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ABSTRACT Space-time adaptive processing (STAP) is a well-known and effective method to detect targets,
obscured by interference, from airborne radars that works by coherently combining signals from a phased
antenna array (spatial domain) with multiple radar pulses (temporal domain). As widely demonstrated,
optimum STAP, in the sense of maximizing the output signal to interference plus noise ratio (SINR), is a
coherent, linear, transversal filter (i.e., tapped delay line), that can be synthesized by a complex-valued weight
vector. This paper extends previous work that focused on adaptive spatial-only nulling; it derives the optimum
phase-only STAP, namely, the optimal weight vector that maximizes the SINR subject to the constraint it
belongs to the N-torus of phase-only complex vectors, where N is the number of spatio-temporal degrees
of freedom. Because this problem does not admit a closed-form solution, it is solved numerically using the
phase-only conjugate gradient method (CGM). The effectiveness of phase-only STAP is demonstrated using
both SINR values and receiving beampattern shape, comparing it with the optimum fully-adapted STAP and
the nonadapted beam former responses as well as other possible counterparts. Additionally, several analyses
of practical utility also demonstrate the benefits provided by phase-only STAP.

INDEX TERMS Radar signal processing, space time adaptive processing (STAP), adaptive radar receiver,

phase-only adaptive nulling, phase-only STAP, gradient descent method.

I. INTRODUCTION

Radar space-time adaptive processing (STAP) is a powerful
technique used in airborne systems to detect a target embed-
ded in interference potentially comprising clutter, jamming
and noise [1]-[5]. More in details, STAP is the processor
capable of jointly combining the signals acquired by mul-
tiple antenna’s elements of a phased-array, indicated as the
spatial or angular domain, and in a coherent processing inter-
val (CPI) composed by multiple pulse repetition intervals
(PRIs), that is the temporal or Doppler domain [2]. By doing
so, even if the target is indistinguishable in a single space
or time domain, it would be visible (and hence detected,
tracked and classified) in the joint space-time domain [2],
[4]. It is worth highlighting that STAP can be seen as a
two-dimensional (2-D) filter jointly combining beamform-
ing and Doppler filtering [2]. In particular, it should be
observed first that in analyzing the detection capabilities
of a radar system it is essential to take into account the
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signal to interference plus noise ratio (SINR) that provides
a measure of the radar strength to distinguish the target
component with respect to the interferences in the received
signal. Therefore, assuming a radar transmitting a coherent
pulse train through a phased-array antennas, it should be
proved (see [6] for more details) that the processor that
maximizes the output SINR is a coherent, linear, transversal
filter.

Due to the primary role of this processing in airborne
radars,! exhaustive technical literature has been published
on this interesting and challenging topic aimed at improv-
ing several characterizing aspects [9]. Methodologies for the
on-line computation of the weight vectors in STAP have been
proposed and some applied in practice in [10]-[14]. These
methods exploit computationally efficient techniques as well
as lattice-based algorithms to obtain a variety of adapted
beam focused on different directions and Doppler frequencies
and, at the same time, strongly reducing the computational

ISTAP finds application to also other contexts such as to synthetic aperture
radar (SAR) processing [7], [8].
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burden towards real-time implementations. Moreover, several
studies have been conducted to demonstrate the effectiveness
of the radar STAP in such environments that go beyond
the classic homogeneous assumption [15]-[19]. For instance,
in [18], space-time models for both amplitude and spectral
clutter heterogeneity are proposed and the losses experienced
by STAP have been evaluated under these circumstances.
Then, in [20] optimal and adaptive reduced-rank (both two-
and three-dimensional) STAP algorithms for joint hot and
cold clutter mitigation are provided. Analogously, also in [21]
some applications of reduced-rank methods for STAP have
been described and deeply analyzed. Again, some works,
e.g. [22]-[25], have investigated the potential exploitation of
some a-priori information about the disturbance covariance
to improve the radar STAP detection capabilities. Moreover,
in [26] a partially adaptive STAP based on the so-called
FRACTA (a reiterative censoring and detection procedure)
algorithm is implemented aimed at reducing the computa-
tional complexity as well as the required sample support.
Other developments have been provided in [27], where the
authors propose a code design algorithm based on the maxi-
mization of the detection performance of a radar STAP con-
trolling the regions of achievable values for the temporal and
spatial Doppler estimation accuracy, as well as the degree of
similarity with a pre-fixed radar code. Moreover, [28] models
the disturbance as a low-rank spherically invariant random
vector (SIRV) clutter plus a zero-mean white Gaussian noise
and proposes a STAP algorithm framed within this context
exploiting the projection of the estimate in the clutter sub-
space. In [29], a robust adaptive beamforming is developed
in the presence of some mismatches in the desired signal
and the disturbance covariance for a factored radar STAP.
Beyond STAP, some interesting developments can be found
in [30]-[34], where a joint design of transmit waveform and
receive filter is performed using the output SINR as objective
function.

All the above-mentioned research papers are essentially
based on the computation of the weight vector, that for
the optimum adapted radar STAP (i.e., that maximizing the
SINR) is essentially described by a number of complex quan-
tities that would be multiplied to the received signal samples
in the receiving filter. However, in several practical imple-
mentations, the radar receiver could comprise only phase
shifters not-always sharing also amplitude tuners; therefore,
it would be interesting to implement complex weights having
a constant modulus, namely to derive a phase-only weight
vector. This problem has been addressed in [35], where the
optimum phase-only adaptive array has been designed for-
malizing the problem as a SINR maximization constraining
the weight vectors to belong to the phase-only space. The
problem has been solved thanks to two different algorithms
that are the phase-only conjugate gradient method (CGM)
and the Newton’s method. This paper addresses the problem
of optimum phase-only STAP, extending the work focused
on phase-only adaptive spatial nulling of [35] filling the
gap towards the radar STAP. The idea is to find the STAP
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weight vector maximizing the SINR constraining it to belong
to the space of phase-only vectors. As in [35], also in this
case the problem does not admit a closed-form solution, and
it is solved resorting to the phase-only CGM. Even if the
considered method provides only a local maximization of
the SINR, a proper selection of the starting point allows to
reach near-optimum performance. The effectiveness of the
phase-only STAP is shown in the analysis section, evaluating
the receiving beampattern shape, the achievable SINR, and
the sidelobes level of the adapted two-dimensional beam
also in comparison with the optimum adapted STAP as well
as to other possible counterparts. An analysis of the phase
behavior, also in the presence of a limited number of bits to
code them, is performed to highlight the effectiveness of this
method also in practical situations. Additionally, the fully-
adapted phase-only STAP architecture is analyzed to verify
the validity of the Reed-Mallet-Brennan rule [36]. Finally,
amethod for jointly optimizing the transmitted waveform and
the receiving filter, constraining both of them to be phase-
only vectors, is also provided.

Summarizing, the main contributions of this paper are:

« the derivation of the optimum phase-only STAP extend-
ing a previous work that focused on adaptive spatial-only
nulling;

« extensive analyses of the phase-only STAP in several
interfering scenarios of interest and to practical imple-
mentation tests;

« the application of the method for jointly optimizing the
transmitted waveform and the receiving filter, constrain-
ing both of them to be phase-only vectors.

The paper is organized as follows. Section II briefly recalls
the STAP concept, introduces the formalism together with
the description of the considered radar architecture. Then,
Section IIT presents the phase-only STAP and provides the
description of the used solution based on the CGM. The per-
formance analyses are conducted and discussed in Section IV.
Conclusions and suggestions for possible future develop-
ments are given in Section V.

Notation:

We use boldface for vectors a (lower case) and matrices
A (upper case). The transpose and the conjugate transpose
operators are denoted by the symbols (-)” and (f respec-
tively. Diag (a) is the diagonal matrix whose i-th diagonal
element is the i-th entry of @, whereas diag(A) is the diagonal
part of the matrix A. I refers to the identity matrix (its size
is determined from the context). CN and TV are the sets
of N-dimensional vectors of complex numbers and elements
of the phase-only torus, respectively. The symbols ® and ©
indicate the Kronecker and the element-wise or Hadamard
product, respectively. The letter j represents the imaginary
unit (i.e. j = +/—1). For any complex number x, |x| indi-
cates its modulus, and Im {x} indicates its imaginary part.
The Frobenius matrix norm is denoted by || - ||, and E[-]
is statistical expectation. Finally, [A, B] between matrices
A and B is the Lie bracket or commutator product defined
asAB — BA.
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Il. OPTIMUM SPACE-TIME ADAPTIVE PROCESSING

This section formalizes the concept of space-time adaptive
processing together with the description of the respective
optimum radar receive filter. To do this a pulse-Doppler radar
comprising L spatial channels and transmitting M coherent
pulses is taken into account. Hence, the radar antenna is a
uniformly spaced linear array antenna (ULA) consisting of L
elements. Indicating with 6 the azimuth angle variable, the
spatial steering is given by

v,(0) = I:Lej¢sin(9)’ “.,ej¢(L71)sin(9)i|T, )

having implicitly assumed that the space between antenna’s
elements is equal to d = Ag/2, with Ao the radar operating
wavelength. The radar is assumed to transmits a coherent
train of M pulses at regular pulse repetition interval (PRI),
say T. Therefore, indicating with vp the frequency variable
representing the Doppler frequency normalized to PRF =
1/T, the temporal steering is

v(vp) = [1, el?mvn eﬂ”(M—“”D]T ) )

Then, the joint spatio-temporal steering vector of size
N = ML is defined to be

v(vp, 0) = v/(vp) ® vs(H). 3)

For sake of brevity, in what follows, the dependence of v
on vp and 6 will be omitted. Let us now denote by

r=v+n 4

the N-dimensional vector associated to the received signal of
the cell under test, where n is the zero-mean vector associated
to the disturbance components. Then, it can be demonstrated
that the optimum filter output is given by the inner product
between the weight vector and the useful signal, namely

s =wir, (5)

where w € CV is the complex N-dimensional weight vector.
Moreover, denoting by E[rn'] = M the unknown distur-

bance (viz. clutter plus directional interference plus noise)

covariance matrix, the SINR at the output of the above men-

tioned filter is

|

SINR = 6
wiMw ©

It can be shown that the SINR described in (6) attains its
maximum when the weight vector is chosen as

w=M"ly, @)

that is typically referred to as the optimum radar receiver
filter [2], [3] whose schematic representation is given in
Figure 1. As it can be clearly observed from (7), the optimum
receiving filter for STAP essentially assumes the knowledge
of the steering vector v and requires the computation of
the disturbance covariance matrix. Conversely, a phase-only
adaptive radar STAP is based on the computation of the
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complex weights that are described by only a phase term
and that maximizes the SINR in (6). A direct method to
estimate the optimum phase-only weight vector does not exist
and requires the use of gradient-based methods. In the next
section, following the same line of reasoning of [35], an effec-
tive method based on the Hestenes and Stiefel’s conjugate
gradient algorithm [37] is derived.

array elements
1

2 L
pulses
M v(0, vp) 1 |- I]?/[_‘ 1 --ﬂ 1 --W
[ ]
r

156 ©

lS= WTT

weights
computation

FIGURE 1. Block scheme of the optimum STAP receiver.

llIl. OPTIMUM PHASE-ONLY STAP

The optimum adaptive STAP radar is based on the use of the
disturbance covariance matrix in the filter design arising from
maximizing the SINR over all possible complex vectors of
size N, viz.w € CN. The Phase-only STAP tries to estimate
the complex vectors w constraining its elements to have unit
amplitude, that is the complex weight vectors is enforced
assuming the following form

w= [ej¢‘ el L eI ]T . ®)

Therefore, the phase-only weight vector is obtained as the
solution to the following optimization problem
2
™

wiMw 9

Wpo = arg max
w

P

st.weTV,

namely as the vector maximizing the SINR over the N-torus.
As already said this paper extends a previous work that
focused on adaptive spatial-only nulling [35] to the more
general framework of STAP. As highlighted in [35], the
phase-only case does not admit a closed-form solution to
the constrained optimization problem. The identical chal-
lenge exists for phase-only STAP because, unlike the fully
optimal case, there is not a closed-form solution to Eq. (9).
This is pictorially represented in Figure 2 for a phase-only
STAP weight composed by only two array elements trans-
mitting two radar pulses. The space of a phase-only element
comprising two antenna elements and two pulses cannot be
visually represented because of the four involved phases,
however it can be graphically drawn by means of an unfolded
torus (which is a projection of the SINR from the space of
the four phases in a three-dimensional space in which the
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variation is due to only two phases), representing the SINR
variation with respect to ¢ and ¢3 having set, in this case,
¢4 = 0 and ¢1 = [0, = /4, w/2]. The unfolded torus clearly
emphasizes the presence of many maxima in the overall N-
torus and the consequent impossibility in finding a closed-
form optimal solution. For these reasons in the following
phase-only STAP is solved by introducing a generalization
of the CGM provided in [35] to this specific problem. The
phase-only STAP can be represented by means of the block
scheme of Figure 3 in which the differences with the optimum
adapted STAP are clearly either evident. Precisely, the weight
vector is computed applying the CGM as described in the
following, and then the signal’s samples are phase shifted
by the amount of tuning contained by the optimal phase-only
weights.

g ° :
3 0
rad

§3
*O
"'3
rad
3
-3

rad)

3

O

o, (rad)

FIGURE 2. Phase-only SINR for a two-elements two-pulses STAP with
respect to the phases of the phase-only weight vector w e TV. The figure
refers to the SINR variation with respect to ¢, and ¢3 having set ¢, =0
and for ¢; = [0, = /4, n /2], respectively from top to bottom.

To simplify the mathematical derivations as well as to eas-
ily distinguish the phase-only SINR from the fully-adapted,
this latter is expressed as
wisSw
wiMw’
with w defined in (8) obtained as the solution to (9) and
S =wf.

Before proceeding further, some considerations about the
phase-only strategy will be discussed. In particular, it is
worth recalling that some other solutions for adaptive radar
based on the exploitation of the Lagrange multipliers or
utilizing a specific modification of the eigenvalue analy-
sis of the weight vector can be found [38, p. 286], [39].
These methods can be solved through iterative minimization
algorithms such as random search or simplex method, even
if they might be inefficient and computationally expensive.
Therefore, as in [35], the phase-only STAP problem is solved
by means of an innovative optimization algorithm that is the
phase-only CGM, obtained by adapting Riemannian opti-
mization methods [40]-[43] to this context. Because this
algorithm is based on the evaluation of the gradient of the

SINRpp = o(w) = weTV, (10)
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FIGURE 3. Block scheme of the optimum phase-only STAP receiver.

SINR, in the following subsection the Taylor series expansion
of the phase-only SINR derived in [35] is included.

A. PHASE-ONLY SINR’S TAYLOR EXPANSION AND
GRADIENT COMPUTATION
In this subsection the phase-only SINR’s Taylor expansion
for STAP is provided in order to allows the derivation of
the phase-only SINR gradient. It is worth noticing that the
SINR of a phase-only STAP has the same structural form to
that of a spatial-only adaptive array radar. Nevertheless, it
must be noted that all the involved quantities (viz. steering
vector, weight vector, and covariance matrix) differ in form
from their spatial-only counterparts. After this premise, in the
following the main steps involved in the derivation of the
SINR’s Taylor series are provided. However, the interested
readers can refer to [35] for all mathematical derivations and
proofs.

Consider the effect of small phase perturbations on the
phase-only weight vector w, that is,

w— e/Bw, (11)

where A = Diag ([61,...,dn]), with &y, ...,
bations of the phases ¢1, ..., ¢n.

Now, the SINR in (10) can be separately treated in its
numerator N(w) and denominator D(w), whose perturbed
versions are N(¢/A'w) = wie7ATSe/Aly and D(e/Aw) =
wie /AT M Aty respectively. Then, the Taylor expansion
series for the numerator and the inverse of the denominator
is given by [35]

Sy the pertur-

N(Aw) = wi S —JIA, ST—A/2)[A[A,S]T+..0w

(12)
and
1

D(e/Atw) — wiMw
+w'l ( (A M] + - [A [A, M]]) —
(waMw)2

(wT[A,M]w)2
— (13)
(wTMw)
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The gradient can be directly computed as shown in the
following.
The gradient of o (w) is obtained as the ratio

o (eJ'Aw) —N (e/Aw) /D (e/Aw) : (14)

where the numerator and the inverse of denominator are given
in (12) and (13), respectively. Then, extracting the first order
terms of the Taylor series expansion with respect to A, and
after some algebraic manipulations, the gradient becomes

1
—— Im]ai - )}
Vo(w) = o —Im {dlag ([s (WM, ww ]) . (15)

Exploiting the property that the phase-only SINR is invari-
ant under the transformation w — e/w, its gradient in (15)
can be computed as [35]

Vow) =2 (Im («*v ©w*) — o (w)Im (b © w*)) /y, (16)

where o = wTv, b=Mw,and y = wib. It is worth to note
here that, even if from a structural point-of-view (16) is equal
to (32) in [35], the involved quantities significantly differ in
the two equations.

B. CONJUGATE GRADIENT METHOD FOR

PHASE-ONLY STAP

Having derived the SINR’s gradient in the previous subsec-
tion, it can be now properly used to solve the optimization
problem P in (9) through algorithms based on the exploitation
of first-order derivatives. Therefore, following the line of
reasoning of [35], the CGM [44, p. 625] is applied optimizing
on lines on the N-torus in place of lines in the Euclidean
space, that is

w+td — JPiagd),, amn

where w is the phase-only weight vector, d is the direction,
and ¢ is the step size. Note that, the structure of the lines in
the N -torus space in (17) derive from the fact that the involved
perturbations of the weight vector act on its phases.

The CGM for computing phase-only optimum weights for
STAP radars can be summarized by the steps described in
Algorithm 1.

The algorithm starts with the initialization of the phase-
only weight vector wo, i.e. belonging to the N-torus. It is here
worth to recall that the phase-only SINR shares many local
maximum, as can be observed from the simplest case depicted
in Figure 2. As a consequence, the method is strongly influ-
enced by its initial point, that can be set for simplicity as
the optimal choice in the quiescent STAP, wg = v. The
convergence of this algorithm for the computation of phase-
only weights has already be proved by simulation in [35],
therefore in the Section IV we directly exploits those results.
Nevertheless, different initializations of the algorithm can
be considered. In particular, an alternative initializer could
consist in the use of the clairvoyant target spatial steering
vector of size L with a random Doppler steering vector of size
M drawn from some suitable distribution or the clairvoyant
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Algorithm 1 Conjugate Gradient Method for Phase-Only
STAP

Input: Disturbance covariance matrix M, and space-time
steering vector v(vp, 0);

Output: Optimum phase-only weight vector wpo;

1: Initialization (i = 0): set wo € TV (see below); then,
compute go = Vo (w) through (16) and setdo = gp;
2: fori=1toi = ipnx do
3:  Line optimization: compute #; that maximizes the
phase-only constrained SINR, that is

17 = arg max {0’ <ei’iDiag(di)wi>} ;

;>0
4:  Compute the weight vector at the next step, that is
Wiyl = ejz;‘Diag(di)wi;

5:  Compute the gradient and direction at the next step,

that is
gir1 = VoWir1),
T
_ (&1 —8) 8
Vi= —— 2
llg;ll
and

div1 =gy + vidi;
6: ifi=N — 1 (modN) then

7: Reset the CGM: setd ;1 = g; ;.
8: endif
9: end for

10: Choose the final phase-only weight vector: wpo = w;, .

target Doppler steering vector of size M with a random
spatial steering vector of size M. The robustness of the CGM
algorithm with respect to the initialization point is studied in
Section IV. The other point that merits some further clarifica-
tions is that regarding the step size evaluation ¢;". In fact, the
considered searching problem is framed within the context of
geometric algorithms. It consists in defining a line or, in this
case, a geodesic on the torus and efficiently searching for
the maximum (or minimum) along it (viz., 1D optimization
along the line). This can be done utilizing many line search
algorithms, as for instance Wolf-Powell. See [40], [43] in
the context in geometric algorithms. As to the computational
complexity required by Algorithm 1, note that to compute the
updated search direction d; it requires 2ML real floating-
point operations (flops). Moreover, each iteration requires
8M2L? flops for matrix-vector multiplication and 27ML flops
to compute the gradient (without the computation for Mw).
Finally, in practical context, the covariance estimation is
made with 4KM?2L? flops, with K the number of snapshots
used in the estimation process.

To conclude, the Newton’s method could be also applied
in this context. However, from a structural point of view,
its formalization for the phase-only STAP is the same as
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the adaptive array in [35], in this paper we omit this
discussion, inviting the interested readers to deepen the
works in [35], [45].

IV. PHASE-ONLY STAP PERFORMANCE

This section is devoted to the analysis of the phase-only
STAP described in Section III whose solution is found by
means of the CGM given in subsection III-B. First, tests are
conducted on simulated data analyzing the SINR at the space-
time filter output and the corresponding receiving normalized
beampattern (i.e., the radar angular-Doppler response) when
the second-order interference statistics are perfectly known.
Furthermore, the more realistic case of unknown covariance
matrix is then considered to verify the validity of the Reed-
Mallet-Brennan rule [36] for the phase-only STAP. Finally,
the impact of a limited number of available bits to represent
the quantized phases is also studied.

A. SINR AND BEAMPATTERN EVALUATION FOR
KNOWN INTERFERENCE
The SINR at the space-time filter output is adopted as a
performance metric considering the fully adaptive STAP and
the quiescent beampattern (also referred to as nonadapted
beam former) for comparison purposes. The radar system is
a uniform linear array (ULA) of L elements with spacing
between the antennas of d = Ag/2, where Aq is the radar
operating wavelength.

The SINR is given in (6), whereas the beampattern is
defined as

BP = ‘wTv(vD, 9)’2. (18)

The inference scenario comprises several contributions
associated with different interference sources: system noise,
clutter (associated with the echoes from the specific oper-
ating environment), and jammers (intentional disturbances
impinging on the radar antennas). Therefore, the interference
covariance matrix is given by [2]

M=Mc+M;+o2l,

where M ¢ is the covariance associated with clutter compo-
nents, M ; the matrix accounting for jammers, and o,% is the
actual system noise power level assumed uncorrelated. The
clutter covariance matrix is

Mc =oéMc ® Mcy, (19)
where the temporal component is Gaussian shaped

712 .
Mc (b 1) = plim!le?m =D,
h=1,....M,l=1,..., M, (20)

and the spatial component is exponentially shaped

M (b 1) = pg ',

h=1,...,L,1=1,...,L, 1)
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with 0(% the clutter power, vp,. the normalized clutter Doppler
frequency, and pcy and pcs the clutter temporal and spatial
correlation coefficients, respectively.

The jammer covariance matrix is

My =af1® (v Orwsn'). 22)

with 012 being the jammer power, 0; the angle off boresight
of the jammer, and v; the jammer steering defined as in (1).

The first study refers to a radar system comprising L = 8
antennas and transmitting a coherent burst of M = 8 pulses.
The target echo impinges on the radar receiver with a direc-
tion of arrival (DOA) equal to 6, = 25 degrees and moving
towards the radar with a normalized Doppler of vp,, = 0.4.
The interfering environment is characterized by the parameter
values summarized in Table 1.

TABLE 1. Parameters of the interfering scenario for the first study case.

2 ok ub. por pos o 0

0dB 40dB 0 095 0.95 40dB

50 degrees

Figure 4 reports the normalized beampattern of the phase-
only STAP also in comparison with those of the fully-adapted
STAP, the nonadapted STAP, the phase-only in temporal
domain, wpo; = w; ® v, (with w, the optimum phase-only
temporal weight vector), the phase-only in spatial domain,
wpo,s = V; @ w, (with w, the optimum phase-only spatial
weight vector), the phase-only evaluated in the two disjoint
domains, w = w; ® wy, the phase of the fully adaptive filter,

WEA, phase = é M lv, and the semidefinite relaxation (SDR)
method of [46]. Additionally, the interference power is also
plotted so as to have a complete frame of the effectiveness of
the considered approach. The pictures reveal that the phase-
only STAP is capable to concentrate the power of the main-
lobe in correspondence of the target position in terms of both
angle and normalized Doppler (target position is indicated
with the black x in the 2-D patterns). Additionally, phase-
only STAP is capable of properly canceling the interference
contribution by placing deep nulls in correspondence of them,
as can be seen by comparing that figure with the interfer-
ence power of subplot d). Comparing subplots a) and b) it
is quite evident that phase-only STAP exhibits a reduced
performance degradation with respect to the fully optimum
STAP. From inspection of subplots d) and e), it is quite
evident that the spatial and temporal phase-only alone do not
give satisfactorily performances in the joint domain, i.e., if a
proper cancellation is performed in the interfering angular
direction, it is not done for Doppler frequency and vice-
versa. Some improvements are however given by using the
disjoint phase-only STAP, even if it is not able to reach the
same performance as the phase-only STAP directly derived
in the joint domain. Again, subplot g) demonstrates that
the filter based on the phases of the fully adapted have
some performance degradation with respect the fully adapted
one essentially confined to the missing cancellation of the
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spatial jammer. Finally, subplot e) is related to the SDR which
is quite capable of correctly point towards the target and
putting deep nulls in the direction/Doppler of interference,
even if its shape is not very close to that of the fully adapted
in some zones of the angle/Doppler map. Finally, as is well
known, the unadapted filter cannot remove the interference
despite correctly pointing towards the target.

To further understand the behavior of the proposed phase-
only STAP, Figure 5 depicts the SINR values (expressed
in dB) in the angle-Doppler map for the same interfering
scenario as in Figure 4. The figures show some performance
losses in the phase-only STAP with respect to the fully-
adapted that can be essentially motivated by the fact that the
steering points at vp,, = 0.4, 6;; = 25 degrees. Conversely,
considering the target impinging on the radar from direction O
degrees with 0 Doppler embedded in interference described
by the covariance M = M ; —i—onzl (withM y and crnz defined as
above), as given in Figure 6, the phase-only and fully-adapted
STAP reach exactly the same SINRs.

To better emphasize the effectiveness of the phase-only
STAP a clutter model comprising clutter edge is also con-
sidered in the next simulation. Precisely, Fig. 7 shows the
beampattern for the phase-only and optimum adapted STAP
assuming the target located at 0 degrees in azimuth with a
normalized Doppler frequency of 0.33 and for the interfering
scenario whose relative power is illustrated in Fig. 7(c). The
interfering scenario is the same as in Fig. 23 of [2], where
two jammers are considered having azimuth angles equal
to —40 degrees and 25 degrees, respectively, whereas the
stationary clutter is modeled as composed by 360 patches.
The considered radar system is composed by an array of
18 elements transmitting a burst of 18 pulses in a coherent
processing interval (CPI). From the figure, the capability of
the phase-only STAP to put nulls in the jammers and clutter
directions/Doppler is clear, at the same time maintaining
undistorted the mainbeam in the target direction.

Before concluding the analysis in terms of beampatterns of
this subsection, it is of interest to analyze the robustness of the
CGM algorithm applied to phase-only STAP for different ini-
tialization points. In particular, we compare the beampattern
of the phase-only STAP initialized with the steering v with
those initialized with wg = x; ® vy and wg = v; @x;, where x;
and x; are (feasible) random vectors drawn from a Gaussian
distribution (as in [46]) of size M and L, respectively. Results
are reported in Fig. 8 where it is interesting to observe that
the respective beampatterns share almost the same behavior,
even if they slightly move away from the initial one while
correctly keeping the nulls in the desired positions.

B. SIDELOBES ANALYSIS

To further corroborate the results of the previous subsection,
herein the analysis of the sidelobes behavior is performed.
In particular, the focus is again on the same interfering
scenario of the first study case described by means of
Figure 4(d). However, now the histograms of the sidelobes
are computed having removed first the mainlobe from the
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related beampattern as shown in Figure 9. The areas that
identify the mainbeam within the phase-only and fully-
adapted beampatterns are highlighted by the green box
in subplots (a) and (b), respectively, selected with the same
extent in this study. Moreover, subplot (c) of the same fig-
ure compares the two sidelobes histograms. Observing these
representations, the evidence is that the phase-only STAP has
slightly higher sidelobes than the fully-adapted counterpart.
Nevertheless, the histogram is mostly concentrated (in the
simulation study) around —40 dB with respect to the peak
value, that represents a quite satisfactory value within con-
texts of practical interest.

C. PHASES ANALYSIS

This subsection is aimed at studying the effect of quantiza-
tion, i.e. impact of a finite number of bits [38, p. 287], used
in the digital implementation and storage of the phase-only
weight vectors. To do this, in Figure 10 the SINR values at
target position are plotted as a function of the number of bits
used to represent the phases in the weight vector wpg for the
same interfering scenario as Figure 4.

The curves clearly highlight the losses suffered by the
phase-only STAP receiver in utilizing a low number of bits to
quantize the involved phases. Precisely, the SINR evaluated
for different numbers of antenna and different numbers of
pulses, viz. (L = 8, M = 8), (L = §, M = 16), (L = 16,
M = 8), grows as the utilized number of bits increases,
approximately reaching its maximum value for 10 bits. This
latter represents an interesting result since the phase-only
weight vector can be represented without losses with a rel-
atively low number of bits available in commercial devices.
As to the maximum SINR value observed in this figure,
as highlighted before, it is essentially due to the steering
of the radar toward a position different from O degrees and
0 Doppler.

Figure 11 depicts the behavior of the phases for the
optimum phase-only STAP weight vector (and those of
its competitors) considering a phased-array comprising
L = 8 elements and transmitting a burst of M = 8§
pulses. More specifically, Figures 11(a) to 11d) depict the
contour plots of the 2D (two-dimensional) phases for the
phase-only initialized with v, the phase-only initialized with
wo = Xx; ® v, the phase-only initialized with wy = v; ® x;,
and the phase of fully-adapted, respectively. Additionally,
Figures 11(e) to 11(h) report the 2D phase difference of each
studied receiving filter with respect to the nonadapted STAP.
The 2D diagrams clearly highlight the phase variation over
the array elements and for each considered pulse with respect
to the classic counterpart.

D. PRACTICAL IMPLEMENTATION TESTS

The first test is performed to assess the validity of the
Reed-Mallet-Brennan rule [36] for the phase-only STAP.
The developed tests consists in evaluating the achievable
SINR in a more realistic situation in which the disturbance
covariance matrix is not known a-priori. In this respect, it is
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interfering scenario of Figure 4(d).

assumed the availability of range data (secondary/training
data or snapshots) close to the cell under test, that are hypoth-
esized of being stationary, homogeneous, and target free.
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Additionally, these data share the same statistical distri-
bution as the primary datum, and the sample covariance
matrix (SCM), that represents the maximum likelihood (ML)
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estimate in homogeneous Gaussian environments [36], [47],
is used in place of the true covariance in STAP evaluation.”
For a number of snapshots approximately greater than two-
times the matrix size (N herein), the SCM is capable of ensur-
ing a SINR performance loss of only 3 dB on average with
respect to the optimum [36]. After this premise, let us con-

2In the sample starved scenario, viz. when homogeneous secondary data
are limited in number, the SCM could become ill-conditioned and more
robust estimates (based for instance on diagonal loading, a-priori information
or knowledge-aided as well as enforcing covariance structures) should be
utilized instead. The interested reader could refer to [48]-[55], just to list
a few.

147258

sider K training data, ry, ..., rx, modeled as N-dimensional
independent zero-mean complex circular Gaussian vectors
with the same positive definite covariance matrix M as the
primary datum. Under this circumstance, the joint probability
density function (pdf) of the snapshot is

e_tr(KM—‘s)
Pl kM) = ——————— 23
fr K M) K detk D) (23)
where
1 K 1
S = E};rkrk. (24)
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FIGURE 10. SINR at target position versus number of bits for the scenario
of Figure 4.

Figure 12 shows the SINR achieved by the phase-only
STAP using the SCM in place of true covariance for the
interfering scenario of Figure 4(d) evaluated at the target
position. The curves are plotted as function of the number of
snapshots and different number of bits to quantize the phases
of the estimated weight vector. From a first visual inspection,
as expected, the SINR increases as the number of snapshots
increases and contextually showing restrained performance
losses with respect to the optimum phase-only STAP, i.e. that
assuming the perfect covariance knowledge. As a matter of
fact, for a number of secondary dataequal to K = 3N = 192,
the phase-only STAP with the SCM shows a SINR loss of
only less than 1 dB with respect to its optimum counterpart,
when a sufficient number of bits is available at the receiver.
Additionally, under the challenging situation K = N = 64,
the phase-only STAP using the SCM is able to reach SINR
values whose amount of reduction is still contained in the
—3 dB limit. Finally, as already observed in the analysis of
Figure 10, the use of only 8 bits in the phase coding is not
sufficient to provide satisfactorily performances in terms of
target detection as well as interference cancellation.

Finally, we study the computational burden of the phase-
only STAP considering as figure of merit the elapsed time
needed to estimate the weight vector. In this respect, the
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test is conducted on an Intel(R) Core(TM) i5-8250U CPU
@1.60GHz 1.80GHz, RAM 16 GB, whose results are graph-
ically reported in Figure 13 varying the number of pulses
(for L = 8 array elements) and then the number of array
elements (for M = 8 pulses). Moreover, as for the other tests,
the number of iterations for the CGM algorithm is set equal
to 50, having observed that it ensures the convergence. The
results emphasize that the elapsed time increases with either
the number of pulses or array elements even if it is contained
below 0.08 s also in the worst case. For comparison purposes,
the optimum fully-adapted STAP is also considered, whose
computational time is strictly related to the time needed to
perform matrix inversion.

E. PHASE-ONLY STAP WITH A TRANSMITTING
SLOW-TIME CODE

This section is aimed at showing the effectiveness of the
phase-only STAP to generate unit-modulus weights produc-
ing space-time nulls when a specific slow-time coding ¢ is
used in transmission. To this aim, denote by ¢ = [c(1),
c),...,cM]T € CM the transmit radar slow-time code.
The signal at the receiver end is baseband-converted, under-
goes a matched filter, and sampled. The N-dimensional col-
umn vector r = [r(1), r(2), ..., r(N)]T € CV of the obser-
vations in fast-time and slow-time, of the cell under test, can
be expressed as

r=(c Ovi(vp)) vs(0) +n. (25)

The SINR at the receiver filter output is

2
wh (e @ vi(vp) ® vy(6))
SINR = - , (26)
w'M _.w
where the numerator is the useful energy at the output of
the filter (tuned to the nominal target Doppler frequency
and angular direction), while the denominator represents the
signal-dependent disturbance energy at the output of the filter,
with M . the signal-dependent disturbance covariance matrix.
According to the previous guidelines given in Section III, the
phase-only weights w can be found using the SINR in (26)
as objective function to maximize. Results of this analysis
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array of L = 8 elements transmitting M = 8 coherent pulses, that is
N = 64.

are reported in Figures 14(a) to 14(c) in terms of normal-
ized beampatterns for the phase-only STAP in comparison
with the fully-adapted and the spatial phase-only previously
introduced. Precisely, a radar composed by L 16 array
elements and transmitting a Barker code of length M
20 is used. Four interfering sources from directions 6
[0, 10, —40, 40] degrees and with normalized frequencies
vp = [—0.325, 0, 0.325, 0.325] are considered, as depicted
in Figure 14(d). From figures’ observation, the similarity
between phase-only and fully-adapted beampatterns appears
to be quite evident. Moreover, the spatial phase-only is not
capable of ensuring a satisfactorily cancellation of all inter-
ferences.

F. JOINT PHASE-ONLY STAP AND TRANSMITTING
WAVEFORM OPTIMIZATION

This last section provides a method for jointly optimiz-
ing the transmitted waveform and the receiving filter to
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improve the target detection constraining both of them to have
unit-modulus (i.e., to be phase-only vectors). In particular,
assuming the signals embedded in Gaussian interference,
this results is achieved choosing the radar waveform and the
receive filter that maximizes the SINR o (w, p), that is

o]
e | Wit
P1 27
S.t., weTV
peT,

where p is the radar transmitted waveform and M is the
signal-independent disturbance covariance. Now, following
the line of reasoning of some already published papers
[25], [30], [33], [56], an iterative and alternating optimization
approach is herein implemented. Precisely, at each step only
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one variable is optimized while the other is maintained fixed,
and viceversa at the next step. Therefore, assuming fixed the
waveform, the weight vector is optimized then, at the succes-
sive stage, the waveform is optimized maintaining fixed the
weight vector optimized at the previous iterative step. Note
that, the optimization of the waveform is exactly performed
as described in Algorithm 1 of Section III.B, whereas that
of the waveform p is done applying the phase-only CGM of
Algorithm 1 with the only difference in the computation of
the SINR gradient. More in details, indicating with ¢/Ap a
perturbed version of the phase-only waveform p, the Taylor
series expansion of o (w, p) in (27) with respect to A, up to
the first order, results to be

T
AN o wip
o (w.ep) =o)L @8)
where W = wa, and its gradient is
Vo(w,p) = 2Im (B*w @ c*) /. (29)

where 8 = pr.

The considered simulation setting comprises a disturbance
covariance matrix as in (19), whereas the considered radar
system is composed by an array of L = 16 elements and
transmitting a Barker code of length M = 20. The start-
ing point of the CGM is the vector p, = (¢ O v;(vp)) ®
vs(0). Figure 15 shows the normalized beampattern for the
joint waveform/weight vector phase-only STAP (indicated
as joint phase-only), the phase-only STAP, and the fully-
adapted STAP. Interestingly, the joint phase-only put a deeper
null in the jammer direction with respect to the phase-only
STAP. Moreover, the SINR achieved by applying this new
approach increases as the number of iteration in the alternate
optimization increases, as shown in Figure 15(d).
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V. CONCLUSION AND WAY AHEAD

This paper has addressed the problem of deriving the phase-
only optimal weight vector for STAP. More precisely, the
paper has extended a previous work [35], specifically focused
on the adaptive spatial-only nulling, to the jointly space-
time domain, i.e. the phase-only STAP. Differently, from the
optimal fully-adapted STAP, in which the complex weight
vector belongs in general to the complex field, in the phase-
only STAP the weight vector is constrained to be within the
so-called N-torus of phase-only complex vectors. Therefore,
the problem has been formulated as a constrained maxi-
mization problem, with objective function the output SINR
and with the constraint on the weight vector to be a phase-
only complex vector. The solution to the corresponding con-
strained optimization problem has been derived by means
of the phase-only CGM, due to the lack of a closed-form
solution to it. Several numerical case studies have verified
the effectiveness of the phase-only STAP in terms of both
SINR values and receiving beampattern. The method has
also been compared with the optimum fully-adapted STAP
used as performance benchmark as well as other possible
competitors. Finally, analyses of some practical utility have
been performed to demonstrate possible pros and cons of this
method.

Future research tracks might concern the application of
numerical simulations in other scenarios of practical interest
in the radar field as well as the validity of the proposed
framework to measured radar data.
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