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ABSTRACT Computational approaches have been used for analyzing risk factors together with conventional
mammograms for breast cancer detection. Currently, other screening methods like electro-impedance
mammography are available. Notwithstanding, as far as we know there is not related work evaluating the
role of electrical-conductivity index of the mammary gland as a quantitative factor for early detection
of breast cancer. This paper aims to demonstrate the importance of including breast conductivity index
as a quantitative local risk-factor by analyzing a dataset of Mexican patients from a machine learning
perspective. There are 12 attributes distributed into two groups: electrical-conductivity (3) and medical
records (9). According to the obtained results with unsupervised methods, the performance in terms of
accuracy of using only electrical-conductivity (43%) is better than using all available features (38%) and the
medical records (33%). On the other hand, we identified that SVM achieves higher results in comparison
with other algorithms when only the electrical-features are used. The obtained results demonstrate the
important role of conductivity index as a quantitative local risk-factor for being considered in screening
processes. Besides, it emerges as an important aspect to be included in the development of automatic tools

for experts to perform breast cancer diagnosis.

INDEX TERMS Electro-impedance, conductivity, machine learning, mammography MEIK, risk factor.

I. INTRODUCTION
Cancer is a leading cause of death worldwide, accounting

for nearly 10 million deaths in 2020 [1], Breast Cancer
(henceforth BC) being the most common type of cancer with
2.26 million cases, causing 685,000 deaths, placing it in the
fifth place among different types of cancer.

People suffering from cancer have higher chances of sur-
vival when they have an early detection together with the
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opportunity to access proper medical treatment. The Sus-
tainable Development program from the United Nations
contemplates reducing the rate of premature deaths due
to non-transmissible diseases (including cancer) by 2030.
Such a challenging task could result in saving more than
40 million lives. However, it requires a multi-sectoral effort
for expanding the available resources as well as establishing
political commitments to offer an effective global response
to cancer [2]. Attempting to improve the control of the BC,
the World Health Organization promotes its early detection as
well as the use of screening tools such as clinical breast exam,
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breast self-exam, and X-Ray mammography. The latter being
the most widely used tool around the world.

An alternative to such methods is the Electro-Impedance
Tomography (henceforth denoted as EIT) which has emerged
as anovel procedure. It is less invasive and it does not use any
ionizing radiation, which is one of the biggest drawbacks of
traditional approaches [3]. EIT has its basis on the potential
difference stored in the normal and pathologically altered
tissues. According to the literature, the electrical properties
are different among normal and malignant breast tissues,
setting the stage for cancer detection by means of measuring
electrical properties [4]. Malignant tumors show capacity and
conductance values increased, which results in a decrease in
impedance [5].

Research concerning the assessment of electro-impedance
in physiological systems can be found in [6], [7]. Brown and
Barber [8] laid the foundations of the EIT by developing
systems for retrieving and reconstructing in vivo images.
They also studied the electrical resistivity measurements
for a wide range of tissues [9] and analyzed the potential
clinical applications of this kind of tomography [10]. The
first EIT taken from an upper arm was introduced in [11].
Surowiec et al. [12] studied the dielectric properties of the
carcinoma and surrounding tissue from the breast considering
a frequency range of 20 kHz up to 100 MHz. Exploiting
the algorithm described in [13], some images of conductiv-
ity and electric permissiveness were reconstructed by using
phantoms. Kejariwal et al. [14] published the first results on
breast cancer detection throughout EIT. A medical device
for obtaining 3D images of the conductivity from under the
skin regions was developed by [5]. Wexler and Murugan [15]
proposed a method for detecting breast cancer using high
definition EIT. An algorithm for estimating both the loca-
tion and size of abnormalities in an electrically conductive
medium based on the EIT technique was developed in [16],
[17]. A mammogram scheme of electrical impedance which
describes information regarding standards and pathology on
this topic was proposed by Karpov et al. [18].

With the help of electrical impedance mammograms, it is
possible to study the anatomical structure of the mammary
gland of women of diverse ages at different physiological
periods, even in the one with maximum functional activity,
i.e., the lactation period. Understanding the anatomy of the
mammary gland makes it easier to understand the physiolog-
ical and pathological processes that occur. EIT can be consid-
ered as a functional diagnostic technique that provides data
from the mammary gland, its physiological state, and that it
is sensitive to changes in the electrical conductivity of the tis-
sues. Because of its high sensitivity in the primary diagnosis
of benign tumors, EIT helps to give a dynamic follow-up of
patients with diffuse and nodular types of mastopathy [19].
In this paper, we will refer to the use of EIT medical
images for breast cancer detection as Electrical Impedance
Mammography (henceforth denoted as EIM).

As already mentioned, BC represents a big main concern
in developing countries. Therefore, strategies for promoting
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its early detection are crucial. In this paper, we focused
our attention on analyzing a dataset of Mexican patients.
According to the Mexican’s National Institute of Geography
and Statistics (Instituto Nacional de Estadistica y Geografia -
INEGI), in 2014 such a disease had a wide impact on the
population with an average of 28.75 new cases per 100,000
women over 20 years old. Our main aim is to assess the
role of the conductivity index as a potential risk factor to be
considered for developing automatic systems that could serve
as an aid tool during breast cancer diagnosis. In addition,
we are interested in investigating whether or not a combi-
nation of well-known risk factors (namely anthropometric,
gynecological-obstetric (OB/GYN), inherited-family, and
environmental) with conductivity index could help in such a
prediction. We are addressing automatic breast cancer diag-
nosis by casting it as a machine learning task where the
objective is to determine the corresponding Breast Imag-
ing Electrical Impedance Classification (denoted as BI-EIM)
label as defined by medical specialists. BI-EIM is an anno-
tation schema used by physicians when interpreting an EIM
mammogram. It is parallel to the BI-RADS (Breast Imaging
Reporting and Data System) used by radiologists to catego-
rize X-Ray mammograms. It is important to highlight that we
are not dealing with the task of assigning a positive or neg-
ative label according to whether or not a patient is suffering
from breast cancer, but the obtained result of determining a
suspicious malignancy can be a crucial aid insight for the final
diagnosis.

According to [20], only a few research works in the litera-
ture have used machine learning techniques for dealing with
EIT data. The progress so far achieved has been focused on
two main tasks: i) To distinguish between benign and malign
tumors [21]; and ii) To classify breast tissues according to the
following classes: Carcinoma, Fibro-adenoma, Mastopathy,
Glandular, Connective, and Adipose [22]-[26]. In all these
papers, the authors took advantage of a dataset retrieved
by [27], which is publicly available.! A similar task was per-
formed by [28], where the aim was to discriminate between
tissues extracted from different body parts (among them there
is breast tissue) by using electrical impedance information.
An aspect in common in the literature on this topic is that for
experimental purposes only electrical conductivity informa-
tion is used.

On the other hand, more research on automatic breast can-
cer detection has been done by exploiting other types of data.
Aiming to distinguish between benign and malignant tumors
from histopathological data, in [29] the authors used different
machine learning techniques to achieve classification rates
over 95% in precision terms. More information on the use
of this data for BC can be found in [30]. Ultrasound images
have been also widely used for performing this task, in [31]
the authors present a comprehensive overview of the tech-
niques and methods applied with ultrasound images. X-Ray
mammograms have been, without doubt, the most widely

1 https://archive.ics.uci.edu/ml/datasets/Breast+Tissue
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exploited for performing automatic breast cancer detection.
Recently, novel methods like deep learning have been applied
reaching classification rates above 95% [32]. It is impor-
tant to mention that, there are some works in the literature
where the BI-RADS labels have been used as features during
classification [33]-[35].

In this paper, we are proposing to use well-known risk
factors in addition to electrical impedance information to
determine the BI-EIM value that a medical report could have
during screening inspired by what is done by physicians.
Similar approaches have been addressed by using textual
mammography reports [36]-[38] and also X-Ray mammo-
graphies [39]-[41] but not with the use of EIT data.

The major contributions of this paper are:

1) The results of this paper could be considered as a base-
line for researching on classification of medical reports
in terms of BI-EIM by taking advantage of electrical
conductivity properties. To the best of our knowledge,
there is no previous literature exploiting such kind of
information for determining a BI-EIM value.

ii) We validate the usefulness of considering electrical con-
ductivity data as a risk factor to be considered for breast
cancer screening through a wide set of experiments using
different sets of features.

iii) According to the obtained results, we identified which
machine learning methods are most precise for identify-
ing a label in terms of any suspicious malignancy when
electrical conductivity data is used.

The rest of the paper is organized as follows. Section II
describes the data and the methodology we used for exper-
imental purposes. Sections III and IV present the obtained
results from unsupervised and supervised machine learning
approaches for evaluating the role of breast conductivity
indexes as risk factors, respectively. Finally, in Section V we
point out some conclusions and directions for future work.

Il. MATERIALS AND METHODS

Computational sciences advances have derived in the
development of software for Computer Aided Diagnosis
(henceforth CAD). Such applications have been used as an
aid tool for specialists for detecting different illnesses [42],
[43]. CAD systems have been mainly exploited for detecting
breast cancer in X-Ray mammograms [44]. As already men-
tioned, the main aim of this paper is to apply machine learning
techniques over a dataset comprising recognized risk factors
as well as breast-conductivity indexes obtained from the use
of EIM as a potential risk factor. The idea is to establish the
foundations for the development of an automatic auxiliary
tool for identifying BC when breast conductivity indexes are
obtained from the use of EIM as a screening tool.

A. DATA

The dataset we use for experimental purposes is composed
by a total of 12 attributes: electrical conductivity changes
in the mammary gland tissues [45], denoted as conductivity
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index of the left breast IC;eﬁ,2 conductivity index of the right
breast IC,,'gh,2 and discrepancy of the distribution between
the left and right glands dez. Besides, some well-known
risk factors associated with reproductive, environmental,
and lifestyle aspects are also considered: Patients’ age?,
Body Mass Index (BMI)? [46], Parity’ [47], [48], Age of
menarche® [49], [50], Menopause®, Family history of breast
cancer®, Hormone therapy® [511, Alcohol consumption®, and
smoking3 [52].

Risk factors and breast-conductivity data were retrieved in
the framework of the research project Monofrequency Elec-
trical Impedance Mammography (EIM) Diagnostic System in
Breast Cancer Screening [53], [54]. Such a project consid-
ered a total of 1200 female patients with a strong chance of
having breast cancer. Information concerning the advantages
and disadvantages of performing studies for breast cancer
screening was provided to them. Afterward, they signed a
written informed consent. The patients have not previously
received surgical or pharmacological treatment for breast car-
cinoma; they were subjected to a physical examination before
a pre- or postmenopausal screening mammogram performed
by well-trained personnel according to standard protocols.
The study population includes women with a wide range of
characteristics: pregnant and breastfeeding, with breast pros-
thesis after a mastectomy, or with cosmetic breast surgery.
This procedure was carried out in High Specialty Medical
centers: Unidad Médica de Alta Especialidad No. 1 Bajio
and Unidad Médica de Alta Especialidad No. 48 located in
Leon, Guanajuato, Mexico. Tables 1 and 2 show some general
statistics about some of the aforementioned attributes.

TABLE 1. Average (avg), maximum (max), and minimum (min) values of
the continuous quantitative features.

Age  Dgisi  1Cieyt ICrigne  BMI — Menarche
avg 48 10.16 0.46 0.46 28.87 13
max 80 55.53 0.84 0.90 50.66 21
min 20 1.56 0.09 0.11 10.8 8

TABLE 2. Distribution of the qualitative nominal features. Each of them
was recorded as the answer to a dichotomous question (YES/NO).

Parity MenopauseHormone Family history of  Alcohol con- Smoking
Therapy breast cancer sumption
Yes 1101 562 450 195% 126 143
No 184 633 745 1000 1069 1052

*A total of 104 cases reported having such antecedent from her mother,
grandmother or sister, while the remaining mentioned another
familiar member.

An EIM was done for each patient, allowing us to
obtain the three values related to the breast conductivity
indexes. Besides, an additional X-Ray mammography or
ECO Doppler was also performed for those patients
older and younger than forty years old, respectively.
When there is any suspicious of malignancy in the
younger patients, a supplementary X-Ray mammography
was done. The EIM was performed by using a computer-
ized electro-impedance mammography equipment denoted as

2The attribute value type is continuous quantitative.
3The attribute value type is qualitative nominal.
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MEIKv.5.6 (0.5 mA, 50 kHz) developed and manufactured by
PKF SIM - Technika.

MEIKYV.5.6 provides visualization of the conductivity of
subsoil areas and it is suitable for conducting clinical
research. This system uses three-dimensional measurement
and reconstruction of conductivity distribution in biological
tissues for clinical diagnosis. It consists of a compact array
of 256 electrodes arranged in a square matrix with sides
of 12 cm collocated in a rigid plane. Besides, the system
includes an output multiplexer that serves as the connection
with the electrodes array for providing an alternating current.
The electrodes’ array is connected to a potential difference
measuring unit through an input multiplexer. Remote elec-
trodes are attached to the extremities of the patient. Further
details on the configuration of the device can be found in [5].
During the screening, the electrodes array is pressed against
the breast. This allows for an increasing of the number of
electrodes in contact and a decreasing of the thickness of the
tissue to be measured. Figure 1 shows how the device is used
for reconstructing and visualization of the resulting conduc-
tivity distribution as a stack of tomographic images. For what
concerns the data we used for experimental purposes, details
on the screening process can be found in [53].

Device  Slice1... Slice 7

FIGURE 1. a) Physical configuration of the system and measuring
procedure: 1—plane with 256 electrodes, 2—remote electrodes. b) 3D
imaging planes [5].

The conductivity index (IC) is a quantitative feature of
the breast structure received during an electric impedance
scanning. It is measured in terms of siemens per meter (S/m).
The ion concentration varies depending on the composition
of the cellular elements in the breast. Acinar-ductal type of
breast structure shows a low IC since it contains a large
number of cellular elements with a high ions’ concentration.
Conversely, a high IC and low ions’ concentration is observed
in a breast with a large number of fat lobules and connective
tissues (amorphous structure) [55].

Regarding the electrical impedance information, the
dataset previously described was captured in terms of
mono-frequency electrical impedance mammography [53]
while in the state-of-the-art other settings have been used for
data collection: electrical impedance spectroscopy [22], [23],
tetrapolar impedance measurement [21], and multi-frequency
electrical impedance [24], [28].

The dataset was manually annotated by medical special-
ists with a correspondent BI-EIM* [56] value assigned after

4http://Www.onkocet.eu/download/MEIKUserManual.pdf
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interpreting each EIM. Table 3 shows the EIM scale and its
correspondent BI-EIM category used for labeling the dataset.

TABLE 3. EIM categories used for dataset labeling.

Scale EIM | BI-EIM categories

0-1 BI-EIM; lesion is not defined
BI-EIM32 benign tumors—routine mammography
BI-EIM3 probably benign findings
BI-EIM4 suspicious abnormality—biopsy
BI-EIM5  highly  suggestive  of
nancy—treatment/biopsy

(O SOV )

malig-

The distribution of BI-EIM values among the dataset is
shown in Figure 2. It is important to mention that a subset of
5 cases were excluded from the 1200 patients due to the lack
of or incomplete data. Therefore, in the following sections,
we are considering only a total of 1195 cases.

BLEIM,

63.8 %

763 Insts

BL-EIM,
3.9 %

6 Instances

BLEIM;
0.3 %

4 Instances

BIL-EIM;

210 Ins
FIGURE 2. BI-EIM distribution in the dataset.

Figure 3 shows an histogram regarding the conductivity
index values from the dataset. The /Cj; shows a mean of
(0.460 £ 0.132) with 0.84 and 0.09 as maximum and mini-
mum values. For the ICy;gp,, the values are (0.461 £ 0.133),
0.9 and 0.11, for the mean, maximum, and minimum values,
respectively.

B. PROPOSED METHOD
We are interested in analyzing the performance of automatic
methods in terms of how many instances could be cor-
rectly identified against the labels determined by a specialist.
In order to analyze the dataset previously described,
we applied both unsupervised and supervised machine learn-
ing algorithms. For assessing the performance of such meth-
ods, standard metrics from classification tasks were used.
Under an unsupervised approach, the aim is to study
how the patients are clustered according to the different
groups of features used. We hypothesize that the similar-
ities between the patients being diagnosed with the same
BI-EIM value could help for grouping them. On the other
hand, the supervised learning approach has been used for
developing models able to predict the corresponding BI-EIM
value that a given patient has, considering different sets of
features for training purposes. Experiments were carried out
using different classification approaches by taking advan-
tage of a set of well-known classifiers. For both approaches,
we used Scikit-learn [57] implementation for all the machine
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FIGURE 3. Conductivity index histogram for left and right breast in the
dataset.

learning algorithms. Different experimental settings were
assessed. In all the experiments, we first use a subset includ-
ing only data coming from electrical impedance, i.e., IC,
ICyignt, and dgis; (henceforth the experiments involving only
these features are denoted as ElecFts); then, the remaining
nine attributes regarding risk factors are exploited (denoted
as RiskFts); and finally, both groups of features are merged
in to a single one (from now on it such experiments are
denoted as AllFts). In the following sections, we describe
each experiment carried out in more detail as well as the
obtained results.

IIl. UNSUPERVISED ANALYSIS
For experimental purposes, two types of settings were eval-
uated first considering the data with its original values and
also after applying normalization data techniques (namely
StandarScaler (removing the mean and scaling to unit vari-
ance), MinMax (scaling in a range between zero and one),
and MaxAbsScaler (scaling each feature by its maximum
absolute value)) aiming to standardize the attributes we have,
taking into account that, as they come from different aspects
their values have diverse scales. Two different centroids ini-
tialization methods were used: k-means++ and k-random.
The number of clusters (n_clusters) to generate was set to 4.
Given the fact that there are only a few instances in BI-EIMj5,
we decided to only consider four clusters to be done by
merging together BI-EIMy and BI-EIMs. Default parameters
settings were used. Table 4 shows the obtained results over the
original data. The outcomes after applying the normalization
data techniques with both sets of features show no significant
differences or improvements with respect to the original data,
therefore, we decided not to include them in the manuscript.
The distribution of the clusters is practically equal for both
algorithms with each feature set. Considering the ElecFts,
the cluster number 2 has the highest amount of instances.
However, more than 20% of the cases with BI-EIM» were not
included in this group by both algorithms. Instead, it appears
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TABLE 4. Obtained clusters distribution applying k-means++ and
k-random using electrical-conductivity features, all available features and

only risk features.

ElecFts AllFts RiskFts
BI- Original | K-m K-r K-m K-r K-m K-r
EIM
1 210 427 427 322 323 298 301
17.57%| 35.73% 35.73%| 26.95% 27.03%| 24.94% 25.19%
2 763 504 504 447 463 415 414
63.85%| 42.18% 42.18%| 37.41% 38.74%| 34.73% 34.64%
3 172 214 213 231 230 245 243
14.29%| 17.91% 17.82%| 19.33% 19.25%| 20.50% 20.33%
4 46 50 51 195 179 237 237
3.85% 1.18% 1.27% 16.32% 14.98%| 19.83% 19.83%
5 4
0.33%

that these instances were included in cluster number 1.
Finally, in cluster 3 there are around 3% of instances placed
in the wrong group. For what concerns to RiskF'ts and AllFts,
both configurations seem to have a similar performance con-
cerning clusters 1 and 3, but not for clusters 2 and 4. With
AllFts, while the k-means++ implementation assigns more
instances to cluster 4, the k-random does to the cluster 1. It is
interesting to note that, unlike using only electrical conductiv-
ity information where there is a notable skewed distribution
towards cluster 2, in these cases the samples are a little bit
more disseminated among the clusters, being the cluster 2 the
one having the highest number of instances.

Figure 4 shows a schematic representation of the instances
according to its BI-EIM value with each group of features as
well as how they were distributed in the clusters. As it can
be observed, the instances are highly overlapped making the
clustering very challenging. In the ElectFts and AllFts it is
possible to note some trends, like most of the instances in
BI-EIMy have high values of Dy (being the x-axis in the
ElectF'ts and y-axis in AllFts); in this regard, there is a salient
instance of BI-EIMs having the highest value of the same
attribute. Therefore, the attribute providing such separation is
in the ElectFts set. Similarly, it is also possible to note a group
composed by instances in BI-EIM3. For what concerns to the
BI-EIM; and BI-EIM,, the instances are very close between
them. Considering the RiskFts is even harder to distinguish
groups of instances belonging to the same class. With this
group of features all the instances are more dispersed.

1) COMPARING CLUSTERING RESULTS

We further analyze how many instances were correctly
assigned to its corresponding BI-EIM value. Table 5 shows
the obtained results when the three subsets of features were
used for generating the clusters. The first two columns show
the Original distribution of instances according to the golden
labels. Then, the samples’ distribution when using each ver-
sion of the k-means are shown for each set of features.
The only electrical-based features showed a higher accuracy
than using the other subsets. A total of 516 instances were
correctly clustered, which represents the 43% of the total
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FIGURE 4. Schematic representation of the generated clusters with each group of features. In the upper side the instances with its corresponding BI-EIM

value are plotted.

amount of data. The ElecFts have a better performance for
the BI-EIM;, BI-EIM;, and BI-EIM3, while on the con-
trary, by using AllFts there are a greater amount of correctly
assigned instances in the BI-EIMy4 and BI-EIMs. As it can
be observed, when only the RiskFts are used, the amount
of instances correctly clustered is lower than with the others
groups in particular for BI-EIMy. According to the obtained
results, with the ElecFts almost half of the instances are
correctly clustered, which can be an insight on the usefulness
of using only these attributes for assigning a BI-EIM value
automatically. These results can be also related to the plots
in Figure 4, where the distribution of the instances due to
the feature set used allows us to observe differences among
them that are inline with the outcomes in terms of how many
instances from the same class were grouped together.

IV. SUPERVISED ANALYSIS

Taking advantage of annotated data, we also decided to assess
the possibility of assigning a given BI-EIM value as a classi-
fication task. A set of classifiers® composed by: Naive Bayes
(NB), Decision Tree (DT), Random Forest (RF), k-Nearest
Neighbors (with three values of k namely: 3NN, SNN, and
TNN), Logistic Regression (LR), and Support Vector Machine
(SVM) was used. Some of these algorithms have been already
exploited for addressing classification with electrical conduc-
tivity features: SVM [24], [28] and KNN [21]; apart from that

SDefault parameters of the methods were used, except for the SVM and
LR where a GridSearch strategy was used in each case of obtaining optimal
parameter values over the original data distribution.

152402

TABLE 5. Comparison of the obtained clusters with different subsets of
features. In this table, experiments carried out with K-means++ are on
the K-m column, and the ones with K-random on the K-r.

ElecFts AllFts RiskFts
BI-EIM Original K-m K-r K-m K-r K-m K-r
1 210 82 82 69 69 62 62
2 763 352 352 318 329 286 286
3 172 64 64 26 26 46 45
4 46 16 16 23 22 5 5
5 4
4&5 50 18 18 25 28 6
1195 516 516 438 452 399 398
100% 13.18% 43.18% 36.65% 37.82% 33.39% 33.31%

neural network classifiers [22] and Linear Discriminant Anal-
ysis [23] have been also exploited. The task was addressed by
casting it as a multi-class classification problem, where the
aim is to generate a model for identifying the BI-EIM value
of a given instance.

Similar to the previous Section, we experimented only
with electrical conductivity features, with only the risks
factors and then, using also all the available information.
As golden labels, the BI-EIM values assigned by the experts
were used. For evaluation purposes, we used the Accuracy
and the F-score. All the experiments were performed fol-
lowing a Stratified k-fold strategy, having values of k = 4.
Such a value was fixed according to the number of available
instances of BI-EIMs.

Figure 5 shows the obtained results in Accuracy terms
(defined as in Eq. 1) for each of the classifiers and sets of
features. The highest accuracy was obtained by NB when
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using the ElecFts reaching a rate of 0.641. SVM achieves
0.638 and 0.63 for AllFts and RiskFts, respectively; in both
cases, these are the highest outcomes for these features’ sets.
In most of the cases, when using the RiskFts the lowest
results are achieved. The classifiers performed more poorly
are LR and DT. In the literature, some works addressing the
task of assigning a BI-EIM label report accuracy rates of
0.85 and 0.83, when using textual content (features like a
predefined set of terms in the mammography reports domain
were exploited) [38] and X-Ray mammograms (by using
information regarding Region of interest and masses manu-
ally identifies were used) [40], respectively. Even when the
highest accuracy obtained by us is lower than the outcomes
in related tasks, it is still competitive considering that in the
aforementioned approaches there is more available informa-
tion for experimenting with supervised learning unlike in our
task, where only three features were exploited.
TP+ TN

Accuracy = (1)
TP+ TN + FP + FN

where:
TP = True Positives,
FP = False Positives,

TN = True Negatives
FN = False Negatives

AllFts ElecFts RiskFts

NB
SVM |
LR
DT
3NN |
5NN

7NN

RF |
\
0.0 02 0.4 06

FIGURE 5. Obtained results in terms of accuracy with the different sets of
features.

It is important to mention that, even when Accuracy is a
widely used evaluation metric in related tasks, it has some
drawbacks when the dataset in hand is not balanced, as in our
case. Given the fact that the classifiers’ performance can be
undermined due to the imbalance degree among the classes,
and that in the dataset in hand there is a skewed imbalanced
distribution towards the BI-EIMj5 class, the problem we are
addressing can be considered as a class imbalance problem.
Let us to mention that, for each instance in BI-EIMs, there
are 52, 191, 43, and 12 instances from BI-EIM;, BI-EIM;,
BI-EIM3, and BI-EIM4, respectively. According to [58],
a dataset is imbalanced when the number of examples rep-
resenting one class is much lower than the ones of the other
classes. Imbalanced datasets are pervasive in real life, espe-
cially in the medical field. In fact, imbalanced distribution
has been recognized as an important challenge for medical
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real-world data, particularly for breast cancer detection [59].
In our study case, as in most of the imbalanced problems, the
underrepresented class is the one of interest, we are aimed to
identify patients having a high BI-EIM value, which could be
a potential alert signal of the presence of any anomaly in the
mammary gland.

Most of the classification algorithms, when generating a
criteria for classification, tend to be biased by the number
of samples belonging to a given class (the one with most
samples) provoking a misclassification of the instances in the
minority class. Attempting to deal with these kinds of prob-
lems, research has been done devoted to develop strategies for
addressing such a problem [60]. Broadly speaking, there are
two main techniques: a) Algorithm level approaches, which
involve to adapt learning algorithms for dealing with class
imbalance by the use of different criteria to optimize classifi-
cation rates for minority and majority classes; and, b) Data
level approaches that work at pre-processing stage, which
aim is to modify imbalanced data using different procedures
to provide a balanced or more adequate data distribution by
the use of sampling methods [58]; they are independent of
the learning algorithm used. Such methods randomly dis-
card majority class instances (commonly denoted as Random
Under-Sampling - RUS) and, on the contrary, instances from
the minority class are replicated (denoted as Random Over-
Sampling - ROS). However, there are some drawbacks of such
alternatives. After discarding some instances by RUS, useful
information for building the model can be excluded. While
applying ROS, the probabilities of over-fitting the learning
algorithm increase, then, alternative approaches have been
proposed. In this sense, there is SMOTE (Synthetic Minority
Oversampling Technique) [61] which creates new instances
of the minority class by interpolating them by the use of
different techniques.

Aiming to assess the usefulness of Data level approaches
in the task at hand, we decided to generate a set of corpora
with different imbalanced degrees for experimental pur-
poses. First, an ideal scenario where the classes are fully
balanced, i.e., the same amount instances per class was
generated (denoted as /:7). In the second one, a configura-
tion where the instances from classes BI-EIM;, BI-EIM>,
and BI-EIM3 were under-sampled and the remaining two
were over-sampled (denoted as ConfI). Finally, in the Conf2
the instances in BI-EIM;, BI-EIM,, and BI-EIM3 were left
untouched while the remaining two were also over-sampled.
We exploited the Imbalanced-Learn Python implementation
[62] of RUS and SMOTE (for over-sampling) with the
k-neighbors parameter fixed to 2. Table 6 shows the dis-
tribution per class after applying data-level pre-processing
methods.

Figure 6 shows a schematic representation of the data dis-
tribution we used for experimental purposes considering all
subsets of features. It is important to highlight that, five dif-
ferent subsets were generated for each configuration. Then,
we manually selected one of each trying to choose the one
which ensures that data from minority classes were more
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FIGURE 6. Data distribution of the whole dataset after applying data-level pre-processing with both sets of features.
TABLE 6. Distribution of each class after applying data-level where:
pre-processing techniques. RUS is highlighted with dark-gray color box,
while ROS with light-gray. The original distribution is denoted as Orig. S TP _ TP
precision = ———,  recall = ———
TP + FP TP + FN
All Data . 3
Orig  1:1  Confl Conf2 Table 7 shows a summary of the obtained results with
1| 210 210 the different settings when the NB, SVM, and RF classifiers
é 2| 763 763 were exploited. The results where the classification rate for
= 3| 112 172 ElecFts are higher than the rest are highlighted in bold. It is
4| 46 50 75 92 important to mention that, in order to assess the variability
5 4 50 25 16 of the classifiers, each experiment was performed 30 times,

sparse in the feature space. As it can be observed, in the
original distribution, it is very hard to identify the instances
belonging to BI-EIMs, on the contrary, with the proposed
configurations it is possible to distinguish some of them.

In a similar fashion to the Unsupervised Approach,
we applied the same normalization data techniques over
the original data distribution, once again we observed very
similar results in classification rates terms. Then, only
experiments with the original data together with data-level
techniques for compensating class imbalance were carried
out. As mentioned before, a set of classifiers were used,
however, for the sake of the readability, we filtered out only
the three best performing classifiers considering the results
obtained with the ElecFts subset in F-score terms. In this sec-
ond set of experiments, we decided to use F-score (as defined
in Eq. 2) aiming to evaluate the classifiers’ performance for
each class on its own.

precision X recall
F-score = 2 x

(@)

precision + recall

152404

the results in Table 7 correspond to the obtained average and
standard deviation in each case.

A. DISCUSSION

Considering the Orig distribution with all classifiers, in 8 out
of 15 of the cases the ElecFts reached the highest classifica-
tion rate. BI-EIMj is the class with the highest classification
rates considering all classifiers. It is important to note that,
in the case of BI-EIMy in the three classifiers a better perfor-
mance is observed with the ElecFts. In the case of BI-EIM35,
the performance is remarkably low in all experiments, this can
be due to the low amount of instances belonging to this class.
In the balanced scenario (i.e., 1:1), a drop in the results in
BI-EIM, is observed in all cases, probably because of the loss
of information during undersampling; however, in the exper-
iments with the three sets of features, the results with ElecFts
the highest. For BI-EIM3, the outcomes of using electrical
features with SVM are the highest; besides, it is interesting
to note that, in this class the results are very similar also
among the different distribution settings. A quite comparable
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TABLE 7. Obtained results in F-score terms. Each result is the average of the 30 experiments carried out, below in small font size the standard deviation
is included. As it can be observed, the results across the experiments were very similar in all cases. In this Table, we used the acronyms: AF, EF, and RF for

AlIFts, ElectFts, and RiskFts, respectively.

NB SVM RF
Orig 1:1 Confl Conf2 Orig 1:1 Confl Conf2 Orig 1:1 Confl Conf2
AF 0.0291 0.2699 0.1325 0.0263 0 0.0769 0.3641 0 0.0379 0.3827 0.1411 0.0479
- 4+ 0.0124 + 0.0727 +0.0193 +0.0131 =+ 0.0698 + 0.0003 + 0.0154 + 0.0497 + 0.0207 +0.0184
E EF 0 0.4098 0 0 0.2775 0.4010 0.3504 0.2744 0.1843 0.3561 0.3035 0.1452
o + 0.0217 + 0.0332 +0.0214 + 0.0411 + 0.0105 + 0.0201 + 0.0348 =+ 0.0201 + 0.0234
“ | RF 0.0162 0.2774 0.0942 0.0177 0.0 0.0582 0.3695 0.0 0.0696 0.4118 0.1771 0.0724
+0.0089 +0.0470 +0.0227 40.0103 +0.0558 40.0013 40.0200 40.0541 +0.0156 +0.0183
AF 0.7189 0.2060 0.6268 0.7208 0.7794 0.1541 0 0.7594 0.7737 0.2622 0.67 0.7684
o + 0.0061 + 0.047 + 0.0101 + 0.0087 4+ 0.0000 £ 0.0381 =+ 0.0005 =+ 0.0034 + 0.0420 + 0.0078 + 0.0037
= | EF 0.7866 0.2409 0.6875 0.7731 0.2234 0.1823 0.2137 0.4656 0.7345 0.4393 0.616 0.7461
E +0.0014 + 0.0269 =+ 0.0020 + 0.0014 + 0.0756 =+ 0.0415 + 0.0664 +0.0171 =+ 0.0059 + 0.0425 +0.0125 4+ 0.0058
“ | RF 0.6696 0.2245 0.5874 0.6902 0.7744 0.1557 0.0272 0.7564 0.7454 0.2593 0.6153 0.7346
+0.009 +0.0564 +0.0247 +0.0245 +0.0012 +0.0359 +0.0070 +0.0012 +0.0048 +0.0489 +0.0072 +0.0060
AF 0.2179 0.4370 0.2736 0.2139 0 0.1765 0 0 0.1636 0.3362 0.2713 0.155
) 4+ 0.0192 + 0.0422 + 0.0197 +0.0182 + 0.0207 + 0.0264 + 0.0463 + 0.0255 4+ 0.0203
E EF 0.1958 0.2819 0.2019 0.1844 0.2493 0.2189 0.2606 0.2548 0.1900 0.2871 0.2163 0.1953
o + 0.0142 + 0.0321 +0.0182 + 0.0163 + 0.0155 + 0.0307 =+ 0.0208 + 0.0193 +0.0192 =+ 0.0550 + 0.0272 + 0.0193
“ | RF 0.1013 0.4409 0.1187 0.1025 0 0.1756 0 0 0.0941 0.3401 0.1375 0.0810
+0.0137 +0.0353 +0.0172 +0.0148 +0.0126 +0.0167 40.0389 +0.0222 +0.0196
AF 0.205 0.3853 0.3064 0.3578 0 0.044 0 0.1275 0.1366 0.5474 0.5589 0.6226
< + 0.0376 + 0.0521 =+ 0.0208 + 0.0328 + 0.0364 + 0.0267 + 0.0577 + 0.0432 + 0.0382 + 0.0279
= | EF 0.2682 0.2092 0.2763 0.3934 0.1757 0.1969 0.1496 0.2117 0.1599 0.4864 0.3941 0.4767
E 4+ 0.0309 4+ 0.0343 + 0.0155 + 0.0149 4+ 0.0298 +0.0323 + 0.0208 + 0.0450 =+ 0.0403 + 0.0426 + 0.0374 + 0.0356
“ | RF 0.0339 0.3779 0.1889 0.2626 0.0 0.0443 0.0405 0.1711 0.0515 0.5372 0.3349 0.4224
+0.0217 +0.0451 +0.0330 +0.0367 +0.0353 +0.0202 +0.0360 +0.0326 40.0446 +0.0356 +0.0314
AF 0 0.7172 0.4484 0.2395 0 0.5357 0.0911 0 0 0.9204 0.8776 0.5579
0 + 0.0259 + 0.0396 + 0.0541 +0.0413 + 0.0645 + 0.0160 + 0.0493 4+ 0.0768
E EF 0 0.4843 03117 0.109 0 0.5009 0.3193 0.0522 0 0.705 0.3799 0.2724
- + 0.0242 =+ 0.0531 + 0.0733 + 0.0236 + 0.0346 + 0.0353 + 0.0476 + 0.0592 + 0.0902
“ | RF 0 0.7150 0.4034 0.215 0 0.5557 0.2824 0.1400 0 0.9194 0.8539 0.5254
+0.0333 +0.0496 +0.0391 +0.0501 40.1001 +0.0917 +0.0172 +0.0357 +0.1055

scenario is found for BI-EIMy4. Overall, there is a positive
impact on the classification rate for the rest of the classes,
particularly, we observed the highest differences in BI-EIMs.
In this distribution, when SVM is used as a classifier all but
the BI-EIM5 have better performance with ElecFts.

For what concerns to Conf1, ElecFts with SVM show better
results than using AllFts and RiskFts in all cases except in
BI-EIM;, where the performance is very similar among the
three groups of features. However, it is important to highlight
that the parameters used during the experiments are the same
as in the original distribution, then it seems that such setting
has no impact on the classifier when the ElecFts are used, and
the contrary occurs with the whole set of features. Finally,
in Conf2, where a more realistic distribution was consid-
ered, the positive effect of applying data-level techniques for
class imbalance is particularly remarkable in the three clas-
sifiers on the BI-EIM5, where, the performance of ElecFts
(despite being lower than with AllFts) is still competitive.
Besides, the classifiers’ performance in this configuration
concerning those classes that were left untouched (BI-EIM,
BI-EIM;, and BI-EIM3) is very similar to the one in the
original distribution, there are even cases where there is an
improvement in the obtained results when the ElecFts are
used.

Overall, the classification rates are very low for all classes
except for BI-EIM>, the one with more available instances
for building the classification models. However, given the
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fact that data with conductivity indexes for addressing breast
cancer detection is scarce, the obtained results could be
considered as a starting point for further research on this
topic. Furthermore, the outcomes serve to validate that, com-
paring the results of the features settings, the performance
of ElecFts is still competitive taking into account that such
subset is composed of only three features.

V. CONCLUSION AND FUTURE WORK

The main conclusion is that the electrical-conductivity of
mammary gland was proved to be an effective index to
classify medical records in terms of BI-EIM. Experimental
results summarized in Table 7 shows that this index equals
or surpasses the classification accuracy of the three machine
learning techniques in the four considered configurations;
therefore, it can be considered an alternative to the classifica-
tion based on medical records, with the advantage of reducing
the number of attributes from nine to three. The BI-EIM
supervised classification problem was hard to solve for any
of the considered classifiers since it is strong unbalanced.
Similarly, the results reported in Table 5 indicates that the
electrical-conductivity features improve the accuracy indexes
from 33 to 43% for both unsupervised clustering techniques
(k-means and k-random). These results leave a wide room
for improvements and position our results as a base line of
forthcoming machine learning techniques. The related work
found in literature indicates that the approach is different
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to both the electro-impedance and the clinical record-based
screening methods. To the best of our knowledge this is the
first time the electrical conductivity is evaluated as an index
for the BI-EIM classification problem in a real scenario with
Mexican population. As future work, the EIM data acquisi-
tion will be analyzed to study differences among age cohorts.
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