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ABSTRACT The paper deals with tuning the filtered PID controller applied to third order plants with delay.
This model option is chosen as a representative case where the loop characteristic quasi-polynomial is
of higher order than three. Applying the similarity theory for introducing dimensionless parameterization
a comparative model of third order plant dynamics is obtained. Four dominant poles – from the infinite
spectrum of the control loop – are assigned by means of tuning three controller gains and a filter time
constant where a specific argument increment criterion proves their dominance. The pole prescription
coordinates are parameterized via damping, root and natural frequency ratios optimized in the space of
the introduced similarity numbers according to the IAE criterion with respect to robustness and filtering
constraints. Particularly the natural frequency ratio is a new parameter introduced to tune robustly the
PID together with its filter. For the constrained IAE optimization the response of disturbance rejection is
used as a representative of control loop behavior. In the space of similarity numbers of the plant it is shown
that a limited range of plants is suited to be controlled on the PID control principle and the boundaries of this
range are outlined. Survey maps of optimum controller parameters are presented and a comparative study
on benchmark application example is added.

INDEX TERMS Control design, delay systems, filtering, robustness, similarity theory.

I. INTRODUCTION
In industry the most frequent output driven control is pro-
vided by a PID-type structure controller, even for sys-
tems with significant time delay [1]. There are many PI(D)
tuning rules for the first- or second-order plants with a
delay which is regularly approximated by the Padé or Tay-
lor series [2]–[7]. Predominantly these tunings are based
on ultimate cycle identification, various performance index
minimizations, gain, phase and jitter margin specifications,
magnitude optimum method, pole placement technique or
IMC-like tuning (so-called Lambda tuning), which are partic-
ularly well suited for non-dominant delay processes, except
for the IMC-like tuning, [8], and the dominant pole place-
ment, [9]. The former tuning is suitable for dominant delay
processes assuming safe pole-zero cancellation in the open
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loop [10], in [11] this cancellation is modified to systems
with large time delay and in [12] the IMC-like PID with a
second-order lead-lag filter compensates for the dominant
plant poles and zeros. In [13] the Lambda tuning method is
modified for integrating systems by the polynomial approach.
The latter tuning is also applicable to the dominant delay
processes but assuming no pole-zero cancellation within the
control loop. In [14]–[16] the pole-zero matching method is
applied to inexact dominant pole placement, which is free of
any delay term approximation, and in [17] a universal map
of PID tuning for the second-order processes with dominant
delay is presented.

Generally, in tuning the PI(D) controllers a trade-off
between the robustness and performance is searched, and
moreover a trade-off between the reference tracking and
disturbance rejection performance/robustness is subject to a
controller optimization [18]–[20]. On one hand the robust
PID tuning results in conservative setting at the expense of
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minimization of performance indices like Integral Absolute
Error (IAE), Integral Square Error (ISE) etc., [10]. On the
other hand the PID controller optimized to the disturbance
rejection can be hardly an optimum controller for the refer-
ence tracking. The trade-off tuning is tackled by the model
matching approach to filtered PID design, [21], and in [20]
the disturbance rejection performance with respect to the
reference input level is guaranteed by keeping the so-called
reference to disturbance ratio index as high as possible.
Next, in [22] the proportional gain maximization method
is introduced based on the optimizing the damping ratio
of the controller zeros which resulted circa three quarters.
With this result the control performance is improved without
deteriorating the robustness to model uncertainties. To make
the disturbance rejection and reference tracking mutually
comparable the notion of extreme frequency equivalence is
utilized [19], [23]. The reason of unfavorable disturbance
rejection and reference tracking consists in a pole-zero can-
cellation within the control loop. Hence the tuning methods,
particularly the Lambda tuning, [10], based on the pole-zero
cancellation or methods, like gain and phase margins, [5],
assuming the pole-zero cancellation are potentially inap-
propriate for the (load) disturbance rejection task. Never-
theless, the lambda tuning for given (load) disturbance is
obtainable with effective disturbance rejection [12], [24].
To prevent from dominant pole(s) cancellation in case of the
reference tracking a two-degree-of-freedom control loop is
proposed, [25], or an input prefilter is designed [26]. Mea-
surement noise filter of the second order is designed for miti-
gating abrupt control actions [27] and in [28] the higher-order
noise filters are tuned. In [29] the measurement noise filter
tuning is provided for common PID tuning rules in case of
reduced order plant model. Based on the filter from [27] the
filtered PID control loop is tuned up for the second-order
plant with delay by the dominant four-pole placement in [30].
In practice a filter time constant setting obeys a rule of thumb,
fixing the derivative time constant ratio to the filter time
constant, [8]. As opposed to the rule of thumb, constraining
above mentioned ratio due to the loop cut-off frequency
and the demand on high-frequency control sensitivity the
PID tuning obtains benefits like disturbance rejection capa-
bility, phase margin increase and controller frequency band
extension [31]. On the other hand a priori tuned filter time
constant can contribute to excessive high-frequency control
sensitivity to be avoided in practice.

In practice it is a difficult task to identify higher-order
plant dynamics hence a model order reduction is imposed
on a controller design [24], [32]. In case of higher-order
systems with time delay the dominant pole placement in
conjunction with the D-partition method is presented in [1].
Comparative studies in [33], [34] compares simple PID tun-
ing rules and methods, where a derivative part filter is in
action, provided for higher-order non-oscillating plants or
plants with significant delay. As regards the third-order plants
with delay the tuning rules are developed in analogous way,
[2], that are not frequently applied in literature. One of them

is the IMC-like tuning, [35], considered for the third-order
plants. In studies [36], [37] all the stabilizing PID controller
settings obtained are eligible only to a fixed third-order plant
with delay and these settings do not guarantee satisfactory
control performance in general. In [38] all the stabilizing
PID controllers obtained are extended to more general class
of delay systems and a survey on all the stabilizing PID
controller designs are presented in [39]. Typically, the plants
of the third order are thermal [40], water or wind power
plants, [41] or [42] respectively. From application point of
view the most difficult is to reject loads or disturbances of
plants providing energy conversion, for instance [43], [44].
In [45] a universal adaptive controller design applicable to
the first- through third-order plants is presented. Frequently
the third-order plant model describes the second-order plant
dynamics but with additional, not negligible actuator dynam-
ics, [46], [47]. For higher-order systems the test bench-
mark models can be found in [48]–[50]. The third-order
plants with a delay are apparently present in the industry
and therefore any other order reduction means inappropriate
approximation.

In the paper the universal PID and filter settings are pro-
posed with the aim to get optimum controller gains and
filter time constant with respect to not only the IAE crite-
rion but also to robustness and filtering effect constraints.
Besides the damping and root ratio prescription, these set-
tings are based on finding the ratio between two natural
frequencies prescribed where the greater one is the ultimate
frequency of the plant. The novelty of the dominant pole
placement approach consisting in the frequency ratio pre-
scription brings robust PID and filter settings for the sets of
dynamically similar third-order plants with delay. Without
finding an optimum frequency ratio the four-pole dominance
would be barely guaranteed. Finally, the optimum controller
and filter parameters are mapped to show varying delay
effect.

II. THIRD ORDER PLANT MODEL PARAMETERIZATION
As presented in the Introduction the third-order plants with
delay are commonly identified in the industry. Such plants
are modelled by the following third-order model with delay

c3
d3y(t)
dt3
+c2

d2y(t)
dt2
+c1

dy(t)
dt
+y(t) = Ku(t−υ) (1)

where y (t) and u (t), output and input variables respectively,
are expressed as dimensionless percentage of the sensor and
actuator instrument ranges. The coefficients c1, c2, c3 and the
delay value υ are supposed positive dimensional constants
and K is a nonzero dimensionless steady state gain. From the
plant transfer function

G(s) =
K

M̃ (s)
exp(−sυ), M̃ (s) = c3s3+c2s2+c1s+1 (2)

it follows that the only three poles of the plant are the roots
of the characteristic equation M̃ (s) = 0. Dividing M̃ (s) by c3
the characteristic polynomial can be identified with the root
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factor product form as follows

M (s)

= (s−q1)(s−q2)(s−q3) = M̃ (s)
/
c3

= s3−(q1+q2+q3) s2+(q1q2+q2q3+q1q3) s−q1q2q3 = 0

(3)

The following two stable options of the M (s) roots are
further considered

q1 = −b, q2 = −χ1b, q3 = −χ2b, b > 0, χ1,2 > 0, (4)

q1,2 = (−ξ±jη) ωn, q3 = −χξωn, η =
√
1−ξ2, ωn > 0,

0 < ξ ≤ 1, χ > 0 (5)

where ωn is the natural frequency and ξ is the damping factor
of complex conjugates q1,2. Positive constant b is the absolute
value of real pole q1 and q2,3 = χ1,2q1 are other two distinct
real poles. The special case of double real pole and one single
real pole belongs to option (5) when ξ = 1, and the case of
triple real pole belongs to option (4) with χ1,2 = 1.

For further modification of the plant model the parameter-
ization principle introduced by Vyshnegradskii, [51], is used.
Analogously to [17] the following dimensionless substitution
for Laplace transform variable is introduced

s̄ = s 3
√
c3 (6)

to achieve the characteristic polynomial (3) in the form

M (s̄) == s̄3+
c2
3
√
c23

s̄2+
c1
3
√
c3
s̄+1 = s̄3+

1
λ2

s̄2+
1
λ1
s̄+1 (7)

Instead of three coefficients c1, c2, c3 only two dimension-
less parameters

1
λ1
=

c1
3
√
c3
,

1
λ2
=

c2
3
√
c23

(8)

determine the character of the plant dynamics. Due to their
independence of the time scale of the considered case λ1,
λ2 can serve as similarity numbers of the plant dynamics.
For the types (4) and (5) of plants, relations (8) lead to the
particular relationships distinguished by the discriminant of
cubic equationM (s̄) = 0

D = 4

(
1

λ31

+
1

λ32

)
−

1

λ21λ
2
2

−
18
λ1λ2
+27 (9)

First, for aperiodic plants, i.e. for option (4) when D ≤ 0,
the coefficients in (3) are given by the poles q1,2,3 coordinates
in the following way
1
c3
= χ1χ2b3,

c2
c3
= (1+χ1+χ2) b,

c1
c3
= (χ1+χ2+χ1χ2) b2

(10)

Substitution (6) leads in this case to relation s = s̄b 3
√
χ1χ2

which gives the following form of (8)
1
λ1
=
χ1+χ2+χ1χ2

3
√
χ2
1χ

2
2

,
1
λ2
=

1+χ1+χ2
3
√
χ1χ2

(11)

and the pole option (4) is expressed as q1,2,3 =

q̄1,2,3b 3
√
χ1χ2. The triple real pole, χ1,2 = 1, is encountered

when D = 0 and this case corresponds to the similarity
number option λ1,2 = 1

/
3. For the oscillatory plants, i.e.

for option (5) when D > 0, the coefficients ofM (s) are given
by the poles q1,2,3 coordinates as follows

1
c3
=χξω3

n,
c2
c3
= (χ+2) ξωn,

c1
c3
=

(
2χξ2+1

)
ω2
n (12)

Substitution (6) here results in s̄ωn 3
√
χξ = s and leads to

the coefficients ofM (s̄) determined by the ratios χ , ξ only

1
λ1
=

2χξ2+1
3
√
χ2ξ2

,
1
λ2
=
ξ (χ+2)

3
√
χξ

(13)

The pole option (5) is now expressed by q1,2,3 =

q̄1,2,3ωn 3
√
χξ . In both types of plants parameters λ1, λ2 are

independent of coordinates b and ωn, respectively. In the
case of oscillatory plants similarity numbers λ1, λ2 express
the degree of oscillability, so they are further referred to
as oscillability numbers. Higher values of λ1, λ2 mean less
damped natural oscillation.

Plant (1) is considered as stable and therefore coefficients
c1, c2, c3 are not only positive but are to satisfy the stability
condition, c1c2−c3 > 0, coming from Hurwitz criterion
applied to plant model (2). Expressing the product of two
relations in (8) the similarity numbers satisfy for stable plants
the following condition

c1c2 =
c3
λ1λ2

> c3→ λ1λ2 < 1 (14)

Parameters λ1, λ2 describe only the dynamics given by
the characteristic polynomialM (s) of plant (1). Nevertheless,
it is necessary to be aware of the essential influence of the
delay on the plant dynamic properties in closing the feedback
loop. From substitution (6) the substitution for time variable,
t̄ = t

/
3
√
c3, results. Thus, the delay length is expressed by

the ratio

ϑ =
υ

3
√
c3

(15)

and this delay parameter is further referred to as laggardness
number of the plant. Using the introduced similarity numbers
the plant model (1) is transformed to the form

d3y(t̄)
dt̄3
+

1
λ2

d2y(t̄)
dt̄2
+

1
λ1

dy(t̄)
dt̄
+y(t̄) = Ku(t̄−ϑ) (16)

The advantage of this form of model consists in the prop-
erty that all dynamically similar plants fall into one common
point of the λ1, λ2, ϑ and K parameter space from where
steady-state gain K can be still excluded as shown below.

III. DIMENSIONLESS CONTROL LOOP DESCRIPTION
The third-order plant with delay given by model (1) or (16) is
controlled by the following ideal PID controller

du (t)
dt
= rP

def (t)
dt
+rD

d2ef (t)
dt2

+rI ef (t) (17)
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where ef is the filtered control error. The filtering is pro-
vided by the solution of the following first-order differential
equation

Tf
def (t)
dt
+ef (t) = e (t) (18)

where e = wf−y, wf is the prefiltered reference variable.
Beside the control error filtering the reference variable is
prefiltered to prevent from the excitation of high-frequency
unmodeled dynamics. Then the following second-order dif-
ferential equation is considered

rD
d2wf (t)
dt2

+rP
dwf (t)
dt
+rIwf (t) = rIw (t) (19)

where w is the reference variable in percentage again and
rP > 0, rD > 0, rI > 0. Controller (17) together
with filter (18) corresponds to ideal PID controller in series
with a first order lag that is very frequent for the real con-
troller implementation, see [2]. The real controller is spec-
ified by three gains rP, rD, rI and time constant Tf for
the proportional, derivative, integration actions and filtering
effect, respectively. To transform the controller description
into parameterized form consistent with plant model (16) the
relative time variable t̄ is introduced and (17) is multiplied by
K in the same way as input u on the right-hand side of (16).
Then the following controller description is obtained

K
du
(
t̄
)

dt̄
=
dū
(
t̄
)

dt̄
=ρP

def
(
t̄
)

dt̄
+ρD

d2ef
(
t̄
)

dt̄2
+ρI ef

(
t̄
)
(20)

where the gains are replaced by the dimensionless parameters
as follows

ρP = KrP, ρD =
KrD
3
√
c3
, ρI = KrI 3

√
c3 (21)

and gain K is merged with the proportional, derivative and
integration gains in (21). Then the ρP, ρD and ρI are the loop
gains absorbing the gain K and the filter time constant is in
analogy with (15) expressed in dimensionless form

τ =
Tf
3
√
c3

(22)

The dimensionless plant model (16) can be expressed in
the form

d3y(t̄)
dt̄3
+

1
λ2

d2y(t̄)
dt̄2
+

1
λ1

dy(t̄)
dt̄
+y(t̄) = ū(t̄−ϑ) (23)

where K is already absorbed with respect to (20). Beside the
plant model (23) let be also introduced the integrating plant
model as follows

d3y(t̄)
dt̄3
+

1
λ2

d2y(t̄)
dt̄2
+

1
λ1

dy(t̄)
dt̄
= ū(t̄−ϑ) (24)

with considered control input (20). Without any necessity of
the proof themodel (24) is dimensionless model of that model
type (1) where the absolute term, y(t), on the left-hand side is
missing. Closing the feedback loop of plant (23) or (24) and
controller (20), providing also measurement and derivative

action filtering, the characteristic quasi-polynomial of the
loop is in the form

P (s̄) = τ s̄5+
(
1+τλ−12

)
s̄4+

(
λ−12 +τλ

−1
1

)
s̄3

+

(
τ+λ−11 +ρDe

−ϑ s̄
)
s̄2+

(
1+ρPe−ϑ s̄

)
s̄+ρI e−ϑ s̄

(25)

or

P (s̄) = τ s̄5+
(
1+τλ−12

)
s̄4+

(
λ−12 +τλ

−1
1

)
s̄3

+

(
λ−11 +ρDe

−ϑ s̄
)
s̄2+ρPe−ϑ s̄s̄+ρI e−ϑ s̄ (26)

respectively. In contrast to M (s̄) the characteristic equation,
P(s̄) = 0, contains the exponential termswith the laggardness
number ϑ and therefore has infinite spectrum of roots. This
spectrum does not change if (25) or (26) is multiplied by
nonzero exp(ϑ s̄),∀s̄ ∈ C , [52], and thus the characteristic
quasi-polynomial is modified to the form[
τ s̄5+

(
1+τλ−12

)
s̄4+

(
λ−12 +τλ

−1
1

)
s̄3+

(
τ+λ−11

)
s̄2+s̄

]
eϑ s̄

+ρDs̄2+ρPs̄+ρI = Q (s̄) (27)

or[
τ s̄5+

(
1+τλ−12

)
s̄4+

(
λ−12 +τλ

−1
1

)
s̄3+λ−11 s̄2

]
eϑ s̄

+ρDs̄2+ρPs̄+ρI = Q (s̄) (28)

respectively, where the control loop gains are free of delay
term.

A. ULTIMATE FREQUENCY NUMBER AND ULTIMATE LOOP
GAIN ASSESSMENT
The ultimate frequency of the plant ωK and ultimate loop
gain rK are significant parameters for tuning the controller.
Consistently with the control loop model parameterization
in (20) and (23) instead of ωK the ultimate frequency number

νK = ωK
3
√
c3 (29)

and ultimate loop gain ρK = KrK are introduced. Their
values corresponding to plant model (23) are given by the
following Theorem 1.
Theorem 1: Suppose the plant given by the model (23) and

close a proportional feedback with the ultimate loop gain, ρK .
The ultimate frequency number νK is the smallest positive
solution to equation

cot (ϑνK ) =
1
vK
·
λ−12 ν2K−1

λ−11 −ν
2
K

(30)

Proof: Recall plant model (23) and close proportional
feedback ū

(
t̄
)
= −ρPy

(
t̄
)
. Characteristic equation of the

loop is not algebraic any more

s̄3+λ−12 s̄2+λ−11 s̄+1+ρPe−ϑ s̄ = 0 (31)

For the case of ultimate oscillation at ultimate frequency
given by ν = νK the complex variable is s̄ = jνK and
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proportional gain is ultimate ρP = ρK . For this case the
ultimate parameters, νK and ρK , satisfy the following equality

(jνK )3+λ
−1
2 (jνK )2+λ

−1
1 jνK+1

+ρK (cos (ϑνK )−j sin (ϑνK )) = 0 (32)

For real and imaginary parts of this equation the following
equalities result

−λ−12 ν2K+1+ρK cos (ϑνK ) = 0 (33)

and

−ν3K+λ
−1
1 νK−ρK sin (ϑνK ) = 0 (34)

After expressing the ratio of cos (ϑνK ) and sin (ϑνK ) the
relation (30) is obtained. From (33) also the ultimate loop gain
results as follows

ρK =
λ−12 ν2K−1

cos (ϑνK )
(35)

The proof is finished.
How to evaluate νK according to (30) is shown in Sam-

ple example in Section VI.A. For integrating plants (24) the
following relation for the ultimate frequency number, νK ,
is obtained

cot (ϑνK ) =
λ−12 vK

λ−11 −ν
2
K

(36)

and for the ultimate loop gain the following relation is
acquired

ρK =
λ−12 ν2K

cos (ϑνK )
(37)

One can see that relations (36) and (37) are achieved
directly from (30) and (35), respectively, by leaving out the
stand-alone unit −1 in numerators. Additionally, in (36) the
power of νK is cancelled due to the fact that only non-zero
and smallest positive νK is searched.

The ultimate frequency number, νK , is given by the plant
similarity numbers λ1, λ2 and the laggardness number ϑ .
Its value can be displayed over an area of λ1, λ2 for fixed
value of ϑ . For the laggardness number ϑ = 0.3 its depen-
dence on λ1, λ2 over the area λ1 ∈ 〈0.1, 0.9〉 and λ2 ∈
〈0.2, 2.4〉 is plotted in Fig. 1. The intervals of λ1, λ2 corre-
spond with the constraints further specified in Section III.B.

For longer delays, ϑ > 0.3, the shape of the surface does
not change only its level is accordingly shifted to lower νK
values. Considering higher values of ϑ than 0.5 turns out
to be unsuitable for using the dominant pole placement for
tuning PID controller for plants of type (1), as it is discussed
in Section V. In Fig. 2 the ultimate loop gain, ρK , is plotted
for the same area of λ1, λ2 and for ϑ = 0.3 as in Fig. 1.

FIGURE 1. Ultimate frequency number in case of stable plants (23).

FIGURE 2. Ultimate loop gain in case of stable plants (23).

B. CONSTRAINTS ON THE CONSIDERED PLANTS
The PID control principle is not capable to cope with third
order plant dynamics in their whole range. Not only unstable
plants but also a part of the others is to be excluded from
consideration. Some of them are quite incompatible with PID
and some can be controlled by PID but their setting by means
of common tuning rules does not lead to acceptable results.

The similarity numbers λ1, λ2 andϑ of the plant introduced
by (11) or (13) and (15) serve as generalized parameters in
which the suitable range of plants can be effectively dis-
played. Due to generic meaning of λ1, λ2 and ϑ the range
of acceptable plants can be expressed universally with them.
The following three constraints are to be respected in the rest
of the paper.

1) CONSTRAINT ON PLANT CHARACTER
Unstable plants with λ1λ2 ≥ 1 and the plants approaching
the stiff-character cases where

χ, χ1,2 ≤ 0.05, χ, χ1,2 ≥ 10 (38)
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are excluded. Also, the too oscillating plants with damping
ξ < 0.05 (λ1 > 0.9, λ2 > 2.4) are not considered at all.
First, the plants free of delay, with laggardness ϑ = 0, are
viewed in the plane of plant similarity numbers λ1, λ2. Their
acceptability for applying pole placement in tuning the PID
loop is strongly dependent on ϑ , so that the final area of the
considered λ1, λ2 options is considerably reduced with grow-
ing ϑ , see Section V. The mapping in Fig. 3 shows the area
of λ1, λ2 of the delay-free plants with laggardness ϑ = 0, for
which the pole placement is applicable. Only a restricted part
of this area with λ1,2 ≤ 1

/
3 corresponds to aperiodic plants,

option (4), the vast majority of the map belongs to oscillatory
plants, option (5), with complex conjugate pair of roots.
In this area the isolines ofχ = const and ξ = const display the
ranges of ratios χ , ξ of plants admissible for consideration.
Notice that the mapping in Fig. 3 holds for arbitrary natural
frequency ωn of option (5) or for arbitrary value of b for
option (4).

FIGURE 3. Options of λ1, λ2 satisfying Constraint on plant character.

2) CONSTRAINT ON PID APPLICABILITY
The applicability of PID to plant type (1) is considerably
dependent on the delay, i.e. on the laggardness ϑ , and also the
order of differential equation with delayed argument describ-
ing the control loop. The higher laggardness themore reduced
is the admissible λ1, λ2 area compared with Fig. 3 which
was provided for the delay-free case. This reduction involves
exclusively the oscillatory plants with lower damping
ratio ξ . The higher ϑ the higher lies the lower boundary of ξ .
From characteristic quasi-polynomial (27) or (28) it is further
apparent that the PID influences mainly the lower derivative
terms, s̄0, s̄, s̄2 while s̄3, s̄4, s̄5 are out of any influence, except
for filter time constant τ . Therefore in reaching successful
PID control application only plants with sufficiently low λ2
values are applicable (the coefficient is λ−12 ). In fact, the
upper bound of λ2 is considerably lower than that in Fig. 3
if ϑ > 0. The higher the laggardness ϑ the lower is the upper
bound of λ2.

C. ROBUSTNESS CONSTRAINTS IMPOSED ON THE
CONTROL LOOP
The robustness to the third-order plants with delay (23)
or (24) is characterized by maximum sensitivities, e.g. [27],

MS = max
ν
|S (jν)| , Mt = max

ν
|T (jν)| (39)

where

S (s̄) =
1

1+G (s̄)C (s̄)
=

1
1+L (s̄)

,

T (s̄) =
L (s̄)

1+L (s̄)
(40)

and s̄ = jν. Transfer functions G (s̄) and C (s̄) coming from
Laplace transform of (23) or (24) and (20) together with (18),
respectively, are given as follows

G (s̄) =
e−ϑ s̄

s̄3+λ−12 s̄2+λ−11 s̄+1
(41)

or

G (s̄) =
e−ϑ s̄

s̄3+λ−12 s̄2+λ−11 s̄
(42)

and

C (s̄) =
ρDs̄2+ρPs̄+ρI
s̄ (τ s̄+1)

(43)

respectively. Additionally, to avoid the reference tracking
degradation the prefilter due to (19) and with respect to (21)
is as follows

F (s̄) =
ρI

ρDs̄2+ρPs̄+ρI
(44)

which is used for the reference variable prefiltering in the
classical control loop in Fig. 4. This control scheme also
allows for the measurement noise and derivative action
filtering.

Besides the maximum sensitivities,MS andMt , the follow-
ing measure

Mu = max
ν
|C (jν) S (jν)| (45)

is to be considered, [8]. Quantity Mu characterizes
high-frequency control sensitivity that in case of the
PID control depends particularly on the derivative time con-
stant ratio to the filter time constant

N =
ρD

ρPτ
=
τD

τ
=
TD
Tf

(46)

where τD = TD
/

3
√
c3. Ratio N cannot be arbitrarily large

and its maximal range is between 5 and 30, see [2]. The
value of N is selected from this range in dependence on mea-
surement noise frequency range and level, for more details
see [27], [29]. As regards the maximum sensitivities,MS and
Mt , their default value is 1.4 but can be ranged between 1.2
and 2, for instance [8], [53], [54]. The sensitivity function
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in (40) results with respect to process transfer function (41)
and controller (43) as follows

S (s̄) =
s̄ (τ s̄+1)

(
s̄3+λ−12 s̄2+λ−11 s̄+1

)
 τ s̄5+(1+τλ−12

)
s̄4+

(
λ−12 +τλ

−1
1

)
s̄3+(

τ+λ−11 +ρDe
−ϑ s̄

)
s̄2+

(
1+ρPe−ϑ s̄

)
s̄+ρI e−ϑ s̄


(47)

The load disturbance supposed of the same transfer func-
tionG (s̄) as the control variable in (2) its control loop transfer
function originates in

Sd (s̄)

= G (s̄) S (s̄) =
G (s̄)

1+G (s̄)C (s̄)
=

G (s̄)
1+L (s̄)

=
s̄ (τ s̄+1) e−ϑ s̄ τ s̄5+(1+τλ−12

)
s̄4+

(
λ−12 +τλ

−1
1

)
s̄3

+

(
τ+λ−11 +ρDe

−ϑ s̄
)
s̄2+

(
1+ρPe−ϑ s̄

)
s̄+ρI e−ϑ s̄


(48)

However, with respect to the control scheme in Fig. 4 the
reference transfer function is different from the complemen-
tary sensitivity function, T (s̄), as follows

Tw (s̄) = T (s̄)F (s̄) =
G (s̄)C (s̄)

1+G (s̄)C (s̄)
F (s̄) (49)

FIGURE 4. Control scheme.

After substituting for G (s̄), C (s̄) and F (s̄) in (49) the
reference transfer function is obtained as follows

Tw (s̄)

=
ρI e−ϑ s̄ τ s̄5+(1+τλ−12

)
s̄4+

(
λ−12 +τλ

−1
1

)
s̄3

+

(
τ+λ−11 +ρDe

−ϑ s̄
)
s̄2+

(
1+ρPe−ϑ s̄

)
s̄+ρI e−ϑ s̄


(50)

or

Tw (s̄) =
ρI e−ϑ s̄ τ s̄5+(1+τλ−12

)
s̄4+

(
λ−12 +τλ

−1
1

)
s̄3

+

(
λ−11 +ρDe

−ϑ s̄
)
s̄2+ρPe−ϑ s̄s̄+ρI e−ϑ s̄


(51)

Potential pole-zero cancellation within the delayed control
loop results from the numerator in (47) where in fact only

the complex conjugate poles of plant option (5) can be can-
celled due to four dominant poles prescribed as two complex
conjugate pairs, as proposed in Section IV. Since these pairs
are prescribed to provide a well-damped disturbance rejection
only such plants with ξ > 0.4 could be really cancelled.
In addition, the range of these plants is tight as shown in Fig. 3
and controlling the well-damped processes (ξ > 0.5) do not
represent any problem for the practice, as a rule. That is why
a test benchmark process of the class of the third-order plants
with delay is selected a poorly damped process with ξ < 0.4,
see Section VI. Next, the measurement filter’s pole location
is far away to the left in the complex plane from a quadruple
of prescribed poles, see Section IV, so that no dominant pole-
zero cancellation takes place. Due to the infinite spectrum of
characteristic quasi-polynomial (25) or (26) only the right-
most spectrum is eligible to possible degradation. Cancelling
some of the rest of infinite spectrum, i.e. some non-dominant
poles, these poles cancellation cannot be responsible for the
disturbance rejection deterioration because the disturbance
rejection response dynamics is characterized by the dominant
pole spectrum assigned. At last, thanks the reference variable
prefiltering the reference tracking is free of any pole-zero
cancellation as proved by the transfer function structure
in (50) or (51) and prefilter F (s̄) results with damping factor
at least 0.5 as gained by optimum values of real controller
parameters in Section V.

IV. DOMINANT FOUR-POLE PLACEMENT
Characteristic equation of the loop Q (s̄) = 0 admits an
infinite spectrum of the roots, where only a little group on
the rightmost positions determines the dynamic properties of
the loop. The potential of four controller parameters is to
adjust only four poles of the infinite spectrum as presented
in Theorem 2 below. Hence if the four-pole placement tech-
nique should fulfil the assignment aim the prescribed poles
have to become really dominant for the loop as presented in
Theorem 3 following the Theorem 2. Particularly no other
pole of the rest of the spectrum may lie to the right from
the prescribed quadruple of poles. The more to the left from
the placed poles is located the rest of the spectrum the more
dominant is their position.

A. FOUR-POLE PLACEMENT TECHNIQUE
The following procedure of dominant four-pole placement is
based on that in [30] where the original dominant three-pole
placement introduced in [55] is adapted for filtered PID con-
trol loop. As novel feature the dominant four-pole placement
is extended for the third-order plants with delay characterized
by the three parameters λ1, λ2, ϑ of the plant model (23)
or (24). Additionally, the natural frequency ratio, η, is new
introduced parameter to meet the robustness requirement
by its optimization. As the well-damped and robust control
response the following quadruple of poles

p̄1,2 = (−δ±j) ν, p̄3,4 =
(
−
κδ

η
±j
)
ην (52)
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where ν, δ, κ, η > 0 is prescribed to adjust the proportional,
derivative, integration control loop gains ρP, ρD, ρI , and the
filter time constant τ , respectively. The prescribed pole loca-
tions represent a well-damped and fast oscillatory behavior
of control loop characterized by the damping ratio δ, the root
ratio κ given by

κ =
Re
(
p̄3,4

)
Re
(
p̄1,2

) > 0 (53)

and the ratio between two natural frequencies given by η < 1
where the greater natural frequency is identified with the
ultimate frequency, i.e. ν = νK . This is the rule of thumb
to assign the natural frequency as the ultimate frequency
which leads in practice to satisfactory disturbance rejection
performance, [55], [56]. Thus, the lower natural frequency
assigned is given as ηνK and η is the key ratio introduced for
achieving the robustness.
Theorem 2: Consider a set of third order plants character-

ized by the numbers λ1, λ2, ϑ as in (23) and close filtered
PID control loop according to (20) so that the characteristic
quasi-polynomial in (27) is obtained. Four complex numbers
p̄1, p̄2, p̄3, p̄4 given as in (52) are selected to be placed as
the dominant zeros of Q (s̄). Without guaranteeing the (52)
dominance a priori, the following setting of the control loop
gains and filter time constant provides the placement of these
zeros

ρP =

det


−δ, δ2−1, 1, AR
1, −2δ, 0, AI
−κδ, κ2δ2−η2, 1, ARη
η, −2κδη, 0, AIη



−1

× det


BR, δ2−1, 1, AR
BI , −2δ, 0, AI
BRη, κ2δ2−η2, 1, ARη
BIη, −2κδη, 0, AIη

 (54)

ρD = ν
−1

det


−δ, δ2−1, 1, AR
1, −2δ, 0, AI
−κδ, κ2δ2−η2, 1, ARη
η, −2κδη, 0, AIη



−1

× det


−δ, BR, 1, AR
1, BI , 0, AI
−κδ, BRη, 1, ARη
η, BIη, 0, AIη

 (55)

ρI = ν

det


−δ, δ2−1, 1, AR
1, −2δ, 0, AI
−κδ, κ2δ2−η2, 1, ARη
η, −2κδη, 0, AIη



−1

× det


−δ, δ2−1, BR, AR
1, −2δ, BI , AI
−κδ, κ2δ2−η2, BRη, ARη
η, −2κδη, BIη, AIη

 (56)

τ = ν−1

det


−δ, δ2−1, 1, AR
1, −2δ, 0, AI
−κδ, κ2δ2−η2, 1, ARη
η, −2κδη, 0, AIη



−1

× det


−δ, δ2−1, 1, BR
1, −2δ, 0, BI
−κδ, κ2δ2−η2, 1, BRη
η, −2κδη, 0, BIη

 (57)

where the entries, AR, AI , ARη, AIη and BR, BI , BRη, BIη, are
given as follows

AR = e−δϑν [aR cos (ϑν)−aI sin (ϑν)] (58)

AI = e−δϑν [aI cos (ϑν)+aR sin (ϑν)] (59)

ARη = e−κδϑν
[
aRη cos (ϑην)−aIη sin (ϑην)

]
(60)

AIη = e−κδϑν
[
aIη cos (ϑην)+aRη sin (ϑην)

]
(61)

with

aR = ν3
(
10δ3−δ5−5δ

)
+λ−12 ν2

(
δ4−6δ2+1

)
+λ−11 ν

(
3δ−δ3

)
+δ2−1 (62)

aI = ν3
(
5δ2

(
δ2−2

)
+1
)
+λ−12 ν24δ

(
1−δ2

)
+λ−11 ν

(
3δ2−1

)
−2δ (63)

aRη = ν3
(
10κ3δ3η2−κ5δ5−5κδη4

)
+λ−12 ν2

(
κ4δ4−6κ2δ2η2+η4

)
+λ−11 ν

(
3κδη2−κ3δ3

)
+κ2δ2−η2 (64)

aIη = ν3
(
5κ2δ2

(
κ2δ2η−2η3

)
+η5

)
+λ−12 ν24κδ

(
η3−κ2δ2η

)
+λ−11 ν

(
3κ2δ2η−η3

)
−2κδη (65)

and

BR = e−δϑν [bR cos (ϑν)−bI sin (ϑν)] (66)

BI = e−δϑν [bI cos (ϑν)+bR sin (ϑν)] (67)

BRη = e−κδϑν
[
bRη cos (ϑην)−bIη sin (ϑην)

]
(68)

BIη = e−κδϑν
[
bIη cos (ϑην)+bRη sin (ϑην)

]
(69)

and

bR = ν3
(
−δ4+6δ2−1

)
+λ−12 ν2

(
δ3−3δ

)
+λ−11 ν

(
1−δ2

)
+δ (70)

bI = ν34δ
(
δ2−1

)
+λ−12 ν2

(
1−3δ2

)
+λ−11 2δν−1 (71)

bRη = ν3
(
−κ4δ4+6κ2δ2η2−η4

)
+λ−12 ν2

(
κ3δ3−3κδη2

)
+λ−11 ν

(
η2−κ2δ2

)
+κδ

(72)

bIη = ν34κδ
(
κ2δ2η−η3

)
+λ−12 ν2

(
η3−3κ2δ2η

)
+λ−11 ν2κδη−η (73)
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respectively. Simultaneously the dominance of placed p̄1, p̄2,
p̄3, p̄4 is checked posteriori applying Theorem 3 below.

Proof: Four poles given by (52) are to be the roots of
Q (s̄) = 0 where Q (s̄) is given by (27). Substituting the first
pole, s̄ = p̄1 = (−δ+j) ν, into this equation and separating
the terms with ρP, ρD, ρI the following equality is obtained

ρDν
2
(
δ2−1−2δj

)
+ρPν (−δ+j)+ρI

= −e−δϑν [cos (ϑν)+j sin (ϑν)]

×


τν5

(
10δ3−δ5−5δ+

(
5δ2

(
δ2−2

)
+1
)
j
)

+

(
1+τλ−12

)
ν4
(
δ4−6δ2+1+4δ

(
1−δ2

)
j
)

+

(
λ−12 +τλ

−1
1

)
ν3
(
3δ−δ3+

(
3δ2−1

)
j
)

+

(
τ+λ−11

)
ν2
(
δ2−1−2δj

)
+ν (−δ+j)


(74)

By analogous substitution s̄ = p̄3 =
(
−κδ

/
η+j

)
ην =

(−κδ+jη) ν the following equality results

ρDν
2
(
κ2δ2−η2−2κδηj

)
+ρPν (−κδ+jη)+ρI

= −e−ϑκδν [cos (ϑην)+j sin (ϑην)]

×



τν5
(
10κ3δ3η2−κ5δ5−5κδη4

+
(
5κ2δ2

(
κ2δ2η−2η3

)
+η5

)
j

)
+

(
1+τλ−12

)
ν4
(
κ4δ4−6κ2δ2η2+η4

+4κδ
(
η3−κ2δ2η

)
j

)
+

(
λ−12 +τλ

−1
1

)
ν3
(
3κδη2−κ3δ3+

(
3κ2δ2η−η3

)
j
)

+

(
τ+λ−11

)
ν2
(
κ2δ2−η2−2κδηj

)
+ν (−κδ+jη)


(75)

It remains to separate the filter time constant τ in equali-
ties (74) and (75) as follows

ρDν
2
(
δ2−1−2δj

)
+ρPν (−δ+j)+ρI

+τe−δϑν [cos (ϑν)+j sin (ϑν)]

×

 ν5
(
10δ3−δ5−5δ+

(
5δ2

(
δ2−2

)
+1
)
j
)

+λ−12 ν4
(
δ4−6δ2+1+4δ

(
1−δ2

)
j
)

+λ−11 ν3
(
3δ−δ3+

(
3δ2−1

)
j
)
+ν2

(
δ2−1−2δj

)


= −e−δϑν [cos (ϑν)+j sin (ϑν)]

×

 ν4
(
δ4−6δ2+1+4δ

(
1−δ2

)
j
)

+λ−12 ν3
(
3δ−δ3+

(
3δ2−1

)
j
)

+λ−11 ν2
(
δ2−1−2δj

)
+ν (−δ+j)

 (76)

and

ρDν
2
(
κ2δ2−η2−2κδηj

)
+ρPν (−κδ+jη)+ρI

+τe−ϑκδν [cos (ϑην)+j sin (ϑην)]

×


ν5
(
10κ3δ3η2−κ5δ5−5κδη4+
+
(
5κ2δ2

(
κ2δ2η−2η3

)
+η5

)
j

)
+λ−12 ν4

(
κ4δ4−6κ2δ2η2+η4

+4κδ
(
η3−κ2δ2η

)
j

)
+λ−11 ν3

(
3κδη2−κ3δ3+

(
3κ2δ2η−η3

)
j
)
+

+ν2
(
κ2δ2−η2−2κδηj

)


= −e−ϑκδν [cos (ϑην)+j sin (ϑην)]

×

 ν4
(
κ4δ4−6κ2δ2η2+η4+4κδ

(
η3−κ2δ2η

)
j
)

+λ−12 ν3
(
3κδη2−κ3δ3+

(
3κ2δ2η−η3

)
j
)

+λ−11 ν2
(
κ2δ2−η2−2κδηj

)
+ν (−κδ+jη)


(77)

respectively. Dividing the equalities for real and imaginary
parts of (76) and (77), and expressing them in the matrix
equation form AP = B for the vector composed of control
loop gains and filter time constant

P =
[
ρP ρD ρI τ

] T (78)

the following matrices, A and B, are obtained

A =


−δν, ν2

(
δ2−1

)
, 1, ν2AR

ν, −2δν2, 0, ν2AI
−κδν, ν2

(
κ2δ2−η2

)
, 1, ν2ARη

ην, −2κδην2, 0, ν2AIη

 ,

B = ν


BR
BI
BRη
BIη

 (79)

where in case of matrix A entries

ARν2 = e−δϑν [aR cos (ϑν)−aI sin (ϑν)] (80)

AIν2 = e−δϑν [aI cos (ϑν)+aR sin (ϑν)] (81)

ARην2 = e−κδϑν
[
aRη cos (ϑην)−aIη sin (ϑην)

]
(82)

AIην2 = e−κδϑν
[
aIη cos (ϑην)+aRη sin (ϑην)

]
(83)

with

aR = ν2
[
ν3
(
10δ3−δ5−5δ

)
+λ−12 ν2

(
δ4−6δ2+1

)
+λ−11 ν

(
3δ−δ3

)
+δ2−1

]
(84)

aI = ν2
[
ν3
(
5δ2

(
δ2−2

)
+1
)
+λ−12 ν24δ

(
1−δ2

)
+λ−11 ν

(
3δ2−1

)
−2δ

]
(85)

aRη = ν2

 ν3
(
10κ3δ3η2−κ5δ5−5κδη4

)
+λ−12 ν2

(
κ4δ4−6κ2δ2η2+η4

)
+λ−11 ν

(
3κδη2−κ3δ3

)
+κ2δ2−η2

 (86)

aIη = ν2

 ν3
(
5κ2δ2

(
κ2δ2η−2η3

)
+η5

)
+λ−12 ν24κδ

(
η3−κ2δ2η

)
+λ−11 ν

(
3κ2δ2η−η3

)
−2κδη

 (87)

and in case of matrix B entries

BRν = e−δϑν [bR cos (ϑν)−bI sin (ϑν)] (88)

BIν = e−δϑν [bI cos (ϑν)+bR sin (ϑν)] (89)

BRην = e−κδϑν
[
bRη cos (ϑην)−bIη sin (ϑην)

]
(90)

BIην = e−κδϑν
[
bIη cos (ϑην)+bRη sin (ϑην)

]
(91)

with

bR = ν
[
ν3
(
−δ4+6δ2−1

)
+λ−12 ν2

(
δ3−3δ

)
+λ−11 ν

(
1−δ2

)
+δ

]
(92)

bI = ν
[
ν34δ

(
δ2−1

)
+λ−12 ν2

(
1−3δ2

)
+λ−11 2δν−1

]
(93)
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bRη = ν

 ν3
(
−κ4δ4+6κ2δ2η2−η4

)
+λ−12 ν2

(
κ3δ3−3κδη2

)
+λ−11 ν

(
η2−κ2δ2

)
+κδ

 (94)

bIη = ν
[
ν34κδ

(
κ2δ2η−η3

)
+λ−12 ν2

(
η3−3κ2δ2η

)
+λ−11 ν2κδη−η

]
(95)

Now from equation AP = B the matrix solution P =
A−1B leads to the following results

ρP =
det (AP)

det (A)
, ρD =

det (AD)

det (A)
,

ρI =
det (AI )

det (A)
, τ =

det (Aτ )
det (A)

(96)

where

AP =


νBR, ν2

(
δ2−1

)
, 1, ν2AR

νBI , −2δν2, 0, ν2AI
νBRη, ν2

(
κ2δ2−η2

)
, 1, ν2ARη

νBIη, −2κδην2, 0, ν2AIη

 ,

AD =


−δν, νBR, 1, ν2AR
ν, νBI , 0, ν2AI
−κδν, νBRη, 1, ν2ARη
ην, νBIη, 0, ν2AIη

 ,

AI =


−δν, ν2

(
δ2−1

)
, νBR, ν2AR

ν, −2δν2, νBI , ν2AI
−κδν, ν2

(
κ2δ2−η2

)
, νBRη, ν2ARη

ην, −2κδην2, νBIη, ν2AIη

 ,

Aτ =


−δν, ν2

(
δ2−1

)
, 1, νBR

ν, −2δν2, 0, νBI
−κδν, ν2

(
κ2δ2−η2

)
, 1, νBRη

ην, −2κδην2, 0, νBIη

 (97)

and

det (A) = ν5

 (κ−1)2 δ2 (ηAI+AIη)−−2ηδ (κ−1)
(
AR−ARη

)
+

+
(
η2−1

) (
ηAI−AIη

)
 (98)

Matrix A is non-singular, i.e. det (A) 6= 0, if at least one
of the ratios η, κ is not equal to one and ν > 0, as apparent
from (98). Let be remarked that for η = κ = 1 the relations
for AR and AI are identical with ARη and AIη, respectively.
From the ratios of determinants (96) the relationships (54),
(55), (56), and (57) result wherein the number ν is cancelled
either partly or completely. The resulting setting is proved on
the four poles dominance as presented in Theorem 3 below.
The proof is finished.
Remark 1: For integrating plants (24) the relations for

proportional, derivative, integration loop gains and filter time
constant given by (54) through (57) are also applicable but
with moderate changes in both the coefficient matrix A and
the right-hand side matrix B. These changes are such that
in (62) and (64) last term δ2−1 and κ2δ2−η2, respectively,
and in (63) and (65) last term −2δ and −2κδη, respectively,
are missing. In case of B in (70) and (72) the stand-alone δ
and κδ, respectively, and in (71) and (73) the numbers−1 and
−η, respectively, are missing.

B. DOMINANCE PROOF OF THE FOUR PLACED POLES
The four pole placement according to Theorem 2 does not
guarantee a priori the dominance of p̄1, p̄2, p̄3, p̄4 in Q (s̄)
infinite spectrum and therefore this dominance is to be proved
before accepting the results in (54) through (57). This proof
is provided by the following theorem.
Theorem 3: Consider the characteristic quasi-polynomial

of the fifth-order PID control loop in the form, P (s̄), given
by (25) or (26) and suppose a straight line s̄ = −βm+jω for
either βm > β = κδν, κ > 1, or βm > β = δν, κ < 1, where
ω is growing from zero to infinity, ω→∞. If the following
limit is reached

lim
ω→∞

arg P (s̄)|s̄=−βm+jω−arg P (s̄)|s̄=−βm = −3
π

2
(99)

then the whole rest of P (s̄) spectrum lies to the left from the
placed quadruple of poles, p̄1,2,3,4.

Proof: Consider a Jordan curve composed of the cir-
cle C, s̄ = R

(
cos

(
ψ
)
+j sin

(
ψ
))
, ψ ∈

〈
−π

/
2−γ, π

/
2+γ

〉
,

and the straight line L, s̄ = −βm+jω, ω ∈
〈
−R cos

(
γ
)
,

R cos
(
γ
)〉
, Fig. 5, and suppose that only four zeros p̄1,2,3,4

of quasi-polynomial P
(
s̄
)
lie inside this curve.

FIGURE 5. Jordan curve closed with the straight line for evaluating
p̄1,2,3,4 dominance.

By the argument increment rule the total argument incre-
ment along this curve run in the clockwise direction (L is
oriented downwards) is then 8π . This increment is composed
of two increments

1 argC +1 argL = 8π (100)

obtained for the parts C and L, respectively. The argument
increment 1 argC is given by the order five of P (s̄) and for
the limit of R→∞ and γ → 0 its value is

1 argC = 5π (101)

146172 VOLUME 9, 2021



J. Fišer, P. Zítek: Filtered PID Control Loop for Third Order Plants With Delay: Dominant Pole Placement Approach

Finally realize that in (99) only one half of the straight
line L, which is with ω ≥ 0 and oriented upwards, is con-
sidered so that only1 argL

/
2 is to be obtained with opposite

sign. Hence by comparing (100) and (101) and dividing
by two the argument increment (99) is obtained, and the
Theorem 3 is proved.

Let be noted that the application of rule (99) is as follows.
For a constant βm > β = max (δν, κδν) quasi-polynomial
function P (−βm+jω) is computed for ω from ω = 0 to an
enough high ω = ωm, which renders the other terms of the
quasi-polynomial negligibly small compared to ω5. To obtain
the values of argP from a hodograph inside the unit circle of
complex plane the following mapping is applied

P̃ (s̄) =
P (s̄)

1+|P (s̄)|
, s̄ = −βm+jω, ω ∈ 〈0, ωm〉 (102)

where the denominator is real and cannot change the argu-
ment value of P (s̄). The greater ratio βm

/
β for which condi-

tion (99) is satisfied the stronger is the dominance of p̄1,2,3,4.
To evaluate the four-pole dominance degree the dominance
index from [55] is modified as follows

σ =


Re (p̄5)

Re
(
p̄1,2

) > 1, κ < 1

Re (p̄5)

Re
(
p̄3,4

) > 1, κ ≥ 1
(103)

where p̄5 is the rightmost pole from the rest of the P (s̄)
spectrum. This pole results in complex pole for κ < 1
while κ ≥ 1 the fifth pole is real, as a rule. The effect of
non-dominant poles on control loop dynamics is negligible
if the non-dominant pole spectrum is separated from that
dominant spectrum, [57]. Thus, a distinct separation of p̄1,2,
p̄3,4 and p̄5 all together from the rest of the infinite spectrum
is desirable for a marked dominance of them.
Remark 2: Three gains ρP, ρD, ρI and time constant τ

according to relation (54) through (57) are derived for con-
sidered plant model (1) with the premise of prescribed poles
dominance. The matrix formulae in these relations originate
from the characteristic quasi-polynomial, Q (s̄), evaluated
for prescribed poles. It also includes the delay operator,
exp (−τ s), evaluation. Once poles to be prescribed are found
at optimumwith respect to IAE criterion andmaximum sensi-
tivities constraint the dominant pole placement is guaranteed
as proved by the argument increment principle due to (99).
The compactness of the controller parameter relations would
be then lost if instead of all the matrix formulae their deter-
minant evaluations are provided in fact.

V. CONTROL LOOP OPTIMIZATION IN PLANT
PARAMETER SPACE
The four-pole placement parameters ν, δ, κ , η are subject to
the constrained IAE optimization in the space of plant param-
eters λ1, λ2, and ϑ . Due to close relation between the ultimate
frequency of the plant (23) or (24) and a desirable natural
frequency of the control loop the prescription of ν value in
quadruple p̄1,2,3,4 is identified due to the ultimate frequency

number, νK , as a reference parameter of the plant. Next,
the crucial constraint of the IAE criterion is the maximum
sensitivity MS limited to 1.8 as revealed within the control
design for benchmark plant in Section VI. This constraint,
MS ≤ 1.8, is not peculiar only to the benchmark plant but it
is also found suitable for all considered plants characterized
by numbers λ1, λ2, and ϑ . Beside the constraint on MS also
the constraint on the ratioN is assumed such that 5 < N < 15
thus N ≈ 10. Only under meeting both constraints the IAE
value is minimized. This value is computed from the load
disturbance rejection response of the loop that is frequently
optimized in practice. Its loop transfer function is obtained
in (48). Analogously for the integrating plants given by (24)
the corresponding Sd (s̄) is obtained when (42) is substituted
for G (s̄) in (48). The load disturbance rejection is optimized
according to the IAE criterion (as also preferred in [10])

J =
∫ t

0
|e(θ)| dθ (104)

As shown in [58], [59], the unconstrained IAE minimiza-
tion leads to prescribing the natural frequency higher than
the plant ultimate frequency. In the assessment according to
Theorem 2 the relationship P = A−1B, (96), provides a
mapping of the controller parameters P =

[
ρP ρD ρI τ

] T
in the space of the root coordinates ν, δ, κ , η where primarily
the constrained optimization of δ, κ , η is performed. From
constraining the IAE optimization it turns out that the natural
frequency number should not be prescribed higher than the
ultimate one, thus ν ≤ νK .
The constrained IAE optimization of the control loop is

performed for three parameters, ratios δ, κ , η when the nat-
ural frequency number ν is fixed to νK . This optimization
is repeated throughout an area of plant parameters λ1, λ2,
ϑ fulfilling the constraints on the plant character, the PID
applicability and robustness, see Sections III.B and III.C.
The explicit form of the pole placement relationships (54)
through (57) from Section IV, makes it possible to map the
control loop gains ρP, ρD, ρI and filter time constant τ subject
to plant parameters λ1, λ2, ϑ and optimized ratios δ, κ , η. The
optimization results are displayed in the plane of similarity
numbers λ1, λ2 and the laggardness number ϑ is considered
as a stepwise given parameter. The ultimate frequency num-
ber assigned is recorded in Fig. 1 and corresponding ultimate
loop gain in Fig. 2 for ϑ = 0.3. The λ1, λ2 area of the maps
for ρP, ρD, ρI , τ in Figs. 6, 7, 8, 9 is considerably smaller than
that given in Fig. 3 which holds for delay-free plants, ϑ = 0.

For nonzero laggardness, ϑ > 0, this area is strongly
reduced into the admissible values of λ1, λ2 at which the
afore mentioned constraints are satisfied by the controller
parameter settings mapped. Constraining the controller tun-
ing to MS ≤ 1.8 and N ≤ 10(or 15) this tuning results in
positive values of the controller parameters as a rule. Also,
the varying delay effect is shown in Figs. 6-8 considering both
ϑ = 0.3 and ϑ = 0.5. Since both surfaces on area λ1, λ2 are
intersected in case of filter time constant τ only the surface
for ϑ = 0.3 is displayed in Fig. 9.
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FIGURE 6. The proportional loop gain in area of λ1,2 reduced from Fig. 3
in case of laggardness numbers ϑ = 0.3 (black) and ϑ = 0.5 (blue).

FIGURE 7. The derivative loop gain in delay cases of ϑ = 0.3 (black) and
ϑ = 0.5 (blue).

Themaps ofMS andN prove keeping bothmeasures within
the given constraints depicted in Fig. 10 and 11, respectively,
and in Fig. 12 the resulting IAE is drawn. Particularly the
range of λ2 is considerably reduced in the part of weakly
damped oscillatory plants so that only ξ > 0.3 is admissi-
ble, in fact, see Fig. 6. The maps for higher ϑ are of very
similar shape but shifted down and with more reduced area
of λ1, λ2. The higher ϑ the lower are the control loop
gains. On the whole area the plants with laggardness number
ϑ > 0.5 are reduced any further when the suitability area of
λ1, λ2 for the PID application is too limited to be mapped. For
each of the pole placements according to (54) through (57)
the dominance of p̄1, p̄2, p̄3, p̄4 is to be checked. To display
this check the dominance index σ , (103), is evaluated over the
whole λ1, λ2 area and plotted in Fig. 13, where the quadruple
dominance for the plants with ϑ = 0.3 is verified. This
check is also verified in case of ϑ = 0.5 but not displayed.
However, for plants with ϑ = 0.5 and λ2 > 0.6 irrespective
λ1 value this dominance is already lost originating in the

FIGURE 8. The integration loop gain in delay cases of ϑ = 0.3 (black) and
ϑ = 0.5 (blue).

FIGURE 9. The filter time constant in case of ϑ = 0.3.

control loop instability for more oscillatory plants any further
(ξ < 0.3). Rising the delay effect any further, ϑ > 0.5, both
the quadruple dominance is lost and the delayed control loop
becomes unstable for plants with λ2 > 0.5.

Near-to dominant pole-zero cancellation can appear when
the quadruple dominance is lost. Then, however, the cancel-
lation happens between the not prescribed poles and the zeros
originating from poorly damped plant spectrum. Hence as
ξ → 0 the more the unprescribed rightmost poles are close
to the stability margin and this cancellation is more plausible.
Let be noted that considering only the suitable constraints
and plant parameter ranges the quadruple dominance loss is
avoided by the controller setting due to (54) through (57).
Out of these constraints and ranges the dominant four-pole
placement is not applicable to real PID tuning. Regarding the
non-dominant pole spectrum separation from that rightmost
spectrum this separation commonly results large enough for
plants with ϑ ≤ 0.5 and ξ > 0.3 as proved in Fig. 13 and
Sample example below.
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FIGURE 10. Maximum sensitivities MS and Mt in case of ϑ = 0.3.

FIGURE 11. Filter’s ratio N in case of ϑ = 0.3.

FIGURE 12. The IAE versus λ1, λ2 in case of ϑ = 0.3.

The maps with optimum values of ratios δ, κ , η are pre-
sented in Figs. 14, 15 and 16, respectively, for ϑ = 0.3.
The higher values of λ2 the less results δ ∈ (0.04, 0.8)
and reversely the greater results κ ∈ (0.4, 9). Regarding the

FIGURE 13. The dominance index in case of ϑ = 0.3.

FIGURE 14. Optimum relative damping δ in case of ϑ = 0.3.

FIGURE 15. Optimum root ratio κ in case of ϑ = 0.3.

new ratio η an average value across all the considered plants
results in 0.35. Due to the delay effect, displayed in range
0 < ϑ ≤ 0.5, and poor plant damping (higher values of λ2)
the maps also show boundaries in the space of similarity
numbers λ1, λ2, ϑ wherein PID type control is still accept-
able, i.e. real controller gain magnitudes are not negligible
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FIGURE 16. Optimum natural frequency ratio η in case of ϑ = 0.3.

(there is still certain amplification at least ρP ≈ 0.5ρK ) and
the filter time constant is in proper ratio to the derivative time
constant. Only for a limited set of plants characterized with
λ1 ≤ 0.2, λ2 > 0.4 this ratio results N < 5 under keeping
robustness constraint MS ≤ 1.8 so that PI type control takes
place instead. This limited set of plants is eliminated from the
maps recorded. Also the dominance index does not result so
strong in this limited plant set, i.e. σ ∈ (2, 5), nonetheless
the dominant four-pole placement is guaranteed. All these
optimum values and properties are also observed in delay
case of ϑ = 0.5. The plants characterized with λ1 > 0.9,
0.4 < λ2 ≤ 0.6 and ϑ > 0.5 lead to poor amplification due to
ρP < 10−2, hence these plant options are omitted. Be assured
that for ϑ > 0.5 and λ2 > 0.6 irrespective λ1 value not only
the dominance of four-pole placement is not achieved but also
the delayed control loop becomes even unstable.

The proposed controller tuning procedure is summarized
as follows:
1. Determine controlled plant parameters λ1, λ2 and ϑ due

to Section II.
2. Design (adjust) maximum sensitivities MS (Mt ) and/or

Mu(N ).
3. Prescribe natural frequency ν = νK and optimize ratios
δ, κ , η by minimizing criterion (104) with respect to
point 2.

4. Compute the real controller parameters by relations (54)
through (57).

5. Evaluate the dimensional gains rP, rD, rI and time con-
stant Tf in (21) and (22), respectively, based on the
knowledge of the dimensionless ones from point 4. Then
the PID controller with the measurement noise filter is
tuned for (industrial) application.

The IAE optimum setting within λ1, λ2 and ϑ boundaries
for the dominant four-pole placement applicability provides
competitive disturbance rejection performance due to the
natural frequency assignment identical with the ultimate one
and properly optimized ratios δ, κ , η. Simultaneously the
reference tracking performance is not degraded by this setting
as presented in Comparative study below.

VI. COMPARATIVE STUDY FOR BENCHMARK
OSCILLATORY MODEL
A comparative study is demonstrated on the load disturbance
rejection and reference tracking for the real controller (43)
tunings based on the proposed dominant four-pole placement,
lambda tuning method from [35], Åström-Hägglund tuning
method, and gain and phase margin optimization method. All
these tuning methods are developed for particular third-order
plant with delay, except the Åström-Hägglund and gain and
phase margin methods applicable to plants of arbitrary order
in general. The latter method for higher-order processes
achieves the phase margin up to 80◦, [60]. Particularly the
other tuning methods for comparison are selected due to their
suitability for poorly damped processes. In this section all the
considered methods are optimized for the load disturbance
rejection and also tested on reference tracking capability
within the control scheme in Fig. 4. As a structurally crucial
benchmark model is chosen that model (23) describing the
set of oscillatory plants with given similarity numbers λ1, λ2
and ϑ , see Sample example below.

A. SAMPLE EXAMPLE–OSCILLATORY PLANT WITH
SIGNIFICANT TIME DELAY
To demonstrate the application of the above introduced
dominant four-pole placement the following sample exam-
ple of poorly damped oscillatory third-order plant with
delay (falling into the admissible area of similarity numbers
in Fig. 6)

8
d3y(t)
dt3
+8

d2y(t)
dt2
+3.077

dy(t)
dt
+y(t) = 0.8 u(t−0.6) (105)

is used. The original parameters of this plant option, (5),
are dimensional as follows, ωn = 0.42

[
s−1

]
, ξ = 0.349,

χ = 4.8, υ = 0.6 [s], and from (13) and (15) the following
similarity numbers result

λ1 = 0.65, λ2 = 0.5, ϑ = 0.3 (106)

where the scaling factor 3
√
c3 =

3
√
8 = 2 [s] is applied. From

this parameterization the following dimensionless form (23)
of the plant model is obtained

d3y(t̄)
dt̄3
+2

d2y(t̄)
dt̄2
+1.5385

dy(t̄)
dt̄
+y(t̄) = ū(t̄−0.3) (107)

As in (23) this plant model is considered with the steady-
state gain, given as K = 0.8, being the part of the loop gains
as defined in (21). The ultimate parameters of this plant are
obtained from solving (30) and (35). The solution to (30) is
facilitated that, first, ϑνK = 8K is calculated and then it
is got back νK = 8K

/
ϑ where 8K is the ultimate angle.

The ultimate frequency number and the ultimate loop gain
are obtained as follows

νK = 1.068, ρK = 1.3496 (108)

To prescribe an adequate natural frequency of the loop
the value of ν is identified with νK from Fig. 1. To pre-
scribe optimum dominant poles the constrained IAE opti-
mization is performed with respect to δ, κ , and η as shown
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FIGURE 17. MS versus IAE with respect to variable κ , η under
optimum δ = 0.275.

FIGURE 18. Filter time constant τ versus η with respect to stepwise κ and
optimum δ = 0.275.

in Fig. 17 and 18. FromFig. 17 the IAE value results in 2.5223
forMS ≤ 1.8 and from Fig. 18 the proper filter time constant
satisfying constraintN ≤ 10 upon optimum ratios δ = 0.275,
κ = 1.45 and η = 0.3625. For computing the control loop
gains and filter time constant ρP, ρD, ρI and τ , respectively,
the following quadruple of poles is prescribed

p̄1,2 = −0.2936±j1.068, p̄3,4 = −0.4258±j0.3871 (109)

to be used in (54) through (57). From this prescription the
following control loop gains and time constant result

ρP = 0.6215, ρD = 1.0134, ρI = 0.4643, τ = 0.167 (110)

where the proportional loop gain results as ρP = 0.46ρK ≈
0.5ρK . As regards the filter’s ratio (46) it originates in
N = 9.77. Next, the maximum sensitivities, MS and Mt ,
are obtained as 1.79 and 1.09, respectively. In the same

way as for the plants with similarity numbers (106) the
constrained IAE optimization is performed for the rest of
plants (23) as shown in the maps for optimum δ, κ and η in
Figs. 14, 15 and 16, respectively, where the pole placement
ratios belonging to plant (107) can be found in the point[
λ1 λ2 ϑ

]
=
[
0.65 0.5 0.3

]
of corresponding map. In the

same way the values of MS (Mt ), N and IAE can be found in
Figs. 10, 11 and 12, respectively.

The assessment of the controller tuning has been per-
formed in terms of the dimensionless form of the control loop
model (48). Now it is necessary to convert these results back
into the original dimensional plant (105). Quite simple the
conversion is for the proportional controller gain, from (21)
ρP = KrP and then the controller setting is rP = ρP

/
K =

0.7769. For the other gains the time scale is given by 3
√
c3 =

2 [s]. Due to (21) the following setting of the rest of controller
gains and filter time constant results

rD =
ρD

K
3√8 = 2.5335 [s] ,

rI =
ρI

K 3
√
8
= 0.2902

[
s−1

]
,

Tf = τ
3√8 = 0.334 [s] (111)

In converting the controller parameters back to the specific
values also the prescribed natural frequency of the control
loop is obtained. Using the scaling factor 3

√
c3 = 2 [s]

the natural frequency � of the control loop is � ≡ ωK =

νK
/

3
√
c3 = 0.534

[
s−1

]
where the ultimate frequency

number is νK = 1.068. The corresponding prescribed
dimensional poles are as follows p1,2 = −0.1468±j0.534,
p3,4 = −0.2129±j0.1935.
The dominance of the prescribed poles p̄1, p̄2, p̄3, p̄4 has

been checked by means of increment argument rule (99) in
Fig. 19, where the ratio βm

/
β is chosen 1.2. From the argu-

ment increment −3π
/
2 it is confirmed that to the right from

line L, s̄ = −βm+jω, with βm = 0.511 does not lie any pole
except the quadruple p̄1,2,3,4. Applying the quasi-polynomial
root finder from [61] the rightmost pole spectrum is evaluated
in Figs. 20 and 21. In Fig. 21 the first five rightmost poles are
drawn together with plant pole spectrum to evaluate both the
dominance index according to (103) as p5

/
Re (p4) = σ = 17

and the near-to dominant pole-zero cancellation. This shows
both the abundant four-pole dominance and no dominant
pole-zero cancellation.
Remark 3:An example of plant type (1) with the same sim-

ilarity numbers, as in case of plant (105), but with different
scaling factor is given as follows

11.18
d3y(t)
dt3
+10

d2y(t)
dt2
+3.44

dy(t)
dt
+y(t) = 0.8 u(t−0.67)

(112)

for which the same control loop parameters (110) are valid but
due to different scaling factor, 3

√
c3 =

3
√
11.18 = 3

√√
125 =

3
√√

53 =
√
5 = 2.236 [s], the dimensional gains rD and
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FIGURE 19. Function (102) hodograph with argument increment limit
−3π/2 in case of plant (107).

FIGURE 20. The separation of four rightmost poles from the rest of
infinite spectrum in case of plant (107).

rI result differently from (111), thus

rD =
ρD

K
3√5 = 2.5335 [s] , rI =

ρI

K 3
√
5
= 0.2902

[
s−1

]
,

Tf = τ
√
5 = 0.3733 [s] (113)

In other words the common loop description by dimen-
sionless model (107) together with universal real controller
tuning (110) is unique not only for oscillatory plants (105)
and (112) but also for the rest of plants with common simi-
larity numbers (106). However, due to various scaling factors
the control loop responses in time and frequency domain are
different, e.g. disturbance rejection response in case of plant
(105) differs from that response belonging to plant (112),
additionally to different time delay (despite both plants have
common laggardness number ϑ).

FIGURE 21. Rightmost spectrum belonging to proposed setting for
plant (107), including plant pole option (5) in blue x.

FIGURE 22. Comparative study for benchmark plant model (107); upper
part – disturbance rejection responses, bottom part – reference tracking
responses.

B. CONTROL LOOP PERFORMANCE AND ROBUSTNESS
FOR BENCHMARK OSCILLATORY MODEL
In Table 1 the tuning methods considered are compared
with respect to the performance criterion IAE, constraints
on robustness and ratio N kept, and in Fig. 22 the dis-
turbance rejection responses corresponding to the tuning
methods compared are recorded for N ≤ 10. The distur-
bance considered is the input disturbance loading the con-
trol loop according to the scheme in Fig. 4 by variable d
which is the unit step function starting at origin in Fig. 22.
Additionally, in bottom part of Fig. 22 using the control
scheme in Fig. 4 the reference tracking responses are added to
demonstrate that the dominant four-pole placement method
provides quite good performance in comparison with other
tuning methods although the proposed method optimizes the
control loop preferably for the load disturbance rejection.
In all the considered tuning methods for comparison the
reference variable prefilter results with the damping factor
at least 0.5 and the measurement filter time constant results
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FIGURE 23. Magnitude frequency characteristics with legend from
Comparative study in Fig. 22.

FIGURE 24. Control signal for load disturbance rejection from
Comparative study in Fig. 22.

at least 10−1 [s]. The following abbreviations are used to
indicate the compared controller tuning methods: DPD –
dominant pole design (dominant four-pole placement method
proposed in Section IV), LM – lambda tuning method, [35],
A-H – Åström-Hägglund tuning method, and GM & PM –
gain and phase margin optimization approach.

Based on the results recorded in Fig. 22 and the data
in Table 1 the best PID tuning from the considered ones
results the DPD which gives the lowest IAE value under the
comparable robustness in the extreme frequency equivalence
sense (Fig. 23). Also checking the control signal for the
load disturbance rejection in Fig. 24 the DPD superiority is
observed. With LM method, 3 = 0.52, the same IAE is
achieved but with rather high maximum sensitivity MS =

2.023. According to the GM& PM optimization, see Fig. 26,
MS results lower than in case of the proposed DPD, see
Table 1, but the IAE results greater by 50%. The reason
why the DPD results well in the IAE consists in the highest

FIGURE 25. Controller (43) magnitude frequency characteristics with
legend from Comparative study in Fig. 22.

FIGURE 26. Nyquist plot showing gain and phase margin for GM & PM
tunings from Table 1.

value of the integration gain obtained over all the considered
tuning methods tailored to the third-order plants with delay.
Moreover, the high-frequency control sensitivity results quite
limited in comparison to other tuning methods, only GM &
PM optimization leads to lower sensitivity than the DPD,
see Fig. 25. Thus the high-frequency gain, Mu, results for
tunings from Table 1 and N ≤ 10 as follows: 6.215, 7.546,
6.477, 7.675, and 2.898 for DPD, A-H, LM (3 = 0.63),
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TABLE 1. Comparative study of real PID tuning rules and methods.

LM (3 = 0.52), and GM & PM, respectively. Values of
Mu in both cases, N ≤ 10 and N ≤ 15, are also included
into the Table 1. Naturally, the DPD cannot be in compe-
tition with LM as regards the reference tracking capability
due to arbitrarily short lambda parameter (3) tuning if no
actuator limitations are exceeded. Of course, the LM method
then gives better IAE than the DPD but in the expense of
robustness, see Table 1.

For other tuning methods, A-H and GM & PM optimiza-
tion, similarly resulting reference tracking responses can be
observed but with rather longer settling times. Notice that
in Fig. 26 open loop transfer function L (s̄) is evaluated for
s̄ = jν, ν ∈

〈
10−2, 103

〉
. In Table 1 one can also observe

analogous results in favor of the DPD where all the tunings,
robustness and performance measures are made for N ≤ 15.
With rising N under keeping the same MS one can observe
gradual decreasing the IAE, in general, whileMu is gradually
increasing. Additionally increasing N over 20 already leads
to implementation issues due to the demand on the sampling
period of order less than 10−3 [s]. Particularly this is the case
of A-H and LM tuning methods.
Remark 4: Naturally the notion of extreme frequency

equivalence is not applicable to the A-H tuning method and
also to the GM & PM optimization that has the capability to
minimize the IAE at lowerMS than 1.8.

VII. DISCUSSION OF RESULTS
The universal PID and filter settings are proposed giving rise
to optimum controller gains and measurement filter time con-
stant with respect to not only the IAE criterion but also to the
robustness and filtering effect constraints. The universality of
the real controller settings consists in the control loop descrip-
tion via the similarity theory which imparts the control loop
responses similar dynamics characterized by the similarity
numbers. These responses differ from each other only in their
scales of time and input and output variables. Consequently,
for all the dynamically similar plants the same controller
parameters ρP, ρD, ρI , τ are obtained from (54) through (57)

and the four-pole dominance check according to the condi-
tion (99) holds for all of them in spite of the significant plant
delay effect characterized by varying laggardness number ϑ .
These controller and filter parameters are evaluated for opti-
mum values of damping, root, and natural frequency ratios.
Particularly the optimum natural frequency ratio, η, results
nearly everywhere between 0.3 and 0.5 as shown in Fig. 16
to achieve the robust PID setting with sufficient performance.
Additionally, to limit the high-frequency control sensitivity
the measurement filter’s ratio is constrained as N ≤ 15.
Despite the disturbance rejection optimization is preferred to
that of the reference tracking the reference tracking capability
is saved by prefiltering the reference variable in the classical
control loop in Fig. 4. Simultaneously the dominant four-pole
placement technique is extended for integrating third-order
plants with delay.

The robustness constraint is achieved, as shown in Fig. 10,
when the quadruple of dominant poles is assigned as two
pairs of complex conjugate poles. Corresponding optimum
controller gains and filter time constants are presented in
Figs. 6-9. The dominance of the quadruple of assigned poles
results abundant because the dominance index, recorded in
Fig. 13, is nearly ten times greater than it is in usual dominant
four-pole placement (σ = 2, see [30]). Thus, there are two
natural frequencies assigned where one of them is the ulti-
mate frequency to guarantee good disturbance rejection per-
formance and the second one is new optimized via prescribing
η to meet the robustness constraint as MS ≤ 1.8. The rest of
ratios, δ and κ , are prescribed accordingly to keep not only the
robustness constraint but also the high-frequency control sen-
sitivity constrained by the filter’s ratio as 5 < N < 20. While
ratios δ, κ are varying particularly with λ2 the ratio, η, results
in 0.35 as an average value across all the considered plants
in case of both ϑ = 0.3, see Fig. 16, and ϑ = 0.5. Keeping
N ≤ 10, thus in the aforementioned range, under properly
selected δ, κ and η in Fig. 14, 15 and 16, respectively, the filter
time constant results in feasible, i.e. positive, number. Due to
the enhanced delay effect, ϑ > 0.5, and poor plant damping,
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λ2 > 0.5, the loop amplification is vanishing and the PID
type control due to the scheme in Fig. 4 loses a potential to
compensate for such stringent dynamics. Hence these cases
with a poor chance of PID control application are excluded
from the survey maps achieved. Finally, the separation of the
dominant poles assigned from the rest of the infinite spec-
trum is considerable guaranteeing the desired control loop
dynamics, and simultaneously the measurement filter’s pole
location falls into this rest preventing the dominant pole-zero
cancellation.

The applicability range of the proposed method, DPD,
is mainly in the field of the mechanical systems with actuator
dynamics (e.g. servomechanism to pull a cart), thermal pro-
cesses (e.g. heat exchanger), water turbines with long conduit
etc. Other applications can be found in steel and energy
industry.

VIII. CONCLUSION
The proposed dominant four-pole placement method gives
rise to introduce novel tuning method for the real PID con-
troller considered in application to the class of the third-order
plants with delay parameterized according to the similarity
theory. The delayed control loop results in the retarded system
described by the fifth-order differential equation with delayed
argument. Nevertheless, the real PID controller tuned due to
the dominant four-pole placement is robust with sufficient
performance for the practice and the four-pole dominance
is guaranteed due to optimally prescribed ratios, particularly
the natural frequency ratio. The comparative study, summa-
rized in Table 1, for the benchmark oscillatory model shows
the capability of the proposed dominant-four pole place-
ment technique in contrast to other tuning and optimization
methods.
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