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ABSTRACT In this paper, we tackle the well-known problem of dataset construction from the point of
its generation using generative adversarial networks (GAN). As semantic information of the dataset should
have a proper alignment with images, controlling the image generation process of GAN comes to the first
position. Considering this, we focus on conditioning the generative process by solely utilizing conditional
information to achieve reliable control over the image generation. Unlike the existing works that consider
the input (noise or image) in conjunction with conditions, our work considers transforming the input directly
to the conditional space by utilizing the given conditions only. By doing so, we reveal the relations between
conditions to determine their distinct and reliable feature space without the impact of input information.
To fully leverage the conditional information, we propose a novel architectural framework (i.e., conditional
transformation) that aims to learn features only from a set of conditions for guiding a generative model by
transforming the input to the generator. Such an approach enables controlling the generator by setting its
inputs according to the specific conditions necessary for semantically correct image generation. Given that
the framework operates at the initial stage of generation, it can be plugged into any existing generativemodels
and trained in an end-to-endmanner together with the generator. Extensive experiments on various tasks, such
as novel image synthesis and image-to-image translation, demonstrate that the conditional transformation of
inputs facilitates solid control over the image generation process and thus shows its applicability for use in
dataset construction.

INDEX TERMS Dataset construction, conditional image generation, generative adversarial networks,
conditional transformation.

I. INTRODUCTION
The dataset is a key element in teaching a learning-based
method to understand real-world scenarios. However,
datasets often lack a sufficient number of samples neces-
sary for the training stage; whereas, training highly efficient
deep learning algorithms require large-scale dataset covering
up wide-range of variations. In this circumstance, dataset
construction is an obvious way to overcome this problem.
However, construction itself is a tedious process demanding
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not only time but also finance. Recently, generative adver-
sarial networks (GAN) [1] have produced prominent results
in image synthesis [2]–[7], super-resolution [8]–[11], image-
to-image translation [12]–[16], image style transfer [17],
[18], segmentation [19], and lossy compression [20]. Indeed,
such successive applications reveal the potential of using
GAN as a powerful base for image generation and further
dataset construction. GAN [1] is trained using a zero-sum
non-cooperative game between its generator and discrim-
inator modules. Such a competitive process allows the
generation of realistic and sharp images from lower- or
higher-dimensional inputs (noise or image) by minimizing
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the discrepancy between the learned and real distributions.
Several works [12], [21]–[25] have demonstrated the pos-
sibility of augmenting GAN with side information to con-
trol the generation and make it consistent with the existing
context. Additionally, it has been shown that introducing
the side information as a conditioning factor improves GAN
performance [23], [26].

Over the past years, several attempts have been made
to control the image generation process of GAN. A con-
catenation of the input and condition at the initial stage of
the generator module is the earliest approach; it extends
the vanilla GAN to conditional GAN (cGAN) setup [21].
Such approach helps to create a deterministic relationship
between the input and output and thus achieve control over the
generation. A strategy of cGAN has also been successfully
used in image-to-image translation tasks [12], [27]–[31],
which seek to transform the source images into dif-
ferent domains by considering image-based conditions.
A few works [32], [33] conditioned the generator by
concatenating an initial-level information with a learned
representation of conditions obtained through a linear
layer.

By contrast, several other methods
[3], [17], [26], [34]–[37] introduce conditional informa-
tion (occasionally with noise) into the hidden layers of the
generator through normalization technique [38] by replac-
ing the non-adaptive parameters (i.e., scale and shift) with
input-dependent ones. Notably, these parameters are learned
based on conditions by utilizing the embedding functions.
Alternative normalization techniques [39], [40] for inserting
conditional context to the generation process are utilized in
these representative works [5], [7], [14], [41].

Another practical approach used in existing works [42],
[43] relies on statistical information (i.e., mean and variance)
that captures the meaning of given conditions. This informa-
tion is also concatenated with randomly sampled noise to
be fed as input to the generator. In a similar manner, [44]
obtained such statistical information based on the concate-
nated input of noise and conditions, and used to sample latent
variable for image generations.

The aforementioned methods generate images based on
the concatenated representation, whichmeans two substantial
pieces of information for the image generation process are
simply and directly utilized in conjunction. Intuitively, a con-
dition can be regarded as a controlling factor that defines the
context, whereas the input (as noise or image) is responsible
for the diversity and fidelity of the generated images. In this
case, the generator that performs mapping operations should
take the entire obligation of learning higher-order interactions
between the input and condition and provide reliable features
for subsequent layers. It has been reported that the generator
conditioned on the given context ignores random noise infor-
mation [27], [28], [45]. Moreover, there might be the case
when the condition is not a single class label, but in the form
of multiple class labels, which could increase the complexity
of the learning process. An example is the generation of facial

images with multiple attributes corresponding to various gen-
ders, ages, and expression classes.

In consideration of these statements, we consider condi-
tioning the generator from a different perspective where con-
ditional information can be utilized on its own. Motivated by
this consideration, we propose a novel architectural addition
to GAN called conditional transformation (CT) framework.
Unlike previous works, this framework focuses on using only
the given conditional information, such that the conditions
control the generation process. A novelty of our framework
is that it learns relations between conditions to determine
their conditional feature space and utilizes this information
to transform a given input as a function of specific condi-
tions. As conditional transformation operates on the input
layer, it can be used along with diverse GAN by effortlessly
prepending to the most generator networks.

The contributions of this work are as follows:

• We present a simple and yet efficient framework that
provides reliable control over the generation process for
image synthesis and image-to-image translation tasks.

• The framework enables the transformation of the gen-
erator inputs to be specific to conditions (e.g., sin-
gle/multiple class), thereby facilitating the generation of
semantically desired images.

• Using the framework, we demonstrate the qualitative
and quantitative improvements of state-of-the-art works
in their respective tasks.

• Our framework effectively controls the condition-
specific image generation and thus can be an alternative
to massive data augmentation in construction of image
dataset.

The rest of the paper is organized as follows. Section II
provides a brief discussion on existing works that dealt
with conditional image generation. Section III describes the
proposed framework in a detailed manner. In Section IV,
we justify the efficiency of the proposed framework through
various experiments. We conclude this work by presenting
our considerations over the conditional image generation in
Section V.

II. RELATED WORKS
Conditional GAN (cGAN) [21] is a pioneering approach
for conditioning generators with additional information. The
conditioning process is performed by simply feeding side
information c as an additional input where it is combined with
noise z in joint hidden representation (Fig. 1a). Subsequently,
several works [3], [26], [33], [35] started adapting advanced
strategies, such as using linear and/or embedding layers,
to condition the generator. LSGAN [33] utilized a linear
layer to obtain compact representations of a large number
of class vectors to concatenate with the input noise. The
embedding layer is another extensively applied strategy [3],
[26], [35]. In [3] and [35], embedding layers were utilized to
obtain scaling and shifting parameters (i.e., γ and β, respec-
tively) of label information for injection into a generator
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FIGURE 1. Conceptual comparison of methods for conditioning the generator network G. (a) Conventional approach using a concatenation of input noise
z with conditions c for image synthesis tasks, (b) conventional approach using a concatenation of input images I with conditions c for image-to-image
translation tasks, and (c) our proposal on conditionally transforming the input p sampled from random or image distribution �. The ⊕ sign stands for
concatenation.

using conditional batch normalization layers (CBN) [17],
[37]. Similarly, sBN [26] modulated the intermediate fea-
ture maps of the generator through batch normalization [38]
using the same γ and β obtained by considering a bi-linear
interaction between z and two trainable embedding functions
of the class labels. Another commonly applied approach is
adaptive instance normalization (AdaIN) [39], and spatially
adaptive normalization (SPADE) [40]. These normalization
techniques have been successfully applied in StyleGAN [5],
StarGANv2 [14], AMGAN [41], etc. In fact, AdaIN ismostly
used in image generation tasks to normalize the layer-wise
feature maps. For that purpose, AdaIN is placed at every
layer of the generative network at the cost of computational
complexity and the resources necessary for image generation.
Additionally, such usage of AdaIN may lead to the water
droplet artifacts in the novel image synthesis [7]. As a prac-
tical remedy, StackGAN [42] and its improved version [43]
attempted to learn the mean and variance parameters of given
conditions to sample the input to the generator. Although
conditions are being utilized separately, they are concate-
nated with noise at the input level. Similarly, VCGAN [44]
applied a strategy where mean µ and covariance 6 are esti-
mated using linear layers for sampling the latent variable
as an input to the generator given the condition along with
noise.

In the domain of image-to-image translation, the following
strategies for conditioning the generator have been applied.
Earlier work [24], Invertible cGANs, were equipped with
two independent encoders to invert given input image into
latent representation and conditional information and further
use their concatenation in the settings of cGANs [21]; mean-
while, the variations in attribute information were applied
to generate a modified image. Inspired by such conditional
positioning, the authors of [25] conditioned CycleGAN [46]
for guiding image translation task. Particularly, at the input
layer of G, the input image was concatenated with a condi-
tional vector that was resized to match image dimensions.
StarGAN [12] adopted this strategy in the channel-wise con-
catenation of an image with a condition but aims to train a
single generator and discriminator (Fig. 1b). FEGAN [47]
utilized a regressionmodel to construct the attribute axis from
which obtained latent vector with the target attributes for
generator network.

III. CONDITIONAL TRANSFORMATION FRAMEWORK
In this section, we provide a substantial description of our
proposed method. Specifically, we start from the problem
formulation of conditional image generation and then move
to explain in detail our proposed conditional transformation
framework for the generator network while presenting the
analysis of its workflow.

A. PROBLEM FORMULATION
To control the condition-specific image generation process
of the generator G, the proposed framework CT considers
noise/image p ∈ P and condition c ∈ A drawn from respec-
tive distributions. Specifically, p is a task-dependent input
that is to be mapped into a domain specified by condition
c of attribute space A. Our framework aims to provide a
transformed p, denoted by p′, which is expected to possess
characteristics of given conditional information c. Unlike the
approaches using these inputs in a composed form to achieve
control, our proposed framework transforms the input based
on only conditions (Fig. 1(c)). The framework comprises
two steps: conditional feature-space learning and conditional
transformation of learned features on the input. Our intention
is to learn features that best represent the conditional vector
and apply this information to the input. Through such trans-
formation, each input belongs to a particular discriminative
space corresponding to a specific condition, which generates
the desired image.

B. CONDITIONAL FEATURE-SPACE LEARNING
The first step is to learn the conditional feature-space from
given labels in c. In particular, this step defines the dis-
criminative space corresponding to specific conditions only.
To find a feature space for each of the given conditions,
we introduce a network consisting of an MLP in the form of
fully connected layers with non-linear activation functions.
We initially set the number of units at the input layer to be
close to the number of conditional classes and increase this
number by a factor of two at every subsequent layer till the
last layer while considering the dimensions of p. In particular,
we select this option because using higher-order interactions
enables us to learn complex relations between features and
improve the representational power of conditional space for
each c. Moreover, such a construction can be regarded as
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FIGURE 2. Illustration of the proposed framework for image-to-image translation task. Given input (neutral expression) images are being translated into
angry expressions using our proposed framework.

that for an encoder because our aim is to learn feature-space
encoding given a conditional vector. The learned conditional
feature-space information can be expressed as follows:

c̄ = σ

(∑
i

Wi ∗ ci + b

)
(1)

where σ is a non-linear activation function (e.g., ReLU,
Leaky ReLU), W are the learned weights of fully connected
layers, b is a bias term, and c is a class label represented as
one-hot vector through indicator function 1A(c).

c = 1A(c) :=

{
1, if c ∈ A,
0, otherwise,

(2)

Simply, this function recasts the label to one dimensional
vector containing 1 on element c and 0 elsewhere. Accord-
ingly, c is a one-hot vector encoding a single-condition-
based label. However, a dataset construction may require
generating images that contain multi attributes. The structure
of our framework allows controlling such a process in a
straightforward manner. In this scenario, we can represent
multi-condition-based labels as a concatenation of one-hot
representations of single-class labels. For instance, to gen-
erate face image with conditions such as gender cg, age ca,
and expression ce, we can recast them separately using (2)
and then form input as c = cg ⊕ ca ⊕ ce, where ⊕ denotes
concatenation operation, and apply (1) to obtain c̄. This
simple maneuver allows the proposed framework to learn
the entanglement of various image attributes and effectively
estimate the reliable conditional space c̄ for a given set of
labels.

C. CONDITIONAL TRANSFORMATION OF INPUT
Instead of concatenating the learned features of c̄ directly
to the input p, the second step of our framework transforms
the input to the conditional feature-space information, such
that the input to the generator is aligned with the desired

conditions. We consider two independent linear functions
γ (c̄) and β(c̄) to learn affine parameters, which respectively
scale and shift p according to the conditional space features
for generating images only from a corresponding single/multi
conditions. We opt to implement them because multiplicative
and additive modulations are typically applied operations [5],
[17], [37]. Such a transformation can be expressed as follows:

p′ = γ (c̄)� p+ β(c̄) (3)

where� denotes element-wise multiplication. Here, channel-
wise scaling factor γ (c̄) and additive shifting β(c̄) terms
directly depend on c̄ by

γ (c̄) =
∑

Wg ∗ c̄, β(c̄) =
∑

Wb ∗ c̄ (4)

where Wg and Wb are the learned weights of fully connected
layers.

Subsequently, G learns the function of f : p′ → x to gen-
erate an image based on conditionally transformed p′. Fig. 2
illustrates the conditional transformation process in the exam-
ple of neutral-to-angry expression translations. Compared
with existing works, the proposed framework can handle the
conditioning of input according to not only a single-class
label but alsomulti-class-based labels, thereby facilitating the
learning of higher-order interactions and enabling a control-
lable and complex image generation.

D. LEARNING OBJECTIVES
Our framework aims to control the image generation process
by conditionally transforming the inputs to the generator
network. Because conditions are considered as a control fac-
tor, we need to ensure that framework is learning a proper
condition-specific information of target distribution. This
requires determining the objectives that provide certain infor-
mation to supervise the framework. As framework operates
in co-ordinance with generator, it can receive information
through generator. The straightforward way is to provide a
signal using class conditional classification. A cross-entropy
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FIGURE 3. 2D scatter plot of the proposed conditionally transformed
noises and their corresponding generated images in the FACES dataset.
Each cluster belongs to a combination of diverse conditions and
represented by a unique color.

loss function can be applied to train our proposal as well as
generator to learn domain distribution characteristics.

Recent works [3], [14] started adopting loss func-
tions that combines adversarial term like Hinge [3] and
WGAN-GP [14] with conditional by considering label infor-
mation via an inner product or changing the discriminator
structure to have multiple linear output branches for each
domain. As all of them consider conditional factor, our frame-
work can be readily trained using these objectives. In the fol-
lowing section, we demonstrate that our proposed framework
works well with diverse objective functions used in novel
image synthesis and image-to-image translations.

IV. EXPERIMENTS
In this section, we present the performance of the pro-
posed CT framework when used along with diverse existing
GAN architectures for image synthesis and image-to-image
translation tasks. For image synthesis, we test our proposed
framework with DCGAN- [34] and ResNet-based [48] archi-
tectures. For image-to-image translations, we use the frame-
work together with architectures of [12], [14], [30]. For these
tests, we employ the following datasets that contain images
with diverse labels: FACES [49], RaFD [50], Multi-PIE [51],
CelebA [52] and its high quality variant CelebA-HQ [2],
HWDB1.0 [53], and KITTI [54].

A. EVALUATION METRICS
We provide details on the evaluation metrics used in our
experiments in this section. To evaluate the visual quality and
diversity of the generated images quantitatively, we utilize the
following metrics.

1) INCEPTION SCORE (IS) [55]
Using an Inception network [56] pre-trained on ImageNet,
we calculate the statistics of generated images by considering

the conditional label distribution p(y|x) and marginal label
distribution p(y) =

∫
x p(y|x)p(x) in the form of IS(G) =

exp (Ex∼G [KL (p(y|x), p(y))]).

2) FRECHÉT INCEPTION DISTANCE (FID) [57]
For the FID score, we extract specific layer features of the
Inception network for real image x and generated image g
and then (assuming that the features follow a multivariate
Gaussian distribution) compute the distance as FID(x, g) =

‖µx − µg‖
2
2 + TR

(
6x +6g − 2

(
6x6g

) 1
2

)
, where µ and

6 are the empirical mean and covariance, respectively.

3) LEARNED PERCEPTUAL IMAGE PATCH SIMILARITY
(LPIPS) [58]
To measure the diversity of generated images, we employ
such metric [58]. For this purpose, we exploit ImageNet-
pretrained AlexNet [59]. We perform diversity calculation by
using L1 distance between extracted features of generated
images.

B. STATISTICAL ANALYSIS OF THE FRAMEWORK
1) VISUALIZATION
Conditional generative models that produce condition-
specific images should also ensure that these images solely
fall within their own discriminative spaces. For example,
given the condition ‘‘Female’’, the image should belong
solely to this class. Our framework which comprises two
steps for condition-specific transformation of inputs, main-
tains such a necessary aspect for the generation process.
By determining the condition-specific space, the framework
obtains affine parameters that best represent the given condi-
tion vector and thus transforms the input to correspond solely
to this space. Fig. 3 presents the transformed noise space
given all possible sets of multi conditions for the FACES
dataset. We generate a 2D scatter plot by using the t-SNE
approach [60]. To do so, we used our proposal to condi-
tionally transform 3600 noise samples according to the 36
given unique classes (100 samples per class). Each of the
classes represents a combination of several attributes (i.e.,
gender, age, expressions). We consider the combinations of
the following attributes to make unique classes: two genders
(male, female); three age-groups (young, middle, senior);
six expressions (anger, disgust, fear, happiness, neutrality,
surprise). All 3600 conditionally transformed feature-vectors
are then mapped into low-dimensional representations via
t-SNE. For this analysis, we plugged our proposal into a
ResNet-based generator. Each cluster in 2D space represents
one of the 36 unique classes. Notably, all transformed noises
correspond to the distinctive conditional spaces and do not
overlap with one another. Such an analysis confirms the solid
and discriminative control maintained by our framework.

2) MoG SYNTHETIC DATA
We also analyze the performance of the proposed framework
in different discriminator settings. To do so, we consider
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FIGURE 4. Comparison of sample quality on a 1D and 2D synthetic MOG dataset.

FIGURE 5. MMD distances evaluated on one-dimensional original and generated distributions. Here, dm denotes distance between means of
adjacent Gaussian components.

experiments using Mixture of Gaussian (MoG) synthetic
data and discriminator approaches of PcGAN [3], and
TAC-GAN [36]. Specifically, we compare the distribution
matching ability of these discriminators using our proposal
in the generator part. In case of [36], conditioning process
has been achieved by concatenating the input with the out-
put of embedding layers. Here, we replace such process by
our CT-based approach. Similar to [36], we utilize samples
drawn from a one-dimensional and two-dimensional MoG
distribution with three Gaussian components. As experiment
is condition-based, we ensure samples being labeled as one of
the classes ranging in [0 ∼ 2]. We fix the standard deviations
of components to σ0 = 1, σ1 = 2, and σ2 = 3.

In Fig. 4, we present original 1D and 2D Gaussian dis-
tributions, when µ0 = 0, µ1 = 3, and µ2 = 6, along
with estimated ones produced by PcGAN [3], TAC-GAN [36]
as well as CT-PcGAN and CT-TAC-GAN. We obtain these
results by estimating the kernel density on the generated
data distributions. According to the plots, both PcGAN and
TAC-GAN can accurately learn the original distribution using
our framework. Additionally, we also report the Maximum
Mean Discrepancy (MMD) [61] in Fig. 5 which shows the
distances between original distribution and the generated
ones. For this evaluation, we follow [36] and train models
using cross-entropy log loss. In both 1D and 2D evalua-
tions, CT-based models achieve close to zero distances which
means generated distributions are near to the original ones.

We consider that such an analysis reveals the orthogonality
of our proposal to different discriminator settings.

C. IMAGE SYNTHESIS
In this experiment, we demonstrate the effectiveness of the
proposed CT framework against existing GAN architectures
for image synthesis problems. For this, we conduct four dif-
ferent types of experiments, including single/multi-condition
based image generation, multi-conditional image interpola-
tion, and handwritten Chinese character generation.

1) SINGLE-CONDITION BASED IMAGE GENERATION
To demonstrate the capability of conditional transforma-
tion on controlling single-conditional image generation,
we specifically experiment with this task as well. Within this
testing, we also consider the possibility of using the proposed
framework with different generator architectures. In the
GAN literature, there are many types of architectures used
for constructing generator networks. The most commonly
used architectures are DCGAN-based [34] and ResNet-based
ones [48]. According to this, we prepended our proposal
on top of these generators and perform single-conditioned
image synthesis. For this purpose, we used the Radboud
Faces Database (RaFD) [50] providing facial images with
eight expressions including angry, contemptuous, disgusted,
fearful, happy, sad, neutral, and surprised. As for comparison,
we consider generators that use condition with concatenation
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TABLE 1. Quantitative comparison for single-/multi-condition based
experiments on RaFD, FACES and Multi-PIE datasets.

FIGURE 6. Single-conditioned image synthesis based on training of RaFD
images. Top-to-bottom images are from RaFD dataset, ResNet and
DCGAN-based generators respectively.

(Concat) [21], conditional batch normalization (CBN) [3],
and VCGAN [44] based approaches.

We present quantitative comparison results in Table 1. As it
can observed the proposed framework with ResNet-based
generator (OursRes) provides better performance compared
to all other methods under the consideration. Moreover,
in terms of IS score, we could achieve closer result to the
real data depicting the diversity of generated images. The
generated images given in Fig. 6 also affirms the better
quality of ResNet-based generator. Although DCGAN-based
generator (OursDC ) have lower performance than ResNet-
based one, the proposed framework still achieves its goal on
conditionally transforming the input noise, and exhibits its
efficient usage with diverse generator architectures. Overall,
such performance demonstrates that the proposed framework
can apply its learning mechanism on a single condition
and provide condition-specific information for transform-
ing the noises and thereby, control the single-conditioned
image generation. This comparison indicates that proposed
CT framework can effectively operate regardless the genera-
tor architecture, however, the results are even better withmore
advanced ones like ResNet-based generator.

2) MULTI-CONDITION BASED IMAGE GENERATION
To evaluate a conditional transformation GAN on multi-
conditional inputs, we considered two datasets: FACES [49]
and Multi-PIE [51]. The FACES provides naturalistic facial
images of young, middle-aged, and older females and males
portraying six expressions such as anger, disgust, fear,
happiness, neutrality, and surprise. Multi-PIE is another
multi-labeled dataset consisting of facial images with vari-
ations in pose, illumination, along with neutral and smile
expressions.

FIGURE 7. Multi-attribute facial images generated by the proposed
method given conditions such as gender, age-group, and expression.

FIGURE 8. Results generated by using proposed framework given
conditions such as pose, illumination, and expression. Odd rows:
exemplar images from Multi-PIE dataset for neutral and smile
expressions; Even rows: generated samples with diverse pose and
illumination, as well as neutral and smile expressions.

We consider the FACES dataset to train generator along
with the proposed framework so that it controls the synthesis
of facial images having soft biometrics. Through learning
complex relations between given multi conditions such as
gender, age, and expression our proposal enables the transfor-
mation of noise accordingly which yields to generate images
as shown in Fig. 7. Looking at the generated images, we could
observe that for each combination of diverse gender, age,
and expression conditions, the generator synthesizes images
displaying the proper facial attributive details. It is also note-
worthy to mention that by transforming the noise according
to the given conditions, we achieve control over the content
and have variations within content-specific images. A quan-
titative comparison provided in Table 1 also shows the better
performance of generator with proposed framework in both
scores under the consideration.
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FIGURE 9. 2-D scatter plot of conditionally transformed noises and their
corresponding generated images on FACES (top) and Multi-PIE (bottom)
datasets. Each cluster belongs to the combination of diverse conditions
and represented by a unique color.

Apart from generating faces with soft biometrics, we also
considered facial image generation having different poses and
illuminations. As the Multi-PIE dataset1 additionally pro-
vides two expression labels, the generation process is more
challenging since generated images should depict not only
illumination variations but also face in particular pose having
either neutral or smile expressions. In Fig. 8, we present
the generated images along with real ones both having the
same multi-conditional information. We demonstrate images
in this way to point out that our framework providing
condition-specific features for noise transformation guides
the generator to produce images having the same properties
as real ones. Besides, quantitative comparison in Table 1 also

1We used a cropped version of this dataset in our experiments:
https://github.com/bluer555/CR-GAN.

quantifies its effectiveness in terms of quality and diversity
measures.

Besides, we demonstrate the transformed noise space given
all possible set of multi conditions and their generated images
in Fig. 9 for FACES and Multi-PIE datasets. As can be seen
from the scatter plot all transformed noises and their images
correspond to the distinctive conditional spaces, and thus
showing the effect of conditionally transforming of noise
inputs.

3) MULTI-CONDITIONAL IMAGE INTERPOLATION
In this part, we verify whether the learned conditional
feature-space encompassing a combination of various condi-
tions can be used to generate smoothly interpolated images.
As conditional vectors c representing multiple conditions are
sampled as an one-hot distribution, to demonstrate interpola-
tion across different conditional spaces, we sampled two c1
and c2 and interpolated these one-hot vectors to obtain newly
transformed noise inputs. Although the proposed frame-
work has not seen such conditional input during the train-
ing, we observed that such information has not affected
the smooth transition between conditions. By observing
Fig. 10A, we could notice that there is a fine transition even
though c1 and c2 are sampled to have no same conditions,
which verifies the possibility having smooth shifting from
one conditional space to another. When we manipulate only
one condition out of three in contrast to the previous inter-
polation (see Fig. 10B), we see that how one face having
particular gender and expression ages in a smoothway. Such a
transition can be clearly seen in neck introducing aging wrin-
kles as well as how young hair-style moves to conventional
one. Altogether, these presented images demonstrate that how
noises transformed on one specific set of conditions smoothly
transit to another set of conditions.

4) HANDWRITTEN CHINESE CHARACTERS
LSGAN [33] raises a discussion on the infeasibility of
directly conditioning the generator input with a one-hot vec-
tor representing thousands of classes in terms of memory
and computational cost. Such a scenario is particularly more
challenging in case of dealing with the generation of hand-
written Chinese characters. To control the generation with
such label vector, LSGAN uses a simple linear mapping to
reduce the high-dimensionality of conditional information for
further concatenation with a noise while still having high-
dimensional input. We consider such a challenging case is
to be appropriate for demonstrating the applicability of our
proposed framework. Thus, we train LSGAN by replacing
their linear mapping layer to our proposal (i.e., prepending
to the top of LSGAN) on a handwritten Chinese character
dataset (HWDB1.0) [53] consisting of 3740 classes. In partic-
ular, for experimenting with LSGAN on synthesizing hand-
written Chinese characters, we adopt an implementation of
LSGAN. We randomly sample labels representing Chinese
characters from [0, 3740] for obtaining their affine parame-
ters as described in Section III that transform the input noise
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FIGURE 10. Interpolation between conditionally transformed noises and their generated images.

FIGURE 11. Handwritten Chinese characters generated by LSGAN with our conditional transformation framework.

sampled from uniform distribution U[−1, 1] before feeding
to the generator. Note that LSGAN has been constructed
based on implementation of DCGAN [34], and considers
least-squares loss function for adversarial training. We set
the hyper-parameters in the same way as it was done in the
original work. Specifically, the learning rate is set to 2×10−4

and β1 = 0.5.
We provide several synthesized characters in Fig. 11 to

demonstrate the efficacy of using our conditional transforma-
tion framework on this task. As can be observed, the generator
can synthesize readable Chinese characters corresponding to
the given conditions. This result also exhibits that we can
efficiently utilize our proposal for transforming the noise to
be aligned with a particular class of high-dimensional label
vector. Similar to the observation of [33], we think that our
approach to conditioning the generator can be readily used
for data augmentation or construction needs.

D. IMAGE-TO-IMAGE TRANSLATION
In this section, we demonstrate the applicability of the pro-
posed framework within GAN architectures for image-to-
image translation. For this, we conduct two different types of
experiments: facial domain transfer and multi-view to novel
view synthesis.

1) FACIAL DOMAIN TRANSFER
As discussed, conditioning the input image with class labels
guides the generator in effectively translating an image from
one domain to another. One of the representative works is
StarGAN [12], which applies a strategy for conditioning the
generator by concatenating the labels to the input as addi-
tional image channels. In fact, such a simplistic approach
has shown its efficiency in translating facial expressions as
well as appearance characteristics. Since conditioning is per-
formed at the initial stage, we can utilize StarGAN image
generation with our CT framework (CT-StarGAN). To verify
such applicability, we also replace the concatenation layer

with our framework as performed with LSGAN. However,
unlike in LSGAN, we use WGAN-GP loss [62] for adversar-
ial training.

The implementation of our model (CT-StarGAN) is based
on a publicly available implementation of StarGAN. The
difference between original StarGAN and our CT-StarGAN
is in the incorporation of labels into image translation pro-
cess. CT-StarGAN uses proposed CT framework to transform
input image according to the given conditions rather than
concatenating labels as additional channels to the image,
as performed in [12]. Note that the network architecture
of StarGAN is adopted from [46]. We do not perform any
other changes on architecture construction aside from the
aforementioned label incorporation.

We maintain the hyper-parameters settings in the original
work of StarGAN. The models are trained with the Adam
optimizer [63], and momentum parameters are set as follows:
β1 = 0.5 and β2 = 0.999. A linear decay is applied on the
learning rate of 0.0001 in the same manner as that in [12] for
RaFD [50] and CelebA [52] datasets.

We train CT-StarGAN and its original implementation
in translating facial expressions by using the same RaFD
dataset [50]. As mentioned above, RaFD contains eight dif-
ferent expression images; for comparison, we set the input
domain as the neutral expression and vary the target domains
among the other seven. Choi et al. [12] split the dataset into
training and test sets at a ratio of 90% − 10%. We also
split dataset images while ensuring that there is no person
overlapping occurs between sets to avoid bias in translation
model. This splitting allows us to perform reliable qualitative
and quantitative evaluations.

To evaluate the performance of translated images in RaFD
quantitatively, we perform expression classification in the
same way as original work. To this purpose, we used
ResNet-18 architecture [48] following the work of [12].
Network training is conducted using the training set (90%)
that has no overlapping with the test set (10%) to carry
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FIGURE 12. Facial expression translation results on RaFD dataset. For a given input face image with neutral expression, both translation models
produced results for seven different expressions.

FIGURE 13. Facial attribute translation results on CelebA dataset by using our proposed method.

FIGURE 14. Qualitative comparison of neutral→disgusted and
neutral→happy translations done by StarGAN and CT-StarGAN.

out person-independent classification. We utilize the original
test set for an expression classification of real (untranslated)
images. After translating the images of test set by using Star-
GAN and CT-StarGANmodels, we perform classification on
generated (translated) images and report the results.

The qualitative results presented in Fig. 12 demon-
strate that replacing concatenation with our framework does

TABLE 2. Classification accuracy (%) and SER-FIQ scores on real and
translated images of RaFD dataset.

TABLE 3. Quantitative comparison on latent- and reference-guided
synthesis for CelebA-HQ dataset.

not diminish the image quality. Moreover, we observe an
improved mapping quality of one expression to another using
our proposal. For instance, Fig. 14 shows two translated
images for disgusted and happy expressions done by both
methods. It is noticeable that CT-StarGAN can add details
on the mouth region of the face. Such performance by Star-
GAN was also discussed in [67], which pointed out that the
method can accept only one domain as input, and when such
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FIGURE 15. StarGAN v2-based translations using proposed framework for latent-guided synthesis. The top row presents input images,
whereas the rest of the rows are generated.

FIGURE 16. StarGAN v2-based translations using proposed framework for reference-guided synthesis. Top row: reference images, left column: source
images; rest of the images are generated.

FIGURE 17. FID values at the different iteration steps on training
latent-guided synthesis for CelebA-HQ dataset.

source does not contain information (e.g., teeth) on neutral
expression, it cannot properly translate to the aforementioned
expression.We think due to such translation, StarGAN cannot
achieve better performance in terms of expression classifi-
cation shown in Table 2. Note that for expression classifi-
cation, we follow the strategy done by [12]. The analysis
reveals that using our proposed framework can improve the
shortcomings of StarGAN. We also consider SER-FIQ [68]
as additional estimations on generated images. SER-FIQ [68]
is a face quality assessment method that can be used for
predicting the suitability of face images for face recognition.
Table 2 includes SER-FIQ scores for real and generated
images by StarGAN and CT-StarGAN. It is notable that
even in the face image suitability test by SER-FIQ, images

generated by the proposed framework obtained a higher
score.

Considering that CT-StarGAN has demonstrated its appli-
cability for translating facial expressions in the lab-controlled
environments, we take into account its application for trans-
lating appearance-based attributes in-the-wild circumstances.
To this end, we train CT-StarGAN on the CelebA dataset [52]
by following the settings of [12]. In contrast to the previous
test, this one aims to translate the input to the domains of the
following appearance attributes: hair color (including black,
blond, brown), gender, pale skin, and rosy cheeks. Fig. 13
presents the results of CT-StarGAN for this test. We observe
that the model can generate plausible quality images with
appropriate target appearance attributes. Such translation
results exhibit the potential of proposed framework in learn-
ing the feature-space and its suitability for manipulating even
facial appearances of in-the wild face images.

In addition, we apply our framework within
StarGAN v2 [14] that is a recent variant of StarGAN [12].
The work of [14] focuses on scalability and diversity of
generated images. For this purpose, they introduce a map-
ping network to incorporate style information of domain.
In our experiment, we replace this network by our frame-
work. As StarGAN, we maintain all parameter settings same
as in [14]. The qualitative results are shown in Fig. 15
and 16. As can be observed, our proposed framework is
able to generate sharp images with consistent domain and
its style information. In quantitative manner, our results can
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FIGURE 18. Synthesized scenes on KITTI dataset [54] using our framework within model of [30].

be explored in Fig. 17 and Table 3. As shown in Fig. 17,
our results provides better score in terms of FID over the
iterations, whereas the final scores presented in Table 3 using
FID and LPIPS metrics demonstrates an improvement of the
StarGAN v2 model. Such results also advocate applicability
of proposed framework for this task, and facilitates to achieve
better scoring values.

2) MULTI-VIEW TO NOVEL VIEW SYNTHESIS
The work of [30] have shown the possibility of generating
novel views based on multi-view images with target cam-
era poses using pixel and flow generators. Similar to Star-
GAN [12], this work also concatenates pose information to
the source images and feeds to the encoder. Following our
experiments using StarGAN, we apply our framework for
novel view synthesis along with the model of [30]. Here,
we aim to generate a target image by considering a target
camera pose and N (image, camera-pose) pairs. To achieve
such an image generation, we perform an experiment using
well-known KITTI dataset [54] used for simultaneous local-
ization and mapping (SLAM) evaluation. Similar to [30],
we use a 6DoF vector as a continuous camera pose repre-
sentation, and maintain settings for constructing the training
and test splits.

We present a few examples of novel views generated by
using our framework within the model of [30] in Fig. 18.
Given the conditional information in any form, our frame-
work can produce features transforming the images to be
consistent with associated context (camera pose) information.
Notably, our addition has no impact on the quality of images,
and thus, results maintain structural consistency and realism.

V. CONCLUSION
In this paper, we proposed a novel architectural addition for a
generator network, namely, conditional transformation (CT)
framework. The technical contribution of our work consists
of controlling the image generation process by conditionally
transforming the input (e.g., noise or image) to the generator
such that it corresponds to the given conditions. With this

framework, conditional modulations are not required in the
intermediate layers of the generator as the framework can be
prepended to the top of any GAN generator and yield the
desired output. We tested the applicability of our proposal
along with diverse generator networks in image synthesis and
image-to-image translation tasks. In both tasks, we demon-
strated that the proposed framework can be used for con-
ditional transformation of noises and images and guide the
generator in producing condition-specific images. We con-
clude that through such transformation, features on condi-
tional vectors can be learned, allowing us to explicitly control
complex conditional image generation. In turn, such control
can be readily helpful for diverse GAN architectures in con-
structing image datasets necessary for many applications.
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