there is a significant improvement of the objective value com-
pared to Objpref . Furthermore, having a look at the optimality
gaps and keeping in mind that the reported values are only
upper bounds for the actual (unknown) gaps, one can assume
that the quality of the solutions is still acceptable for the
practical application. Thus, we can conclude that the MILP
approach can handle the basic problem with up to several
thousand appliances sufficiently well.

In a second experiment, we investigated the scalability
of the MILP approach on the first extension of the prob-
lem considering only appliances of types B and C. Again,
we varied the problem size from 100 to 10,000 appliances and
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TABLE 4. Results on the first extension of the problem considering only
appliances of types B and C. For each problem size, the results on five
problem instances are summarized.

solved five problem instances per problem size. The results
are summarized in Table 4. The increase of the number of
binary variables compared to the basic problem results in
higher optimality gaps and fewer instances, which are solved
to proven optimality. However, the performance degradation
is limited and the quality of the solutions should be still tol-
erable for most practical applications. Thus, we can conclude
that also for the first problem extension, the MILP approach
scales sufficiently well up to several thousand appliances.

TABLE 5. Results on the second extension of the problem considering
only appliances of types B and D. For each problem size, the results on
five problem instances are summarized.

In a third experiment, we investigated the scaling of the
MIQP approach on the second problem extension. The results
are summarized in Table 5. None of the problem instances
could be solved to proven optimality. The optimality gaps
for problem sizes of 100 and 200 appliances appear tolerable
but for larger problem sizes they are in a range, which is
probably no longer tolerable for practical application. For the
problem instances with 10,000 appliances, the solver was not
even able to improve the binary variables compared to the
start solution since it could not perform the root relaxation
within the time limit of one hour. Hence, the experiments
show that theMIQP approach scales only up to a few hundred
appliances of type D. Larger problems are too hard for a
conventional mathematical programming approach due to the
quadratic constraints.

In a last experiment, we investigated the impact of the prob-
lem extensions on the results.More precisely, we investigated
the impact of allowing operation mode switches for type-C
appliances and of allowing start time shifts for type-D appli-
ances. For this, we solved a problem instance with 100 appli-
ances of each type with four different settings S1 to S4:
• S1 - The original setting with full flexibility of the
appliances.

TABLE 6. Detailed results of optimizations of problem instance
with 100 appliances of each type with different settings S1 to S4.

• S2 - The operation modes of type-C appliances are fixed
to the preferences of the owners.

• S3 - The start times of type-D appliances are fixed to the
preferences of the owners.

• S4 - The operation modes of type-C appliances and
the start times of type-D appliances are fixed to the
preferences of the owners.

With each setting, we ran an optimization with a time limit
of five hours. The details of the results are shown in Table 6.
Shown are the number of shifts of type-A, type-C, and type-D
appliances (ShiftsA, ShiftsC , ShiftsD), the amount of up and
down regulated energy for type-B and type-D appliances
(RegB, RegD), and the number of mode switches of type-C
appliances (SwitchesC ). Furthermore, the total remuneration,
the remunerations per appliance type, the penalty, and the
complete total costs are shown (Remtot , RemA, RemB, RemC ,
RemD, Pen, Obj).
One can see that with all settings, type-C appliances are

shifted more than appliances of other types. The reason
could be that the profiles of type-C appliances are com-
paratively short in certain operation modes, which allows
a better reduction of the load deviation by shifting of the
start time. Comparing the results with settings S1 and S2,
one can see that the missing option to switch the operation
mode of type-C appliances in S2 is mainly compensated
by more shifting and regulation of type-D appliances. The
missing option to shift type-D appliances in S3 is however
compensated by more shifting / switching / regulation of all
appliance types. The increase of the total costs compared
to setting S1 is notably higher with setting S3 than with
setting S2. Fixing the operation modes of type-C appliances
and the start times of type-D appliances in setting S4 results
in an increase of the total costs by about 20% compared to
the setting S1 with full flexibility. Summarizing, one can
say that both the option to switch operation modes and the
option to shift and regulate appliances at the same time, are
beneficial for cost reduction, but that the latter has a higher
impact.
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V. CONCLUSION
We proposed and evaluated mathematical programming for
solving the problem of optimally coordinating the operation
of home appliances with shift and regulation capabili-
ties for the provision of demand response, as introduced
in [8]. We converted the mixed integer nonlinear program-
ming (MINLP) formulation from [8] into a mixed inte-
ger linear programming (MILP) formulation. The MILP
model contains a high number of binary variables. How-
ever, experiments have shown that it can still be efficiently
solved. Problem instances with up to 200 appliances could
be solved to proven optimality within one hour. This is a
notable improvement, compared to the results reported in [8],
where meta-heuristics failed to solve a problem instance with
145 appliances to optimality within around 140 minutes.
It has been further shown that the proposed approach scales
well to even higher numbers of appliances. Although the
approach was not able to solve instances with 1000 to 10,000
appliances to proven optimality within an hour, it yielded
acceptable optimality gaps in a range of around 1 to 7%.
The ability to provide guarantees on the optimality gap is a
further advantage of the proposed exact approach compared
to metaheuristic approaches evaluated in [8]. We proposed
two extensions of the problem formulation, which make the
problem more challenging but also more practically relevant.
The first extension adds appliances to the problem, which
can be shifted in time and whose operation modes can be
switched. The ability to consider this further level of flexi-
bility in the problem comes at the price of an even higher
number of binary variables in the MILP model. However,
the experiments have shown that the negative impact on the
performance is limited. The proposed approach still presents
a good scalability on the extended problem and is able to
yield solutions of acceptable quality for problem instances
with up to 10,000 appliances. The second proposed problem
extension considers appliances, which can be both shifted
and regulated. This second extension induces quadratic terms,
which cannot be efficiently linearized. Hence, amixed integer
quadratic programming (MIQP) formulation is provided for
the second extension. The experiments have shown that the
MIQP problem scales significantly worse than the MILP
problems. However, problem instances with up to a few
hundred appliances can still be efficiently solved. A deeper
investigation of the impact of the problem extensions on the
results has shown that both extensions can yield lower costs
and that especially the second extension is beneficial. The
problem extensions yielded 20% lower costs compared to
the basic problem formulation on the considered use case.
We can finally conclude that compared to the previous study
in [8], we can solve more challenging and more practically
relevant problems more efficiently but that the scalability
on the second problem extension remains an open issue.
The key transformation that allowed to achieve more effi-
ciency was the linearization of nonlinear terms. This proved
essential to enable scalability of the original model with-
out loss of accuracy while benefiting from quality solutions

of mathematical techniques when compared with heuristics.
In practical applications, this would be highly appreciated.

A practically relevant question, which might be investi-
gated as part of future research, is how uncertainties – for
example, in the load requested by the DSO – can be effi-
ciently considered in the optimization. A common approach
to consider uncertainties in mathematical programming is
stochastic programming. However, this would result in a
notable increase of the runtime. Another topic of future
work could be to investigate the interaction of the aggregator
with the regulation market and to develop bidding strategies,
which maximize the aggregator’s revenue. This typically also
requires to take uncertainties into account.
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