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ABSTRACT Bayesian networks are powerful statistical models to study the probabilistic relationships
among sets of random variables with significant applications in disease modeling and prediction. Here,
we propose a continuous time Bayesian network with conditional dependencies represented as regularized
Poisson regressions to model the impact of exogenous variables on the conditional intensities of the network.
We also propose an adaptive group regularization method with an intuitive early stopping feature based on
Gaussian mixture model clustering for efficient learning of the structure and parameters of the proposed
network. Using a dataset of patients with multiple chronic conditions extracted from electronic health records
of the Department of Veterans Affairs, we compare the performance of the proposed network with some
of the existing methods in the literature for both short-term (one-year ahead) and long-term (multi-year
ahead) predictions. The proposed model provides a sparse intuitive representation of the complex functional
relationships between multiple chronic conditions. It also provides the capability of analyzing multiple
disease trajectories over time, given any combination of preexisting conditions.

INDEX TERMS Continuous time Bayesian network, Poisson regression, adaptive group lasso, Gaussian
mixture model, multiple chronic conditions.

I. INTRODUCTION
Bayesian networks (BNs) are probabilistic graphical mod-
els that represent a set of random variables and their
conditional dependencies via a directed acyclic graph
(DAG) [1]–[3]. BNs offer valuable insights about the random
variables and their interactions for complex data summariza-
tion and visualization, prediction and inference, and corre-
lation and causation analysis by encoding the information
uncertainty in their structure. BNs also have applications in
medicine for predictive modeling of multiple chronic condi-
tions (MCC) [4], [5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Mansoor Ahmed .

Although BNs were originally designed for studying the
relationships among static random variables, recently, it has
been applied to study random variables with temporal behav-
ior [5]–[7].Multilevel temporal Bayesian networks (MTBNs)
describe the temporal states of the network variables over
a finite number of discretized times. [4], [5]. The set of
edges within each discretized time present the regular con-
ditional dependencies among random variables, while the
edges between the (discretized) time points represent the
temporal dependencies. Since MTBNs do not directly model
the time and the dynamics of the random variables, clas-
sic structure learning algorithms can be used to learn the
structure and parameters of the network. Dynamic Bayesian
networks (DBNs) [8]–[10] are another extension to BNs,
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that represent the temporal dynamics of random variables
over an infinite number of discretized times. Unlike MTBNs,
DBNs generally duplicate the time slices to represent the
temporal dynamics of the random variables over a fixed
time range and do not allow for a change in the structure
of the network over time [11]. Temporal Nodes Bayesian
networks (TNBNs) are yet another alternative for model-
ing the dynamic processes of BNs random variables. The
nodes of TNBNs represent the time of occurrence, and
the edges represent the causal-temporal relationships. The
temporal nodes allow for having time intervals of different
durations to represent the possible delays between the occur-
rences of parent events (causes) and the corresponding child
events [12].

MTBNs, DBNs, and TNBNs describe the states of tem-
poral BNs over discrete time points but do not model time
explicitly. This makes it very difficult to query MTBNs,
DBNs, and TNBNs over the time at which the state of
a random variable change or an event occurs (i.e., at an
irregular time). Furthermore, MTBNs, DBNs, and TNBNs
slice the time into fixed increments, but in reality, the ran-
dom variables such as chronic conditions evolve at different
time granularities. This makes the inference process very
challenging, especially for large-scale networks. Choosing a
large or small granularity may change the network structure
and cause inaccurate model (for a large time granularity)
and learning/inference inefficiencies (for a small-time
granularity) [13]–[15].

Continuous time Bayesian networks (CTBNs) [16], on the
other hand, explicitly model the time by defining a graph-
ical structure over continuous time Markov processes
(CTMPs) [17]. This allows explicit representation of the
temporal dynamics and the probability distribution of the
random variables over time, i.e., the emergence of a new
chronic condition inMCC patients. However, CTBNs assume
fixed conditional intensities for representing the relationships
between random variables and, therefore, cannot model the
impact of exogenous variables on the conditional dependen-
cies of the network. Additionally, similar to DBNs, TNBNs
and, MTBNs, learning the structure of CTBNs is challeng-
ing and typically carried out by heuristic greedy search
algorithms [18]. This restricts the application of CTBNs
to problems with multiple exogenous variables of different
levels. An example of this problem is when modeling the
temporal relationship between the emergence of different
chronic medical conditions which is affected by individual
patients’ gender, age, race, education, etc.

To address the above challenges, we propose to represent
the conditional intensities (dependencies) of the CTBN as
regularized Poisson regression to take into account the impact
of various levels of exogenous variables on the network
structure and parameters. We then transform the proposed
functional (FCTBN) into a large-scale regularized regression
estimation problem and propose an adaptive regularization
framework with early stopping features for joint structure
and parameter learning. Using a large dataset of patients with

multiple chronic conditions extracted from electronic health
records of the Department of Veterans Affairs, we compare
the predictive performance of the proposed functional CTBN
model with some of the existing methods in the literature,
including LRMCL [19] and unsupervisedMTBN [4].We also
demonstrate the performance of the proposed functional
CTBN for analyzing the trajectories of MCC emergence over
time. Our paper has the following contributions:

1) We propose to formulate the conditional intensities
of the continuous time Bayesian networks (CTBN)
as a function of exogenous risk factors using regular-
ized Poisson regression. the proposed functional CTBN
(FCTBN) enables the personalization of the CTBNpre-
diction and inference for individual patients according
to their risk factors.

2) We propose an adaptive group regularization frame-
work to simultaneously learn the structure and condi-
tional intensities of the proposed functional CTBN. The
information of the regularization path of the proposed
learning algorithm helps the users, i.e., medical prac-
titioners and patients, to achieve the desired level of
sparsity.

3) We propose a Gaussian mixture model (GMM) based
approach for early stopping of the proposed learning
algorithm without losing much information. The pro-
posed approach uses clustering to expedite pushing
insignificant parameters with very small values toward
zero, which may take numerous additional iterations of
the training algorithm.

The remainder of the paper is structured as follows.
Section II provides the relevant literature to the proposed
study. Section III presents the preliminaries and background
for the CTBN. Section IV describes the details of the
proposed functional CTBN and the regularized regression
model for learning its structure and parameters. Section V
presents the study population, the resulting model struc-
ture and parameters, predictive performance, and trajectory
analysis. Section VI provides the summary and concluding
remarks.

II. RELEVANT LITERATURE
CTBNs are graphical models whose nodes are associated
with random variables with states continuously evolving over
time. Consequently, the evolution of each variable depends on
the state of its parents in the graph. Nodelman et al. [13], [16]
presented the framework of CTBN in their previous works.
It was built on the framework of homogeneous Markov
processes [20], which provided the model of evolution in
continuous time and at the same time utilizing the ideas of
Bayesian networks to provide a graphical representation for
a system. CTBNs overcome the limitations of other temporal
models (MTBNS, DBNs, TNBNs, etc.) by explicitly repre-
senting temporal dynamics of a system i.e. they can learn
the probability distribution over time for systems (processes)
that evolve at an irregular time interval [16]. CTBNs have
been used for a variety of dynamic temporal systems like
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discovering the social network dynamics [21], intrusion
in network computer system [22], modelling sensor net-
works [23], reliability analysis of dynamic systems [24],
robot motion monitoring [25], and monitoring and predicting
cardiogenic heart failure [26].

Nodelman et al. [13] derived aBayesian scoring function to
learn the structure of a CTBNmodel from fully observed data.
However, in real life, we often obtain partially observable
data. Thus later, they provided an extension to learn the
structure of a CTBN from partially observable data based
on the structural EM algorithm [27]. Codecasa et al. [28]
extended the CTBN structure learning model presented by
Nodelman et al. [13] to a CTBN classifiers by con-
straining the class nodes (not dependent on time). Their
model combines conditional log-likelihood scoring with
Bayesian parameter learning, which outperformed the previ-
ous log-likelihood scoring function. Yang et al. [3] developed
a non-parametric approach to learn a CTBN structure in
relational domains, with varying numbers of objects and the
relations among them.

Although a CTBN provides a compact representation
over traditional CTMP, for a large or highly inter-dependent
system, the complexity of learning a CTBN model grows
exponentially with respect to a node’s parents. In the
worst case, a node may depend on all other nodes in
the network, resulting in a complexity equivalent to the
original CTMP.

Perreault et al. [29] imposed additional structures on the
model to reduce the complexity in learning the CTBN mod-
els. Cao and Dingzhou [52] modeled a logical OR gate
utilizing the CTBN nodes with deterministic transitions.
Logan et al. [50] extended the Noisy-OR for CTBNs to
reduce the required parameters. In this paper, to reduce the
number of parameters to estimate, we assume the conditional
effects of the parent’s nodes are multiplicative, which is on a
par with the Noisy-OR [48], [51] and the CT-NOR [49]. The
Noisy-OR model assumes the independence of the effects
of parent nodes to reduce the model complexity. Natural
parameterization of the NOR model is equivalent to the
CT-NOR model in the limit, given the bin width approaches
zero.

The inference process in CTBNs is different than infer-
ence in general BN models. Both the exact inference and
approximate inference in CTBNs are NP-hard even if the
initial state values are given [30]. The exact inference [13] in
CTBNs utilizes the full joint intensity matrix and computes
the exponential of the matrix, which is often intractable.
This method of inference often ignores the factored
nature of the CTBNs; thus, most research in CTBNs’
inference has focused on approximation algorithms [31].
Nodelman et al. [32] developed such an approximation
inference method based on expectation propagation. Later,
Saria et al. [33] extended the model to full belief propaga-
tion and provided an algorithm to adapt the approximation
quality. A message-passing scheme has been employed in
neighboring nodes for each interval of evidence provided.

Messages are continually passed till a consistent distribu-
tion has been attained over the interval of evidence. Sev-
eral sample based algorithms have also been developed.
El-hay et al. [34] developed a Gibbs sampling based pro-
cedure to sample from the trajectories given a certain set
of parent conditions while Fan et al. [35] developed an
importance sampling algorithm that computes the expecta-
tions of any function of trajectory to perform the inference
operation given a fixed set of constraints. Methods using
variational techniques such as the belief propagation [36] and
the mean-field approximation [37] have also been developed.
These models utilize systems of ordinary differential equa-
tions to approximate the system distribution. To handle point
evidence, Ng et al. [25] developed a continuous time particle
filtering algorithm.

Aside from CTBNs, a significant amount of work
has also been done to integrate Poisson processes with
Bayes nets to represent events in continuous time.
Rajaram et al. [55] developed the Poisson network model for
representing multivariate structured Poisson processes. They
modeled the waiting times of a process by an exponential dis-
tribution with a piecewise constant rate function that depends
on the event counts of its parents. They also adopt a Bayesian
approach for learning the network structure. Simma et al. [49]
presented CT-NOR, a generative model for representing and
reasoning about the relationships among events in continu-
ous time. Using a parameterized function, the CT-NOR can
incorporate specific domain knowledge about the expected
shape of the distribution of the time delay between events.
They used the expectation-maximization (EM) algorithm to
fit the parameters of the CT-NOR model. Simma et al. [54]
presented a framework for building a probabilistic model of
discrete events over continuous time based on cascades of
Poisson processes. Their Poisson cascades model can exploit
a wide range of delays, transitions, and fertilities. They used
the EM algorithm to inference from the Poisson Cascades
model. Gunawardana et al. [53] described a set of graphical
event models (GEMs) to approximate a board class smooth
multivariate temporal point processes. They used BIC and
ML for parameter and structure learning. They also provided
theoretical results showing that the dependency structure of a
universal family of point process models can be learned from
data.

In this paper, we extend the earlier works in the literature
by formulating the conditional intensities of the transitions
between the states of the CTBN as a regularized Poisson
regression of exogenous risk factors, while assuming the
multiplicative effect of parent nodes to reduce the number
parameters to estimate. We also propose using principal
component analysis (PCA) or kernel PCA to extract few
informative features of exogenous risk factors and reduce
the dimensionality. We develop an adaptive group regular-
ized regression-based framework to simultaneously learn the
structure and parameters of the proposed functional CTBN
model, where the information of the regularization path of
the learning algorithm allows for achieving the desired level
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of sparsity. Additionally, we represent a Gaussian mixture
model to enable early stopping of the estimation procedure.

III. RELEVANT BACKGROUND
In this section we review major components of a
CTBN [13], [16]. A CTBN represents finite-state, continuous
time processes over a factored state, which explicitly repre-
sents the temporal dynamics and allows to extract the proba-
bility distribution overtime when a specific event occurs.

A. MARKOV PROCESS
Markov processes are an important class of random processes
in which the future state of a random variable is indepen-
dent of the past, given the present [17]. Let X denotes a
random variable with n distinct states, X = {x1, x2, . . . ., xn}.
The stochastic behavior of X can be modeled by an ini-
tial distribution P0X and a time-invariant transition intensity
matrix QX of size n× n which can be written as

QX =


−qx1 qx1x2 . . . qx1xn
qx2x1 −qx2 . . . qx2xn
...

...
. . .

...

qxnx1 qxnx2 . . . −qxn


where qxixj represents the rate of transition from state xi
to state xj, and qxi =

∑
j 6=i qxixj . The probability density

function (f ) and the probability distribution function (F) for
staying at the same state (xi) are exponentially distributed
with parameter qxi and calculated as-

f (qx , t) = qxiexp(−qxi t), t ≥ 0 (1)

F(qx , t) = 1− exp(−qxi t), t ≥ 0 (2)

After transitioning, which takes an expected transition
time of 1

qxi
, the variable X shifts to state xj with probability

θxixj =
qxixj
qxi

. While a Markov process provides a straightfor-
ward framework for modeling the temporal behaviour of a
random variable with finite states, it doesn’t scale up well for
large state spaces i.e. the size of intensity matrix, QX grows
exponentially with the number of variables. For example for
a discrete random variable with n = 10 states, it requires
2n=10 ' 1, 024 conditional intensities to be estimated. Thus
to improve the scalability issue, the concept of conditional
Markov process is introduced.

B. CONDITIONAL MARKOV PROCESS
To improve the scalability of Markov processes for large
state spaces, Nodelman et al. [16] introduced the idea of the
conditional Markov process, in which the transition intensity
matrix changes over time, but not as a direct function of time,
rather as a function of the state values of some parent variable
which also evolves as a Markov process. Let, u = {u1, .., uk}
represent the state space of the parent variable, then the

conditional intensity matrix (CIM) QX |u can be written as

QX |u =


−qx1|u qx1x2|u . . . qx1xn|u
qx2x1|u −qx2|u . . . qx2xn|u
...

...
. . .

...

qxnx1|u qxnx2|u . . . −qxn|u


Conditioning the transitions on parent conditions increase

the sparsity of the intensity matrix considerably, which is
especially helpful for modeling large state spaces. When no
parent variable is present, the CIM will be the same as the
classic intensity matrix. When a parent variable u is present,
there will be an intensity matrix associated with each state of
the parent variable u ∈ u. When multiple parent variables are
present, there will be an intensity matrix associated with each
combination of the states of the parent variables, which can
still be represented by u.
For our case study in Section V, we model the transition

intensities between different states of multiple chronic con-
ditions based on conditional Markov processes. The model
formulates the probability of transition between the (discrete)
states of the multiple chronic conditions as a continuous func-
tion of time, namely exponential distributing, with respect to
the associate conditional intensities. Such formulation helps
better to capture the actual progression of themultiple chronic
conditions (Please also see Figure 5 in Section V-C ).

C. CONTINUOUS TIME BAYESIAN NETWORK
Let reconsider xi as a local variable to represent the states i =
{0 : not − having, 1 : having} of a set of chronic conditions
(random variables) X = {diabetes, obesity, hyperlipidemia,
hypertension, cognitive impairment}, whichmay change over
time. A continuous time Bayesian network (CTBN) [16],
[20] can be built by putting together a set of CIMs under a
graph structure to present the temporal behavior and internal
relationships of the local variables (MCC conditions). The
two main components of a CTBN are:

1) An initial distribution (P0X ), which formulates the struc-
ture of the (conditional) relationship among the random
variables (chronic conditions) and is specified as a
Bayesian network.

2) A state transition model (Qx|u), which describes the
transient behavior of each local variable (the states of a
chronic condition) x ∈ X given the states of the parent
variables (related preexisting medical conditions) u as
specified by Equation 3.

Qx|u =
[
−qx0|u qx0x1|u
qx1x0|u −qx1|u

]
(3)

Each node X ={diabetes, obesity, hyperlipidemia, hyper-
tension, cognitive impairment} in the CTBN is a random
variable with finite discrete states (in this study we consider
two states for each node representing having or not-having
a disease). Each edge Xi → Xj in the graph implies the
effect of the parent node (preexisting condition) Xi on the
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evolution of the child node (new condition) Xj. As the graph
suggests, the child node’s evolution cannot simultaneously
depend on the status of the parent nodes [16]. CTBN explic-
itly represents the temporal dynamics of random variables,
which enable the extraction of the probability distribution
over time when a specific event occurs. Unlike traditional
Bayesian networks, CTBN allows for cycles in the graph, G.
This is an important property for modeling reinforcing loop
between random variables, as we will show in the case
study for modeling the relationship between multiple chronic
conditions. Later, we will also use this property to develop
a regularization based method for structure learning of
the CTBN.

D. QUERIES AND INFERENCE
Similar to classic Bayesian networks, CTBNs can be used for
making inferences or answering queries. For instance, having
observations from some of the nodes (preexisting medical
conditions), we can infer about the probability distribution of
some other nodes (new possible medical conditions). Given
the intensity matrix QX |u of the CTBN is formed, it can
be used to answer queries the same way as a Markov pro-
cess. Given a joint intensity matrix QX |u, the distribution P0X
over the state of X at any time t can be calculated using
Equation 4.

PX (t) = P0Xexp(QX |ut) (4)

To calculate the joint distribution over any two points in
time, Equation 4 can be modified as following-

PX (t, k) = P0Xexp(QX |u(t − k)), t ≥ k (5)

The inference operation can be performed using either the
exact or the approximate algorithm. The use of amalgamation
methods [16] is an exact algorithm that involves large matrix
representation. However, for systems with large state space,
it becomes computationally inefficient (also, exact inference
in CTBN is NP-Hard); thus, we tend to utilize the approxima-
tion methods [32], [38]. Sampling-based algorithms can also
be used to perform the inference operation.

E. PARAMETER ESTIMATION
Having a datasetD = {τh=1, τh=2, . . . ., τh=H } ofH observed
transitions, where τh represents the time at which the
hth transition has occurred, and G is a Bayesian network
defining the structure of the (conditional) relationship among
variables, we can use maximum likelihood estimation (MLE)
(Equation 6) to estimate the parameters of the CTBN model
as defined in Nodelman et al. [13]

Lx(qx|u : D) =
∏
u

∏
x

qM [x|u]
x|u exp(−qx|uT [x|u]) (6)

where, T [x|u] is the total time X spends in the same state x,
andM [x|u] is the total number of times X makes a transition
out of state x given, x = x ′. The log-likelihood function can

be then written as-

lx(qx|u : D) =
∑
u

∑
x

M [x|u] ln(qx|u)− qx|uT [x|u] (7)

Maximizing Equation 7, provides the maximum like-
lihood estimate of the conditional intensities as shown
in Equation 8

q̂x|u =
M [x|u]
T [x|u]

(8)

The above estimation is true for the case with complete
data. For the cases including incomplete dataset, expectation
maximization (EM) algorithms can be used [27], [32].

IV. PROPOSED METHODOLOGY
We begin with formulating the conditional dependencies
of the CTBN as a Poisson regression of some exogenous
variables z. Next, we drive the likelihood function of the
functional CTBN as a collection of Poisson regression like-
lihoods. Afterwards, we propose an adaptive group regular-
ization method for structure and parameter learning of the
functional CTBN. Finally, we present post-processing and
early stopping based on Gaussian mixture model clustering
of the estimated parameters.

A. FUNCTIONAL CONTINUOUS TIME BAYESIAN
NETWORK WITH CONDITIONAL DEPENDENCIES
AS POISSON REGRESSION
In many real world problems, such as the progression of
multiple chronic conditions, which is discussed in our case
study, the evolution of the state variables (chronic conditions)
not only depends on their immediate past state and the states
of their parents variable (pre-existing conditions) but also
(possibly) on some exogenous variables (socio-demographic
factors).

We propose to formulate the conditional intensities of the
CTBN as a function of exogenous risk factors using a Poisson
regression, which utilizes a special set of generalized linear
models. Let z = {z1, z2, . . . , zm} denote a set of exogenous
variables, i.e., patient-level risk factors such as age, gender,
race, education, marital status, etc. The rate of transition
between any two-state variables, (say, chronic conditions) can
be derived as:

log(qxixj|u) = β0xixj|u + β1xixj|uz1 + . . .+ βmxixj|uzm
= zβxi,xj|u (9a)

log(qxi|u) = β0xi|u + β1xi|uz1 + . . .+ βmxi|uzm
= zβxi|u (9b)

where βxi|u = [β0xi|u , . . . , βmxi|u ]
ᵀ and βkxi|u =

∑
i 6=j βkxixj|u

are the coefficients of the Poisson regression. When the
state space of the system and related conditions are binary
(as in our case study on MCC transitions, where MCC states
include having/not having each of the conditions), the con-
ditional intensities in Qxi|ui , can be estimated just using
Equation 9b because for Markov processes with binary states
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qxi|u = −
∑

j 6=i q(xixj|u) = −q(xixj,j 6=i|u). This feature con-
siderably simplifies the estimation of the functional CTBN
conditional intensity matrix based on Poisson regression.

B. PARAMETER ESTIMATION
Having a dataset of state variables’ transition trajectories,
D = {τ(p=1,h=1), . . . , τ(P,H )}, where τ(p,h) represents the
time at which the hth (MCC) transition of the pth subject has
occurred, we can use maximum likelihood estimation (MLE)
to estimate the parameters of the proposed functional CTBN.
Assuming that all transitions are observed, the likelihood of
D can be decomposed as the product of the likelihood for
individual transitions, q. Let d = 〈z, u, xi|u, td , xj|u〉 repre-
sents a state transition for subject p with risk factors z, and
parent variables u, which/who made transition to state xj|u
after spending the amount of time td = τ(p,h) − τ(p,h−1) in
state xi|u. If the state space of the conditions is considered
as binary, i.e. having/not having a chronic condition, the
likelihood of the single transition d can be written as in
Equation 10

Lx(zβxi|u : d) =
∏
u

∏
xi

qxi|u
[
exp(−qxi|utd [xi|u])

]
∏
u

∏
xi

exp(zβxi|u)[
exp(−exp(zβxi|u)td [xi|u])

]
(10)

By multiplying the likelihoods of all transitions for all
subjects (patients) (τ(p,h) ∈ D) and taking the log, we obtain
the overall log-likelihood function as in Equation 11

lx(βxi|u : D) = log[
∏
p

∏
h

∏
u

∏
xi

qxi|uexp(−qxi|ut
h
dp [xi|u])]

=

∑
p

∑
h

∑
u

∑
xi

(zpβxi|u)

−

∑
p

∑
h

∑
u

∑
xi

{
thdp [xi|u]exp(zpβxi|u)

}
(11)

Equation 11 is a convex function in terms of βxi|u and can
be maximized using a convex optimization algorithms such
as Newton-Raphson.

Given the structure of the functional CTBN (See Figure 1),
i.e. the parent set for each variable, the maximum number of
parameters to be estimated in Equation 11 will be ¯̄x × ¯̄z ×
2max( ¯̄u)+1, where ¯̄x is the number of state variables (condi-
tions), ¯̄z is the number of exogenous variables (risk factors)
presents in the system, andmax( ¯̄u) is themaximum number of
parents considered (pre-existing diseases for each condition).
Therefore, as in classical Bayesian networks, the number of
parents has a direct and exponential influence on the com-
putational efficiency of the estimation process and should
be limited to a small number. We propose to assume the
conditional effect of parents is multiplicative, i.e. qxi|u1,u2 =
qxi|u1 .qxi|u2 , to make the conditional effect of the risk factors

FIGURE 1. Illustration of the functional CTBN for 5 MCC including
Traumatic Brain Injury (TBI), Back Pain (BaPa), Post Traumatic Stress
Disorder (PTSD), Depression (Depr), and Substance Abuse (SuAb) based
on the case study discussed in section V. The thickness of the edges
represent the strengths of the conditional intensities, qx|u.

additive given the set of parents, i.e. βxixj|u=u1,...uk =

βxixj|u1 + . . . + βxixj|uk . This assumption, which is on a par
with the Noisy-OR [48], [51] and the CT-NOR [49], reduces
the maximum number of parameters to be estimated to ¯̄x×¯̄z×
2× (max( ¯̄u)+ 1)). However, in situations where the number
of exogenous variables (risk factors for the multiple chronic
conditions) are large, the estimation of the Poisson regression
parameters can still be computationally challenging, even
with the multiplicative assumption. To address this problem,
we propose to consider principal component analysis (PCA)
or kernel PCA (KPCA) to first extract a few informative
features of z, and then use those features of the original
covariates for building the Poisson regression model for each
conditional intensity [39]. While reducing the interpretabil-
ity of the estimated parameters (βx|u), using dimensionality
reduction (PCA or KPCA) helps with efficient modeling of
the non/linear relationship among the risk factors. Consid-
ering the PCA for our case study, while it is restricted to
only linear correlation between (exogenous) variables, Our
analysis shows the PCA captures a considerable portion of
variation (> 82%) in our dataset using only the first principal
component, which is also evidenced in the proposed model
performance as described in Section V.

C. ADAPTIVE GROUP REGULARIZATION FRAMEWORK
FOR STRUCTURE LEARNING IN CONTINUOUS TIME
BAYESIAN NETWORK
The parameter estimation approach presented above requires
the parent set of each condition to be known, which is equiv-
alent to knowing the structure of the Bayesian network. Here,
we propose an adaptive group regularization-based frame-
work to simultaneously learn the structure (G) and condi-
tional intensities (Qxi|u) of the functional Bayesian network
model. Regularization-based structure learning is a recent
approach that is gaining popularity for parameter estimation
in graphical models [40]–[42]. However, since regularization
can result in cycles in graphical models, it is not generally
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considered for directed graphs. Given that the proposed func-
tional CTBN has a special structure based on a conditional
intensity matrix that allows for cycles, this study proposes
to extend the regularization-based structure learning to func-
tional CTBN.

Considering the negative log likelihood of the fully con-
nected functional CTBN, we propose to add an adaptive
group regularization term to the negative log likelihood func-
tion to penalize groups of parameters pertaining to each
specific conditional intensities as in Equation 12.

min−lx(q : D)+ k
∑
xi|u

λj‖βxi|u‖ (12)

where, ‖βxi|u‖ =
√∑

u
∑

xi (βxi|u .β
T
xi|u ) is the norm of

the group of parameters associated with each conditional
intensity, k is the groups size which is based on the
number of coefficients in the Poisson regression for each
conditional intensity, λj = λ‖β̃ j‖

−1 is the tuning param-
eters of the adaptive group regularization that control
the amount of shrinkage, where λ is inversely weighted
based on the unpenalized estimated value of the regression
coefficients β̃ j [43]. The index j implies the adaptive penaliza-
tion applied to each grouped parameter. Fast-iterative shrink-
age thresholding algorithm (FISTA) can be used for solving
Equations 12 [44]. Figure 3 shows the regularization path
of the tuning parameter for some of the parameters of the
proposed model.

An interesting feature of the adaptive group-regularization
based structure learning is that we can use the regulariza-
tion path to control the level of sparsity in the proposed
functional CTBN (See Figure 2).

FIGURE 2. The effect of changing the tuning parameter (regularization
path) on the structure of the functional CTBN for the 5 MCC in our case
study including TBI, BaPA, PTSD, Depr, and SuAb.

D. POST PROCESSING AND EARLY STOPPING
Each of the conditional dependencies (edges) in the pro-
posed functional CTBN is consisted of a Poisson regres-
sions with multiple exogenous variables. For cases where
the number of parent variables and/or the exogenous vari-
ables are large, the process of structure and parameter learn-
ing requires substantial computation. However, the majority
of changes in the estimated values of the (Poisson regres-
sion) parameters happen in the early iterations of the

FIGURE 3. The regularization path of the tuning parameter for the
proposed model (For the sake of simplicity only some of the total
learned parameters are shown).

learning algorithm. The (numerous) remaining iterations of
the learning algorithms make minor adjustments to the esti-
mated values of the parameters, especially pushing parame-
ters with a small value toward zero. These later steps to push
insignificant parameters toward zero can take many iterations
without significantly changing other (significant) parameter
values.

Meanwhile, for a sufficiently large choice of the tuning
parameter, some of the parameters will be zero. This is
because for a general regression problem, setting the tuning
parameter to infinity results in all coefficients except the
intercept being zero. On the other hand, a very small choice
of the tuning parameter can result in all estimated parameters
being non-zero. Additionally, having all the parameters in the
proposed model as non-zero would be equivalent to having
a fully connected functional CTBN network, which is not
expected in most cases. Therefore, it is plausible to have
some zero parameters to be discovered by an appropriate reg-
ularization method, such as the adaptive group regularization
framework as described in section IV-C.

To reduce the number of (additional) iterations for zero-
ing non-significant parameters, we propose to use Gaus-
sian mixture models (GMM). For this purpose, we stop the
learning algorithm when there is no significant change in
the estimated parameters. Next, we use a GMM to model
the estimated parameters [45]. The GMM is expected to
have one cluster with a mean around zero (representing the
insignificant parameters to be pushed toward zero) and one
or more clusters with non-zero means (representing signifi-
cant parameters). Once the clusters and their parameters are
identified, we choose the cluster with (around) zero mean and
assign a value of zero to all parameters within±3σ (standard
deviation) around the mean µ ∼ 0. We run an additional
iteration of the learning algorithm with the zerod́ parameters
to ensure convergence.

E. COMPUTATIONAL COMPLEXITY
In this section, we derive the time complexity of algorithms
presented earlier. Let, n denote the number of node/variables
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Table 1. Demographics of the patients included in the study.

(chronic conditions) in the graph, k denote the number of
observation, l denote the number of parents with respect to
a node x, q denote the number of transition of a condition
from one state to another, r denote the number of possible
values/instances for each variable (in our study r = 2,
which represents having/not having a condition), p denote
number of risk-factors, andm number of learned coefficients.
The algorithm consists of two components: (1) Learning
the Parameters of Functional CTBN: O(lnr + 2rnlpr + nl),
and (2) GMM for Early Stopping and Structure
Learning: O(m3). Integrating the complexities of the 2 com-
ponents with some algebraic simplification, the overall com-
plexity can be derived as 0(2rnlpr).

V. CASE STUDY: IDENTIFYING PATTERNS OF MULTIPLE
CHRONIC CONDITIONS
Long-lasting diseases, otherwise known as chronic condi-
tions, can be considered a staple example of degradation
processes that progress over time and contribute to the devel-
opment of other new chronic conditions. The presence of
two or more chronic medical conditions in an individual is
commonly defined as multimorbidity, or multiple chronic
conditions (MCC) [46]. Here, we use the proposed functional
CTBN to find the impact of patient level risk factors on
the conditional dependencies of MCC and the evolution of
different chronic conditions over time.

A. STUDY POPULATION AND DEMOGRAPHICS
The dataset used for this study includes 608,503 patients
with two or more MCC (including Traumatic Brain Injury
(TBI), Post Traumatic Stress Disorder (PTSD), Depression
(Depr), Substance Abuse (SuAb), and Back pain (BaPa))
who received medical care from the Department of Veteran
Affairs for at least three years between 2002-2015. For
meaningful prediction, we have removed the data for patients
whose data was not maintained over three years. The dropout
of patient information may be caused by but not limited
to death, not requiring care or receiving care, etc. After
dropping such data, the number of patients considered for
the analysis is 257,633. The dataset includes the ICD-9-CM
diagnosis codes documented during the course of VA care,
during each inpatient or outpatient encounter. The risk factors
(exogenous variables) considered in the dataset include age
at VA entry, sex, race/ethnicity (White, African American,

Hispanic, Asian/Pacific Islander, Native American,
unknown), and education (less than high school, high school
graduate, some college, college graduate, post-college educa-
tion). Table 1 shows the summary of the collected data based
on patients’ demographics. In this study, in order to reduce the
computational complexity of the algorithm and to show the
application of the dimensionality reduction technique, we use
PCA to reduce the number of risk factors into one.

B. DIAGNOSED HEALTH CONDITIONS
We used ICD-9-CM codes from the inpatient and
outpatient data (excluding ancillary and telephone care) to
identify Traumatic brain injury (TBI), Post Traumatic Dis-
order (PTSD), Depression (Depr), substance abuse (SuAb),
Back pain (BaPa) using validated published algorithms [47].
PTSD, SuAb, and BaPa required two diagnoses at least seven
days apart, while TBI, which is an acute injury, required
only a single diagnosis. Each condition was coded as ‘‘0’’
or ‘‘1’’ for each year of care, with 1 indicating a diagnosis
for that condition regardless of the number of instances for
which each condition was diagnosed (Additional information
on ICD-9 codes for the considered conditions can be found
on appendix B).

C. STRUCTURE AND PARAMETER LEARNING
To identify the optimal value of the tuning parameter (λ) of
the group regularization method for structure and parame-
ter learning, we use cross-validation error based on several
λ values (0, 100, 101, 102, . . . ., 106). Figure 4a shows the
cross-validation error for different λ values.
We attain the structure of the functional CTBN and the

conditional intensities based on the parameters estimated
using the optimal value of λ = 103. Figure 4c illustrates
the heatmap of the estimated parameters (β) of the proposed
CTBN based on λ = 103. As shown in figure 4a and 4c,
setting λ = 103 not only provides considerably low (cross
validation) error, but also significantly reduces the number of
(non zero) parameters (a sparsity ratio of 64.75%).

Figure 4c provides the heatmap of the estimated parameters
of the learned functional CTBN model, which is equivalent
to the graphical model presented in figure 1. To identify the
final structure of the functional CTBN, considering the sparse
learned parameter matrix in figure 4c, if all parameters (coef-
ficients) of the Poisson regression connecting a parent node
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FIGURE 4. (a) Tuning of the hyper parameter (λ) based on cross validation, (b) Post processing and early stopping of the structure and parameter learning
process using Gaussian mixture model, and (c) The estimated parameters of functional CTBN based on the optimal value of the tuning parameter.

to a child node are zero, there exists no edge between them.
On the other hand, if there exists a non zero parameter for the
Poisson regression model connecting a parent node to a child
node, there exists an edge between the two nodes, where the
strength of the connection is represented by the conditional
intensity value.

Meanwhile, to reduce the number of training itera-
tions for obtaining the spare matrix in Figure 4c, we use
GMM as explained in section IV-D. Figure 4b shows the
Gaussian densities fitted to the estimated parameters at

iteration 30,000 of the learning algorithm, which shows two
clusters including one with zero mean and small variation
(nonsignificant parameters), and the other with non zero
mean and high variance (significant parameters). We assign a
value of zero to all parameters within ±3σ (standard devi-
ation) of the cluster with the mean around zero. We have
verified this result by running the learning algorithm for an
additional 20,000 iterations.

Additionally, the functional CTBN allows for loop in the
structure (as shown in figure 1). This is an important feature
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FIGURE 5. Learned functional CTBN structure for a set of given conditions and their progression over time. This includes Traumatic
Brain Injury (TBI), Back Pain (BaPa), Post Traumatic Stress Disorder (PTSD), Depression (Depr), and Substance Abuse (SuAb) and
the thickness of the edge represents the strengths of the conditional intensities, qx|u. The patient in consideration have the
pre-existing conditions of TBI, BaPa and Depr. Overall, it illustrates the dynamics of the transition probabilities (risk of acquiring a
new condition) of MCC for a sample patient.

Table 2. The AUC performance (of ROC) of the Functional CTBN (FCTBN) model for predicting the future in comparision to MTBN and LRMCL.

in studying MCC because an MCC condition can simulta-
neously be the cause and/or the effect (result) of another
MCC condition, i.e., depression and substance abuse. The
functional CTBN also allows for the self-loops to represent
staying in the same MCC state (existing/parent conditions)
over (fixed amount of) time [19]. Figure 5 illustrates the
dynamics of the transition probabilities of MCC, namely the
risk of acquiring a new condition over a period of three
years for a sample patient with preexisting conditions TBI,
BaPa, and Depression. As shown in the figure, the transition
probabilities change as a function of time, which is intuitive
in the presence of the preexisting conditions TBI, BaPa, and
Depression. In particular, having the preexisting conditions
TBI, BaPa, and Depression increases the likelihood of acquir-
ing the new disorders PTSD and SuAb over time. It also
increases the reinforcing loop between the existing condi-
tions, which is also intuitive. This can help health practition-
ers and patients to better the short- and long-term (negative)
impact of MCC on acquiring new conditions.

D. PERFORMANCE EVALUATION: PREDICTIVE POWER
Weutilize the validation set method based on 250 000 patients
for training and 7 633 patients for validation, along with the
Area Under the Curve (AUC) of the receiver Operatic Char-
acteristic (ROC) function to evaluate the performance of the
proposed FCTBN model. We also compare the performance
of the FCTBN with two existing methods from the liter-
ature including unsupervised multilevel temporal Bayesian
networks (MTBN) [4] and latent regression Markov mixture

clustering (LRMCL) [19]. The step-by-step procedure of
training and testing of the comparing algorithms is provided
in appendix A. For the comparisons, considering the patients’
existing MCC in the base year, which can be any combina-
tion of the 5 MCC including no condition, we use each of
the comparing methods to predict the future combination of
conditions for the next 5 years.

Table 2 illustrates the AUC performance of the comparing
methods for each of the five conditions (presented in the
columns) for 2 to 5 years from the baseline (presented in
the rows). As can be seen from the table, the proposed func-
tional CTBN generally provides better accuracy compared to
MTBNandLRMCL for 4 out or the 5 conditions (Depression,
Substance Abuse, PTSD, and Backpain) over both short and
long term predictions (2-5 years). However, it shows less
predictive power compared to MTBN for forecasting TBI.
One justification for the lower prediction accuracy for
TBI may be the distinct temporal behavior of TBI occur-
rences. At the patient level, TBI occurrence is generally
a more singular event with chronic clinical ramifications
that are coded separately in the electronic medical record.
Meanwhile, the performance gap improves for the longer
predictions, i.e., years 4 and 5, as it captures the temporal
pattern of staying in the TBI state more effectively.

It may also be worth noting that the predictive perfor-
mance of the functional CTBN as shown in Table 2 is
based on the model trained on risk factors with reduced
dimension (1st principal component of the risk factors)
to improve the computational time, while the MTBN
and LRMCL take advantage of the original risk factors.
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Therefore, we believe training the functional CTBN model
with the complete risk factors may further enhance its predic-
tive performance (with the trade-off of increasing the compu-
tational time).

We believe the improved performance of the functional
CTBN is partly because of the proposed adaptive group
regularization-based learning framework for structure and
parameter learning. Specifically, we believe the use of group
regularization, in the way proposed in the manuscript, results
in fewer yet more informative connections, which improve
the training and querying (inference) process.We have shown
this concept in one of our related research works [66].We also
believe allowing the model to contain loops (bidirectional
connections) helps better capture the (reinforcing) dynamics
of the multiple chronic conditions. Additionally, we think
explicit capturing of the time can positively affect the learning
of parameters of the model, even though the prediction task
is actually on discrete time stamps, i.e., years.

E. TRAJECTORY ANALYSIS
An interesting feature of the proposed functional CTBN is
the trajectory analysis of state variables (MCC conditions).
Here, we demonstrate two cases of MCC trajectory analyses
for different preexisting (parent) conditions and age groups
(exogenous variables). In the first case, we investigate the
effect of age (groups) on the trajectory of Substance Abuse
given TBI and PTSD as the preexisting conditions. Figure 6
shows the most probable trajectory for the emergence of sub-
stance abuse for different age groups for the next 24 months
given TBI and PTSD in the base month. It can be seen that the
above 51 age group is more prone to be diagnosed with sub-
stance abuse than younger age groups, with the probability of
developing substance abuse for this age group going above
80% just after four months. Whereas, the 18-30 age group
reaches 80% after 10months, the 31-40 age group passes 80%
mark after 7months, and the 41-50 groupmeets the 80%mark
after 5 months.

This is on par with findings in the medical literature. In a
study with service members with mild TBI Miller et al. [59]
found an increased risk for addiction-related disorders
including alcohol and nicotine. In a separate study with
6,824 military personnel, Adams et al. [60] conducted a
path-based analysis to examine the association of binge alco-
hol drinking with TBI and PTSD. They found almost 70%
of the total effect of TBI on binge drinking was from the
direct path effect, and only 30% represented the indirect
effect through PTSD. Graham et al. [65] found a decrease
in substance abuse post-TBI in a younger age group, likely
motivated by significant influences on lifestyle choices and
functional status given proper support from VA.

In the second case, we investigate the effect of age (groups)
on the trajectory of depression given PTSD as the exist-
ing (prior) conditions. Figure 7 shows the most probable
trajectory for the emergence of depression for different age
groups for the next 24 months given PTSD in the base month.
As can be seen from figure 7 the probability of developing

FIGURE 6. The risk trajectory of developing Substance Abuse disorder
over time for patients of different age groups who are diagnosed with TBI
and PTSD at baseline.

FIGURE 7. The risk trajectory of developing Depression over time for
patients of different age groups who are pre-diagnosed with PTSD.

depression after PTSD increases (almost) linearly over time,
but with a different slope for different age groups. Unlike the
first case, here, the younger patients, i.e., 18-30 age group,
are more like to develop depression compared to the other
age groups. As the (blue) trajectory line in figure 7 shows,
the 18-30 age group trajectory has a considerably high slope
reaching a risk of 50% after 20 months. Meanwhile, the slope
of the trajectory line reduces for older age groups, i.e., the
purple line in the figure shows a marginal increase in the risk
of depression for patients aged 51 and older. These differ-
ences in age group findings may reflect variability in clinical
screening approaches, provider biases, and differences in
clinical priorities by these patient populations, resulting in
increased or decreased likelihood of getting diagnosed with
these conditions. For example, younger age group veterans
have been undergoing a widespread national screening pro-
gram to identify PTSD and to establish treatment and follow-
up, which would likely lead to the additional diagnosis of
depression, a known comorbid condition.

The medical literature also supports this result.
Lippa et al. [61] used factor analysis to identify patterns of
comorbidity in a sample of 255 previously deployed Post-
9/11 service members and veterans who participated in a
structured clinical interview. They found that over 90% of
the patients had psychiatric conditions, and approximately
half had three or more conditions. They also identified
four clinically relevant psychiatric and behavioral factors,
including deployment trauma factor, somatic factor, anxiety
factor, and substance abuse factor, which account for 76.9%
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of the variance in the data. They concluded that depression,
PTSD, and a history of military mild TBI could comprise
a harmful combination associated with a high risk for sub-
stantial disability. In a separate study, Duncan et al. [62]
found 36% of depressed patients screened positive for PTSD.
Kobayashi et al. [63] found that younger and middle-aged
VA primary care patients had more severe PTSD symptoms
compared to older patients; however, it was impossible to
disentangle the effects of age from a passage of time, limiting
interpretation of the findings. On a separate study, on average,
women reported the age of onset of depression of 23 –24
years. About half the women were experiencing a mild-
to-moderate depressive episode, with 47% experiencing a
severe depressive episode [64]. Such information can help
medical practitioners develop more individualized plans to
prevent the emergence of new chronic conditions according
to the patient’s specific risk factors and prior conditions.

VI. CONCLUSION
In this paper, we propose a functional continuous time
Bayesian network with conditional dependencies represented
by regularized Poisson Regression that can be used to learn
both the structure and parameters of the network by solv-
ing a non-smooth convex optimization problem. While most
Bayesian networks are sensitive to time granularity, the pro-
posed functional CTBN can model finite-state continuous
time Markov processes over a set of factored states at vari-
ous time granularity. The FCTBN allows for extracting the
probability distribution of various combinations of events at
different times with respect to any predetermined values of
exogenous variables. The model also utilizes an adaptive
group regularization method to learn a sparse representation
of the system. For the case study, we have used the proposed
FCTBN to model the complex temporal relationship among
multiple chronic conditions with respect to patient-level risk
factors based on a dataset from the Department of Veter-
ans Affairs. The proposed model provides a considerable
improvement in prediction performance in comparison to
multilevel temporal Bayesian networks (MTBN) and latent
regression Markov mixture clustering (LRMCL). It also
effectively characterizes the trajectory of a medical condi-
tion over time when for different sets of preexisting medical
conditions and risk factors. The proposed FCTBN allows for
the personalization of the predictions and therefore has both
population and patient-level applications. It can also inform
clinicians about the emergence trajectory of MCC over time
and the significant risk factors affecting the trajectory, which
help to guide clinical care to prevent or delay the onset of new
chronic conditions.
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