
Received October 2, 2021, accepted October 19, 2021, date of publication October 26, 2021, date of current version November 3, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3123187

Recent Advances in Android Mobile Malware
Detection: A Systematic Literature Review
ABDULAZIZ ALZUBAIDI
Computer Science Department, College Computing in Al-Qunfudhah, Umm Al-Qura University, Alawali, Mecca 24381, Saudi Arabia

e-mail: aazubaidi@uqu.edu.sa

This work was supported by the Deanship of Scientific Research at Umm Al-Qura University under Grant 18-COM-1-01-0007.

ABSTRACT In recent years, the global pervasiveness of smartphones has prompted the development of
millions of free and commercially available applications. These applications allow users to perform various
activities, such as communicating, gaming, and completing financial and educational tasks. These commonly
used devices often store sensitive private information and, consequently, have been increasingly targeted by
harmful malicious software. This paper focuses on the concepts and risks associated with malware, and
reviews current approaches and mechanisms used to detect malware with respect to their methodology,
associated datasets, and evaluation metrics.

INDEX TERMS Smartphone, intrusion detection, mobile malware, android devices, machine learning.

I. INTRODUCTION
In the last decade, the use of smartphones has accelerated
globally. Currently, smartphones support a wide range of
tasks, such as taking photographs, recording videos, texting,
and performing financial transactions. Smartphones can also
support gaming, networking, and educational tasks. Globally,
in terms of units shipped and usage, smartphones outstrip
both desktop and tablet computers [1], [2].

Smartphones are equipped with one of the two dominant
operating systems (OS), i.e., Android and iPhone OS (iOS).
Android has maintained its position as the leading mobile
OS, with a 72.3% market share compared to iOS, with 27%
[3], [4]. A mobile application (app) is a program for mobile
devices developed to perform a specific task [5]. As of 2020,
there were 2,570,000 apps available on theGoogle Play Store,
1,840,000 on the Apple App Store, 669 000 on the Windows
Store, and 489,000 on the Amazon Appstore [6]. In 2019,
84.5 billion Android apps and 30.6 billion iOS apps were
downloaded from these app stores [7].

Smartphones provide a variety of services; however, some
store large amounts of valuable information, which intro-
duces significant threats to security and privacy. For example,
mobile malware can infect smartphone devices in order to
steal classified information, share and track activities, and
perform various tasks, such as making unauthorized phone
calls [8]. Statistics [9] showed that in 2019 there were more
than 3.5 million malware installation packages, including

The associate editor coordinating the review of this manuscript and

approving it for publication was Tyson Brooks .

worms, Trojans, and adware. Thus, defending against such
malware is an important undertaking, and methods and tech-
niques to detect and prevent malware infections of mobile
devices have attracted increasing attention in both academic
and industrial fields.

A. PROBLEM
The number of mobile malware packages and malware
attacks on mobile devices is increasing. According to Victor
Chebyshev [10], a security expert at Kaspersky Lab, the
number of stalkerware attacks on the personal data of mobile
device users increased to 67,500 in 2019, almost double
the number of attacks the year before, i.e., 40,386 attacks
on unique users in 2018. Stalkerware [11] is spyware soft-
ware that intercepts personal information, such as photos,
videos, and global positioning system (GPS) coordinates, and
appears as a parent application. The number of users targeted
by adware attacks in 2019was slightlymore than 200,000 and
the number of adware installation packages detected in 2018
and 2019 was 440098 and 764265, respectively. Mobile mal-
ware can also target financial transactions, and 70,000 mobile
banking trojans were downloaded in 2019. Also in 2019, the
number of pieces of mobile ransomware malware detected
increased by 8186 compared to 2018.

B. MOTIVATION
Intrusion detection approaches for smartphones have
received increasing amounts of attention over the past
few years. Therefore, there are several published surveys that
have discussed detection of Android malware. For example,

146318 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-5523-9938
https://orcid.org/0000-0001-8691-0141


A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

Kouliaridis and Kambourakis [12] discussed 19 papers
published between 2014 and 2021, in terms of chosen
metrics, dataset ages, classification models, and perfor-
mance improvement techniques. Selvaganapathy et al. [13]
discussed the framework of Android malware detection and
provided a short list of about fourteen public datasets (name
and description), then briefly discussed ten feature analysis
approaches published between 2014 and 2019 as well as
common machine learning tools used to construct them
in the Android framework. Liu et al. [14] comprehensively
discussed ninety published papers from 2010 to 2020, with
respect to the collected data, feature types, algorithms used,
and evaluation results. Qui et al. [15] covered more than
thirty published papers, concentrating on deep-learning algo-
rithms, while the authors [16] provided a comprehensive
review of twenty two studies published between 2009 and
2019 with respect to their detection methods and evaluation
results. Faruki et al. [17] covered fifteen Android malware
detection frameworks with respect to their goals, meth-
ods, deployment and availability for the period between
2009 and 2013.
• Detection of mobile malware has gained more attention
recently; therefore, several surveys have been published
such as Enck [18], La Polla et al. [19], Faruki et al. [17],
Feizollah et al. [20], and Faruki et al. [17] focused on
papers published between 2006 and 2015, while
this review covers papers published between 2010
and 2021.

• Various surveys have concentrated on certain types of
feature analysis [21], [22]; however, we have covered all
three types: static, dynamic and hybrid.

• Although [12], and [13] discussed recently published
papers in the field, this survey provides suitable back-
ground information for any researcher interested in
investigating intrusion detection in smartphone devices.

In light of the above, this paper aims to provide a compre-
hensive survey of recent studies published since 2010, cov-
ering essential feature extraction analysis: static, dynamic,
and hybrid methods. Then, providing details for the public
datasets and covering various approaches, not only those
using machine learning algorithms, but also applied deep-
learning algorithms, considering adversarial attacks and other
techniques. Table 1 compares our survey with most current
surveys in this field.

C. CONTRIBUTIONS
The primary contributions of this paper are as follows:
• Providing a comprehensive survey of papers published
between 2010 and 2021 that focus on intrusion detec-
tion approaches implemented on Android devices with
respect to the number of samples, extracted features, and
performance.

• Classifying malware detection based on extracted
features.

• Highlighting malware in terms of its background, pat-
terns, and families.

The remainder of this paper is organized as follows:
Section II summarizes the background related to the topic in
terms of app patterns, feature extraction techniques, defini-
tions and goals of malware, evaluation metrics, and publicly
available datasets. The types of feature extraction used to
detect mobilemalware, data collection, classifiers, and results
are discussed in Section IV. Open problems, lessons learned,
and future trends are presented in Section V, and the conclu-
sions are presented in Section VI.

II. BACKGROUND
This section provides general characteristics related to
Android malware detection.

A. APPLICATION BEHAVIOR
Understanding the pattern of mobile application is the main
key for mobile malware detection. Hence, for a given app (b),
and set of all apps (B), a malware classifier implements a
function F , such that for each b ε B, F(b) = ‘abnormal’ if
b is malicious, otherwise F(b) = ‘normal’.

B. MOBILE MALWARE: DEFINITION, GOALS,
AND BEHAVIORS
Mobile malware is a malicious software app that targets
the operating system, apps, and classified information stored
on mobile phones. Therefore, the malware attackers usually
upload their apps into official markets as well as third par-
ties or use social engineering strategies to gain unauthorized
access and exploit root privileges without user consent [8].
These apps have different patterns to achieve attacking goals
as listed in Table 2.

C. MOBILE MALWARE FAMILIES
A mobile malware family is defined as a set of apps
that share similar patterns, types of attack, and degree of
harm [37]. In addition, each mobile malware family contains
sub-viruses that perform specific purposes. For example,
DroidKungFu, a commonly used piece of mobile malware,
contains several viruses, each of which performs a specific
task. For instance, DroidKungFu A (2011) obtained illegal
privileges [38], DroidKungFu B (2012) utilized additional
command and control (C&C) domains and employed native
code to make difficult to detect [39], and DroidKungFu C
(2011) was used to gain unauthorized privileges and exploit
additional encrypted C&C [40]. The common Android virus
families discovered in 2019 are listed in Table 3.

D. FEATURE APPROACHES
Most current studies analyze the features of suspected apps,
and rely on static, dynamic, and hybrid methods. These con-
cepts are defined in this section.

1) STATIC APPROACH
The static approach analyzes the source code to determine
the functionality of the malware. It is important to note that
executing the code is not required. Various features, listed
below, are available in the Android application package kit

VOLUME 9, 2021 146319



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

TABLE 1. Comparison with other surveys, where X= topic covered, X = topic not covered.

(APK), and can be examined to differentiate normal from
malware behavior.

1) Application andUser Behaviors: are based on extracted
syntactic and semantic features, and analyze a suspi-
cious app’s behavior in order to distinguish normal and
malware apps.

2) Resource Consumption. This relies on how resources,
such as battery, central processing unitr (CPU), and
memory, are consumed.

3) Network Addresses: monitors activities with regard to
network events, such as Domain Name Service (DNS)
packets, C&C servers looking to the Internet Proto-
col (IP) address, and signal processing.

4) Requested Permissions: relies on granting resources
once the smartphone user has installed an app using
three types of permission: normal permissions (launch-
ing data and resources outside the app sandbox, e.g.,
time zone), signature permissions (using a permission
that is utilizedwith the same certificate); and dangerous
permissions, which seek to access classified informa-
tion, i.e., contact lists.

5) Application Code Analysis: Android apps are written
in Java language and compiled into the Dalvik format.
Therefore, researchers observe API calls that interact
with particular devices, for example, by retrieving the
phone ID based on the telephony manager. In addition,
some studies concentrate on the flow of Java code by
editing the names of API calls or the sequence of API
calls and utilizing classes, methods, and app instruc-
tions to differentiate normal and abnormal apps.

6) System calls: is defined as the way in which
interactions occur between apps and devices.

Static approaches involve unpacking, disassembling,
and analyzing malware code.

The static approach has sub-approaches: signature-based,
permission-based, and Dalvik bytecode detection, which are
outlined below.

a: SIGNATURE-BASED DETECTION
This method is utilized by many antivirus (AV) apps and con-
structs a database manually or automatically. The database
contains predefined, specified, and classified malware in
order to detect suspicious apps. An app that is found to
contain potential threats is compared to the malware in the
database by using different techniques, such as a byte sig-
nature, byte sequences in a file, or data stream (e.g., a hex-
adecimal signature or a hashing signature initiated by a hash
function), and the data are transformed into a series of alpha-
numeric features, such as the Message-Digest Algorithm 5
(MD5) [41] or the Secure Hash Algorithm 1 [42].

b: PERMISSION BASED DETECTION
This involves resources, such as cameras, contacts, and loca-
tion and messaging services, being launched with or without
user consent. All permissions are defined in the Android-
Manifest.xml file. Current studies compare normal patterns
as a reference with malicious patterns to determine whether
the permissions granted are essential for the app to operate.

2) DYNAMIC APPROACH
This approach relies on an analysis of the behavior of an
app in terms of its dynamic features. For example, dynamic
hardware features include the battery, memory, CPU,
input/output (I/O), sensor, camera, and screen usage. The way

146320 VOLUME 9, 2021



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

TABLE 2. Behavior of mobile malware.

in which software and firmware features affect the behav-
ior of an app can also be analyzed. Here, software features
include app patterns, permissions, privileges, network traffic,
data access, information flows, and firmware features include
the operating system (OS), system calls, and various prede-
fined functions. In several analysis scenarios, dynamic anal-
ysis is performed in an isolated environment, e.g., a sandbox.
Apps are observed under such conditions to examine whether
their behavior is consistent with a normal pattern. Anomaly
detection is a common method used for dynamic analysis.
Anomaly detection compares the current pattern observed
when the code is executed with the expected pattern, employs
a sandbox to monitor features, builds regular behavior during
the training phase, and then reports possible threats based on
any deviation from the constructed model. Other approaches
that can be utilized in dynamic analysis involve monitoring
classified information or leakage from third parties and emu-
lation detection, which identifies privilege escalation inside
the kernel utilizing virtual machine introspection and can be
used to examine patterns based on recent activities that occur
outside of the emulator.

TABLE 3. Ten most common viruses discovered in 2019.

3) HYBRID APPROACHES
These techniques rely on leveraging the benefits of both
static and dynamic approaches. Hybrid approaches begin by
examining the code, permissions, and components of the app
(static), and then analyzing the patterns of the app (dynamic).
Table 4 presents a comparison of the static, dynamic, and
hybrid approaches.

Figure. 1 represents the taxonomy of recent methods used
to detect mobile malware.

III. ANDROID MALWARE DETECTION APPROACHES
BASED ON MACHINE LEARNING
The typical Android malware detection framework uses
machine learning comprised of four main phases: collected
data, extracted features, selected features, and finally applied
machine learning, to classify the instances into normal or
malware apps. These phases are described in this section.

A. COLLECTED DATA
It is important to obtain data to construct malware detection
scheme. There are two types of datasets: private (collected by
the authors for their works and not available to the public) and
public (gathered for academic and industrial purposes and
available for the public or some require permission to obtain
the samples). Each type of dataset has one or two categorizes:
normal apps that can be downloaded from authorized stores
such as Google Play store while malware apps that were
developed by attackers and might be found in third parties.
Table 5 summarizes eleven public datasets in terms of period
of collection, sample size, brief description, availability and
resource.

VOLUME 9, 2021 146321



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

TABLE 4. Comparison among feature approaches.

FIGURE 1. Taxonomy of recent methods used to detect mobile malware.

B. PREPROCESSING DATA
The authors should consider the preprocessing phase to
reduce possible errors that could have occurred during data
collection processes. This phase includes data cleaning, nor-
malization, discretization, factorization, missing value pro-
cessing, and dataset segmentation [54], [55].

C. EXTRACTED AND SELECTED FEATURES
This phase consists of two sub-phases: extracted and selected
phases.

a: EXTRACTED FEATURES
Any proposed intrusion detection system should extract and
analyze different types of features to examine the pattern from
the Android Application Package (apk). It comprises of an
input phase (represented by raw apks) and output (informa-
tion extracted from Android-Manifest.xml, and Classes.dex
files such as APIs, permissions, and intents. The goal of this
phase tomake the extracted features in an interpretable format
for further analysis and extraction of features.

b: SELECTED FEATURES
Once the features are extracted, and analyzed, the next step
is to determine which features are more valuable and can
improve the obtained results by ranking them. Various tech-
niques can be applied to rank features such as mutual infor-
mation [56], chi-square test [57], correlation analysis [58],
and posterior probability [59].

D. APPLIED MACHINE LEARNING ALGORITHM AND
MODEL EVALUATION
The fourth phase aims to select a suitable machine learning
model to construct the model and perform the classification

of samples as normal and malware. This phase relies on
splitting data into training (used to fit the parameters and train
the model), validation (used to predict the responses for the
observations and provide an unbiased evaluation of a model
fit on the training dataset while tuning the model’s hyper
parameters) and testing sets (provides an unbiased evaluation
of the final model fit on the training dataset). Several metrics
such as accuracy, precision, recall, and F1-score are used to
measure the performance of the implemented schemes [60].

IV. MALWARE DETECTION APPROACHES
In this section, we analyze recent mobile malware detection
approaches, which can be broadly categorized into static,
dynamic, and hybrid analyses.

A. STATIC ANALYSIS APPROACH
Static analysis methods rely on employing several features
such as application and user behaviors, resource consump-
tion, network addresses, requested permissions, application
code analysis, and system calls. This section summarizes
recently published papers that have used one or more static
features.

Shamili et al. [61] utilized a statistical mechanism that
relies on a support vector machine (SVM) [62] by monitor-
ing user patterns on a mobile device. The researchers used
the MIT Reality dataset [63] in terms of the activities of
75 subjects over 25 days, and extracted 20 features, such
as duration of calls, time interval between calls, incoming/
outgoing SMS, sending packets and activities. They imple-
mented an intrusion that could send an SMS message
every 20 minutes to construct a dataset that includes half the
infected instances, and created a simulated network compris-
ing 25 smartphones for training and 50 subjects. The average
obtained accuracy was between 83% and 87%.

Burguera et al. [64] proposed a system called Crowdroid,
which aimed to investigate Android apps in terms of their
patterns. The Crowdroid system relies on collected data
(installed and observed app behaviors) and utilizes a tracing
tool to record log files. Then, these data are stored in a
centralized database, the information is parsed to facilitate
information extraction, and the feature vectors are generated.
Finally, the analyzing and clustering processes are performed
using k-means [65] to create a normality model for each
app that can be used to detect malware. To evaluate the
Crowdroid, the authors performed two experiments. In the

146322 VOLUME 9, 2021



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

TABLE 5. Common public datasets.

first experiment, they used self-written malware (calculator,
countdown, and money converter), and obtained 60 execution
traces for each app: 50 related to normal apps, while 10 were
related to malware; and found that the Crowdroid was able to
distinguish the apps with an accuracy of 100% for all apps.
The second experiment relied on employing real malware,
using the Steamy Window app with PJAPPS,1 (records clas-
sified information such as IMEI, the ID of the device, and
contact numbers, in order send it to the server), and Monkey
Jump2 with HongTouTou 2 (has the ability to install apps
and insert spam in context), and generated 20 feature vectors
(15 as normal, and five as malware). Using k-means, the
detection rate for the Steamy Window and Monkey Jump2
apps were 100% and 85%, respectively.

Shabtai et al. [66] proposed a host-based intrusion detec-
tion system (HIDS)model using amodified knowledge-based
temporal abstraction (KBTA) model [67] in terms of their
functionalities, computations, and resources to adapt it to
use by smartphones rather than personal computers (PCs).
The proposed model observes the behavior of Android apps’

1http://bit.ly/juL7Rh
2http://bit.ly/iOu5AA

FIGURE 2. Host-based intrusion detection system architecture [66].

to distinguish normal apps from malware apps as shown in
Figure. 2.

The authors developed five malware apps, as defined in
Table 6. They evaluated their system based on the CPU con-
sumption of the IDS and observed approximately 3% CPU
consumption with peaks of less than 9% when processing
data with a 2 seconds sampling interval.

Alpcan et al. [68] proposed a model that relies on a prob-
abilistic diffusion method to identify patterns of smartphone
use. The authors examined the relationships in daily usage
and computed the dependencies of the instances and features.

VOLUME 9, 2021 146323



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

TABLE 6. Description of applications.

To generate the mapping between features and instances,
they used a bipartite graph algorithm [69] and implemented
a diffusion graph to compute the equivalent vertices in the
graph. To evaluate the model, Alpcan et al. utilized two
datasets: a private dataset that relies on user activities, and
the MIT dataset [63] in terms of phone calls, SMS messages,
and communication logs over 244 days. They performed
two experiments. The first experiment utilized the private
dataset, and the L2 normal distance [70] between the current
monitor feature and a feature vector was utilized in a training
set to examine similarities, and then the Mahalanobis dis-
tance [71], Kullback-Leibler divergence and self-organizing
maps (SOM) [72] were applied to compute the weight of
the SOM neurons. The authors selected the top 3, 6 and 9
deviation days from 200 days, and calculated precision and
recall metrics. Comparing the Kullback-Leibler divergence,
Mahalanobis distance, and L1, the Kullback- Leibler diver-
gence achieved better results for all deviation days, with recall
and precision of 1 and 0.50, respectively.

A cloud-based security framework called Secloud was
introduced by Zonouz et al. [73], which comprises three
parts, as illustrated in Figure.3. The authors initially utilized
DroidDream malware, which was distributed into 50 apps,
and then performed eight different attacks in both a real
device and a virtual machine to examine infected apps.
Secloud framework was able to detect seven out of eight
attacks. They also observed the resources consumed and
found that the overhead of CPU usage was 4.63% for the real
device, while for the emulator, the average CPU utilization,
when idle, was 10.96%, which increased to 27.17% when
it was running. They also measured the memory consump-
tion and found that regular checking of security when the
device was running and idle consumed 41.17% and 39.39%,
respectively.

Alam and Vuong [74] detected Android malware by build-
ing a model that leveraged a machine learning algorithm and
extraction/selection features. The authors employed Random
Forest (RF) [75], in terms of the different settings of trees
(4, 6, 8, 16, 32), the depth of each tree (1, 2, 4, 8, 16,
and 32) with out-of-bag (OOB) error, root-mean-square error
(RMSE) (the square root of the mean squared error) based

FIGURE 3. Secloud’s high-level architecture [73] comprised of: (1) Cloud
agent used for downloading the app, then registering the owner’s
information, allowed to record activities in order to send it to the
emulator. (2) The emulator has a copied version of the original device
with similar content files and operating states. (3) The proxy server, which
manages traffic between real devices and the emulator.

on 5-cross validation, and how many samples were identified
correctly. They selected and modified a dataset [76] of 7535
normal and 24807 malware apps, and extracted 42 features
based on battery, binder, CPU, memory, network, and permis-
sions. Among different settings, the best RMSE was 0.0171,
OOB: 0.0002, Root MSE:0.0171− > Tree 160, TPR is
0.999857.

Dampolous et al. [77] implemented a model to allow a
dynamic movement from the cloud to the host, without
modification of the IDS using cloud and host based. The
cloud side is compromised by a cloud manager (observ-
ing activities using a detection engine) and the detection
manager on the device. There are three components; event
sensor (gathering data and extracted features), system and
detection manager (select which detection method is used to
identify malicious patterns), and response manager (handling
suspicious actions identified by the detection manager). The
authors, then introduced four detection mechanisms: SMS
profiler (examining suspicious use of services and recogniz-
ing unknown malware), iDMA (observing the pattern of cur-
rent apps to detect malware), iTL (responsible for touching
activities), and Touchstroke (observing keystroke actions).
The researchers used iPhone 5s as a host and prepared a cloud
environment using Amazon’s Elastic Compute Cloud (EC2).
They employed random forest (RF) [75] as the classifier
with 17 extracted features based on the detection mechanism,
and obtained accuracies between 80.6% and 99.6%. They
examined CPU usage and battery consumption for all detec-
tion methods in the device and cloud as shown in Table 7.

Riad and Ke [78] implemented a floppy tool called Rough-
Droid, which involves three phases. First, floppy analysis
attempts to identify seven features: hardware components,
voice over internet protocol (VOIP) calls, app activities, API
calls, location, and sending or receiving messages. This phase
can be performed in a parallel sweep to check the Android
app and collect the features. Second, a vector space is created
once the features are elicited, and then mapped into joint
vector spaces with 550,000 features overall (features are

146324 VOLUME 9, 2021



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

TABLE 7. Performance results for CPU, memory, and battery in the testing
phase [77].

valued geometrically). Third, the authors implemented a
detection algorithm that is divided into a features table to
represent apps and features, FS = (A,F), respectively,
Decisions: FS = (APP,C Uappd ), appd : decision features,
C: conditional features, and finally approximation, which
categorizes into low, upper and boundary approximation to
approximate the accuracy. In this phase, each row represents
a determined feature obtained from a specific feature set from
a given Android app. The authors utilized [44] and selected
137171 apps (131611 normal apps and 5560 malware apps)
to validate their scheme. They obtained a detection rate of
95.60% and an FPR of 1%.

Shabtai and Elovici [79] proposed a host-based frame-
work which continuously observes features and activities
such as CPU, memory, and battery usage called Andro-
maly. Andromaly performs threat assessments by computing
the weight of a given app in order to generate an alarm
if the app is classified as malware. The authors installed
23 games and 20 tool apps on an HTC G1 smartphone and
extracted 88 features. To rank the extracted features, the
authors applied information gain (IG) [80], chi-square [57],
and fisher score (FS) [81] techniques. To evaluate Andromaly,
the authors utilized k-means [65], logistic regression [82],
histogram [83], decision tree [84], Bayesian network [85],
and naïve Bayes [86] techniques and evaluated Andromaly in
two scenarios, which relied on including and not including
game apps in the training set. The histogram features are
presented in Table 8. Among all the configurations, for the
first scenario, the decision tree used the top 20 features from
IG with a TPR of 0.9973, FPR of 0.004, AUC of 0.998,
and accuracy of 0.997. For the second scenario, the best
configuration was linear regression using the top 20 features
by FS, with a TPR of 0.828, FPR of 0.199, AUC of 0.888,
and accuracy of 0.818.

Curti et al. [87] investigated the impact of the relationship
between energy consumption andmalware in smartphones by
comparing normal apps and malware activities. The authors
selected energy and Wi-Fi consumption features and imple-
mented two models. The first model is the general consump-
tion, which aims to observe the energy consumption of all
hardware components, e.g., GPS and Bluetooth, and defined

TABLE 8. Histogram features.

the global consumption equation below.

C =
∑
i=1

fi + gi = B+ Ps (1)

Here, fi is the base consumption of the i-th component,
gi consumption is related to a specific (legal/malicious) activ-
ity of the i-th component, and B =

∑
i fi is the base consump-

tion of all components, and Ps =
∑

i gi.
The second model is called the Wi-Fi consumption model,

which monitors the incoming and outgoing wireless net-
work traffic, and calculates consumption using the following
equation.

E(p) = E × p = (Ptxpkt )× p (2)

Here, p is the number of packets, E(p) is the energy
value for p packets, and E is the energy value for a single
packet. To evaluate their approach, the authors used Sony
Xperia U and a Samsung S Advance, and defined an exper-
imental protocol that relied on observing the connection to
the modem/router to utilize energy. Therefore, they created
a dataset of signatures using YouTube, Skype, and Shazam
apps, and then implemented two attacks: a ping flood (to rep-
resent illegitimate incoming traffic) and repeated HTTP GET
requests (for outgoing traffic). For an integrated Skype call
with a ping flood attack, in which the scenario started with a
Skype call for 312 sec, and then the attack was released. The
authors found that the consumption increased from 652 mA
to 673 mA after only 22 sec, Skype could no longer connect
due to lost bandwidth. Another experiment was performed
to investigate browsing YouTube while simultaneously sub-
mitting HTTP GET requests. Here, the users could access
YouTube and an attack was initiated approximately five min-
utes later. They found that the energy consumption increased
from 690 mA to 780 mA, and the battery level consumed
was 25%.

Damshenas et al. [88] introduced a cloud-based malware
detection framework called M0Droid which tracks installed
apps to create a signature for each app. M0Droid is com-
prised of a server analyzer and client agent app, as illustrated
in Figure 4.

VOLUME 9, 2021 146325



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

FIGURE 4. M0Droid architecture [88]. Server analyzer that examines an
app’s APK file by employing a virtual emulator to observe device
activities, and a client agent app that runs in the background to
determine whether the app is in the database (if not, it sends an SHA1
checksum to the server for further analysis).

To extract the features, the authors used asset packaging,
while employing the Android debugger for communicating
with the emulator. Damshenas et al. [88] constructed two pri-
vate whitelist databases: one of which contained 100 normal
apps, while the another was a blacklist database that con-
tained 100 malware apps [43]. They selected 246 apps from
both lists (black and white), and M0Droid obtained accuracy
of 60.61%.

Merlo et al. [89] investigated how energy consumption can
be used to identify intrusions against mobile devices by iden-
tifying high-, low-, and middle- levels measurements. In the
high-level measurements (monitoring apps), the authors uti-
lized PowerTutor [90] to read hardware component actions
from the /sys file and calculate the power consumption of the
CPU, Wi-Fi, GPS, 3G, display, and audio. The calculation
process at this level relies on computing a single component
per second, and it was found that a Skype call, WiFi and CPU
had a fixed consumption of 631 mW, 719 mW, and 200 mW,
respectively. They found that the total power consumption
of a Skype call, for example, increased from 960 mW to
1000 mW. The second level was low-level measurement
(focusing on battery consumption). The authors launched an
AB8500 driver to extract features and identified examples
of consumption that exceeded 250 ms. The third level was
a middle-level measurement. The authors identified three
attacks, that is a Skype call, a ping flood combined with a
Skype call, and a ping flood attack, and found that the values
were Skype call: 70 sec and 127mW; ping flood attack: 70 sec
and 15 mW; and combination attack 70 sec and 145 mW.

In their study, Yuan et al. [91] examined Android malware
detection in terms of the extraction of three main features:
system state (CPU usage, battery consumption, memory
usage), processes (process ID and CPU utilization), and net-
work traffic. The authors applied the naïve Bayes to identify
the patterns. To evaluate the model, they collected 60 apps as
a private dataset (45 normal apps and 15 malware apps) using
an HTC G10. Among these apps, they randomly selected
15 apps, downloaded them to the device, and launched the

malware detection model, observed the activities that rep-
resented as vectors, and categorized them as normal and
malware classes. They produced various attack samples, and
categorized the data into three groups with a varying number
of samples (mixing samples at a ratio of 1 : H ). For group
one, the total number of samples were 504, and the number
of attack samples were 51. For group two, the number of total
samples were 802, and the number of attack samples were 82,
while group three comprised of 860 samples and 80 attack.
The model achieved accuracies of 76.2%, 88.5%, and 87.2%
for groups one, two and three, respectively.

James et al. [92] detected Android malware by employing
signal processing and statistical learning. The authors initially
performed ground truth determination using fast fourier trans-
form, a low-pass butterworth filter, and inverse fast fourier
transform techniques. Then, they employed blind source sep-
aration and normalization to compare similarities (in power
consumption behavior) by computing the correlation of the
reference signal. Two experiments were performed. For
the first experiment, they predefined seven duty cycles
(0% (no intrusion), 1%, 2%, 3%, 4%, 8%, and 12%),
implemented a malware app, ran YouTube as a normal app
for five minutes, and obtained an accuracy varying from
65% to 100%. The second experiment was performed using
SVM [62], which extracted the vector of the features from
a time series of abnormal signals and calculated the mean
power in mW for the first feature and standard deviation (SD)
for the second feature. Using 105 malware signals with vari-
ous applied duty cycles, they achieved an accuracy of 70%.

Kou and Wen [93] introduced a lightweight intrusion
detection system (LIDS) model that has four main phases.
First, a modified Libpcap source file captured network pack-
ets depending on the transmission control protocol (TCP)/IP
stack. Second, they utilized Snort technology, which has a
high detection probability and cross-platform features. Third,
predefined rules were set and stored in a local database.
Fourth, a database was constructed to store all performed
actions. Figure 5 outlines the workflow of the proposed
model.

Portokalidis et al. [94] implemented a cloud-based mal-
ware detection approach called Paranoid Android (PA),
which consists of a client (smartphone device that has a tracer
tool to track activities for submission to a server) and a cloud
environment with a replayer that is responsible for receiving
activities and launching a proxy to connect to the Internet and
intercept traffic. Figure 6 summarizes the architecture of the
PA approach.

Portokalidis et al. employed two detectionmethods: a virus
scanner and dynamic trait analysis, to evaluate the scheme
in terms of the amount of trace data produced, overhead,
and server performance. In relation to the amount of trace
data, the authors observed different situations, such as, when
the device is idle (64 B/s), making a call (21 B/s), browsing
(2K), and audio playback (22.5 MB). For the overhead, they
observed various activities such as browsing, making a call,
and playing audio, and found that the average overhead was

146326 VOLUME 9, 2021



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

FIGURE 5. LIDS workflow [93].

FIGURE 6. Overview of Paranoid Android architecture [94]: The virtual
environment of the phone emulator synchronizes with a real device,
to perform dynamic analysis to detect potential threats using system call
features.

lower than 2.5 KiBps. In relation to performance and scal-
ability, they examined 100 device replicas, and found CPU
utilization of: running games (90% and 100%), accessing
audio (20% to 25%), browsing (30% to 100%), and idle
(0% to 5%).

Using the DroidBox model, Wei et al. [95] extracted the
features from DNS packets to obtain information from
response packets (e.g., IP addresses, duration of each record)
using independent component analysis, which were used to
determine patterns in malware. The authors created their own

TABLE 9. Evaluation of the detection of unknown samples.

dataset of network patterns and domain names, compris-
ing 310 types of malware from several resources including
Symantec, F-Secure, Lookout, and Panda Security, and then
identified 102 unique malware instances. DroidBox conducts
dynamic analysis of app behavior, examined the patterns,
extracted network activities such as incoming and outcom-
ing networks, and then sorted them. They obtained average
accuracy of 50% - 98%, depending on the size of the fea-
tures. They conducted another experiment using naïve Bayes
and logistic regression to identify malware (with a feature
size of 10) and obtained an accuracy between 81.74% and
100%, precision between 69% and 72%, and recall between
88% and 94%.

Kumar et al. [96] designed a network-based model to
examine the network flows in communication. There-
fore, traffic was produced for Android apps (600 samples
were produced for malware apps using Andrubis [97] and
Cuckoo [98]) using the Wireshark tool. Then, they employed
the RFC- 5103 BitFlow export method [99] to extract the
connection duration, destination port, packets sent, packets
received, payload bytes sent, payload bytes received, initial
flags in forward and reverse directions, and the union of flags
in forward and reverse directions. The authors conducted sev-
eral experiments using ensemble methods J48 [84], RF [75],
JRIP [100], ripple down rule learner (RIDOR) [101], and a
partial decision tree (PART) [102]. The authors performed
three ensemble combinations. The first combination relied
on J48, RF, JRIP, RIDOR, and PART, and obtained accuracy
values of 99.1%, 98.5%, and 99.8%, using majority voting,
maximum probability, and the product of probabilities [96].
The second ensemble combination comprised J48, RF, JRIP,
and PART, and obtained accuracy values of 99%, 98.9%,
and 99.1% for majority voting, maximum probability, and
product of probabilities, respectively. The third ensemble
method included a combination of J48, RF, and PART, and
obtained accuracy of 99.3%, 98.7%, and 98.9% for majority
voting, maximum probability, and product of probabilities,
respectively. The results are listed in Table 9. Another exper-
iment was conducted to examine unknown samples with and
without interval times using RF, PART, JRIP, and ensemble
methods. The results are presented in Tables 9 and 10.

Narudin et al. [103] developed a framework for detect-
ing Android malware. The authors downloaded 20 normal
apps from Google Play, accessed each app for varying
times (10, 20, and 30 minutes) and captured network traffic,

VOLUME 9, 2021 146327



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

TABLE 10. Evaluation of the detection of unknown samples after
intervals of time.

then installed 1000 malware apps from [43] and manu-
ally collected 30 malwares, which refer it to the latest
malware dataset. They utilized TCP packets and tShark3

and extracted 11 features: source/destination IP address,
source/destination host port number, frame length and num-
ber, http protocol used to submit data from client to server,
number of frames received by unique source/destination in
the last T s from the same source, number of packets flow-
ing from source to destination, and vice versa. The authors
applied the ClassifierSubsetEval method to rank extracted
features. Figure 7 summarizes the implemented framework.

The authors employed RF [75], J48 [84], multi-layer per-
ceptron (MLP) [104], Bayesian network [85], and k-nearest
neighbors (KNN) [105] techniques to construct the frame-
work, and performed three experiments. The first experiment
was based on a fixed sample size (400 samples), and RF
obtained the best results among the rest with TPR and FPR
of 99.96% and 0.04%, respectively. Then, they performed
another experiment based on varying sample sizes, and RF
achieved higher results in terms of TPR and FPRwith 99.97%
and 0.34%, respectively. The third experiment was performed
using the latest malware dataset and found that KNN achieved
the best result in terms of TPR, FPR, precision, and recall with
values of 84.57%, 15.43%, 88.4%, and 84.6%, respectively.

Ribeiro et al. [106] implemented an Android malware
detection approach, called Host-based IDS (HIDS). The
HIDs comprises six phases. In the first phase, a private
dataset constructed with 12,000 apps (6,000 normal apps
from Google Play, and 6,000 malware apps from Marcher,
Android Locker, Secrettalk_Device, AndroidXbot, and
Radardroid2Map). The second and third phases rely on
extracted and normalized features. Ribeiro et al. extracted
15 features: CPU andmemory consumption, cached memory,
total sent/received bytes per second (kB/s), total sent/received
packets per second (packet/s), battery usage and temperature,
running process, downloaded apps, screen ON/OFF, total
number of open TCP sockets, number of messages sent to
unlisted numbers and outbox, and number of outgoing calls.
In the fourth phase, the authors used machine learning and
statistical classifiers to classify the entry of the datasets
as normal or malware app, then produced a binary vector;
y ∈ Rm∗1. The binary vector will be employed to assess
the probability of intrusion for a period of n times using the

3http://www.wireshark.org/docs/man-pages/tshark.html

FIGURE 7. Experiment workflow of developed framework of [103].

following equation.

P0n =

∑m
i=1 Yi
m

A (3)

Here, A is the accuracy obtained and m is the number of
samples. The overall probability of intrusion for the previous
and existing periods of n is computed in the fifth phase using
the following equation.

P(n) = 1−5αi=1(1− P0(n− α + i)) (4)

Here, α denotes the number of consecutive alerts received
up to the nth data acquisition period. In the sixth phase,
the researchers evaluated the implemented approach using
different percentages of malware instances in the training
and testing phases. Among machine learning and statistical
algorithms, the approach achieved accuracy between 91.12%
and 100%.

Barbhuiya et al. [107] introduced a cloud-based detection
process called DroidLight. The authors utilized the client side
to collect various activities such as CPU utilization, submitted
network packets every 5 seconds, stored them on a secure
digital card, and forwarded stored activities to the server
every 5 minutes. The evaluation phase was performed on the

146328 VOLUME 9, 2021



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

server-side. The authors implemented three malware apps:
DroidDDoS (sends thousands of network packets to a remote
web server), DroidThief (stores a copy of files inside the SD
to transmit them to a remote web server), and DroidHijack
(consumes CPU). Meanwhile, the authors used three assump-
tions, which relied on the status of the device, WhatsApp
and YouTube apps utilized, and the sample size. The authors
obtained accuracies ranging between 86.7% and 96.6% based
on sample size, and between 0% and 100% for identifying
the malware family. They also monitored the consumption of
CPU and memory used to identify DroidLight, and found that
it consumed 0.86% of the CPU resources and 4.6% of the
memory resources.

Wu et al. [108] implemented a static analysis framework,
called DroidMat, which initially extracted permissions, activ-
ities, services, receiver, and provider features, and then
represented those features as vectors. The authors utilized
1738 apps (1500 normal apps and 238 malware apps from
Google Play and [43], respectively). The authors examined
the average usage for all samples and found that mal-
ware apps had higher usage in terms of permission, ser-
vice, and receiver component features than normal apps.
Then, the authors employed k-means clustering [65] and the
expectation-maximization (EM) algorithm [109], and utilized
the singular value decomposition method to determine the
clustering required based on low rank approximation. They
also used the KNN [105] to determine whether the apps were
normal or malware, and found that DroidMat obtained recall,
precision, F-measure, and accuracy of 87.39%, 96.74%,
91.83%, and 97.87%, respectively.

In their study, Zhu et al. [110] utilized a dataset consisting
of 2130 apps (1065 normal apps and 1065 malware apps
from Google Play and VirusShare), and then extracted four
static features: permissions, sensitive APIs, system events,
and URLs. The authors constructed a DroidDet system and
employed the term frequency-inverse document frequency
(TF-IDF) [111] and cosine similarity [112] to compute and
rank each feature. The authors identified a permission rate
metric to distinguish between normal and malware apps,
as follows.

PR =
pm
sz

(5)

Here, PR refers to the permission rate, pm is the total
number of permissions requested by each app, and sz is the
size of the Smali file inMB. The authors [110] used a rotation
forest adapted with principal component analysis [113], and
SVM. For the rotation forest, they obtained accuracy, recall
and precision of 88.26%, 88.40%, and 88.16%, respectively,
while SVMobtained accuracy, recall, and precision of 3.33%,
2.22%, and 4.03%, respectively.

A framework called DREBIN was introduced by
Arp et al. [44] to detect intrusion among Android devices.
The authors used a dataset consisting of 123,453 normal
apps installed from Google Play, Chinese and Russian app
markets, and 5560 malware apps using [43]. The authors

extracted various features, including permissions, API calls,
and network access features that were mapped into a joint
vector space for further analysis. The authors used a linear
SVM and performed two scenarios. In the first scenario, the
authors compared DREBIN and popular AV scanners using
whole samples, and found that DREBIN achieved accuracy
of 93.90%, while the best AV scanner achieved accuracy
of 96.41%. The authors used in the second scenario the
malware samples, and found that DREBIN achieved accuracy
of 95.90%, while the best AV scanner achieved accuracy
of 98.63%.

In their work, Aafer et al. [114] developed a
DroidAPIMiner tool using a dataset consisting of 19,987
apps (16,000 normal apps from Google Play and 3987 mal-
ware apps from McAfee and [43]), extracted API calls and
package-level information and requested permission features
for each app, and then ranked these features in terms of
the probability of threats to produce a set of feature vec-
tors associated with class labels. They employed decision
tree [84], C4.5 [115], KNN [105], SVM [62] techniques.
The authors computed the differences in permission request
usages between normal and malware apps and selected the
top k permissions that were commonly requested bymalware.
The authors selected the top 80 k permissions feature and 169
kk package level with varied parameters of API features and
achieved accuracy of 67%, and 99%, respectively.

Milosevic et al. [116] conducted two experiments utilizing
permissions and source code analysis features using 400 apps
(200 normal apps and 200 malware apps [88] to detect
malware intrusion. The first experiment extracted permis-
sion features, employed SVM, naïve Bayes, J48, JRIP, and
AdaBoost, and reported results in terms of precision, recall,
and F-score. Among all classifiers, AdaBoost achieved better
results in terms of precision, recall, and F- score with values
of 89.5%, 89.4%, and 89.4%, respectively, while the second
experiment relied on analyzing the source code using the
bag-of-words method [117] to train the models using J48,
naïve Bayes, SVMwith sequential minimal optimization, RF,
JRIP, logistic regression, and AdaBoostM1 with SVM- based
techniques. Here, they combined algorithms using a majority
voting decision system and examined clustering using the far-
thest first, simple k-means, and EM algorithms. Comparing
among all classifiers, AdaBoostM1 obtained better results for
Precision, Recall, and F-score with values of 95.8%, 95.7%,
and 95.6%, respectively.

Saracino et al. [118] were able to detect app patterns by
implementing a multi-level anomaly detector scheme for
Android Malware (MADAM) at the kernel, app, user, and
package levels. Figure 8 illustrates the components of the
MADAM scheme, which consists of app risk assessment,
global monitoring, pre-app monitoring, and user interface.
The authors extracted 14 features and classified them into
five groups: system calls, SMS, critical API, user activ-
ity, and app metadata. Then, KNN [105], linear discrimi-
nant classifier [119], quadratic discriminant classifier [120],
MLP with backpropagation [104], Parzen classifier, and

VOLUME 9, 2021 146329



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

FIGURE 8. Multi-level Anomaly Detector for Android Malware (MADAM)
scheme [118].

radial basis function [121] techniques employed for initial
evaluation using 2,784 malicious apps from 125 families,
from [43], [45], and VirusShare. The best reported accuracy
was 96.9%. A further experiment performed by the group
created three different pattern usage configurations: low, nor-
mal, and heavy usages, using 91 downloaded apps. They used
the KNN [105] technique to detect malware. The results are
presented in terms of FP, FPR, and FP/day as follows: 3,
1.10−5, 0.5 (light usage); 8, 2.8.10−5, 1.1 (medium level);
and 75, 2.6.10−4, 10.7 (heavy usage). Benchmark testing
is based on the calculated overhead consumption of CPU,
memory, I/O, 2D and 3D graphic video games, with total
consumption of 0.9%, 9.4%, 4%, 0%, and 0%, respectively.

Lu et al. [122] collected 400 apps (200 normal apps
and 200malicious apps) and extracted permission logs, which
were initially saved in a sequential manner in CSV format,
and then the file was translated into (.scale) for later cat-
egorization of the features. The authors utilized signatures
in antivirus programs and applied a LibSVM [123] algo-
rithm to classify the apps, and obtained 100%, 0%, 2%,
98%, and 99% for TP, FN, FP, TN, and recognition rate,
respectively.

Yerima et al. [124] implemented a reverse engineering tool
to parse a .dex file into several files, and then convert them
into feature vectors. The authors used a dataset with a total
of 2000 apps (1000 normal apps and 1000 malicious apps),
extracted 58 requested permissions, applied MI [56] to rank
the features, and identified the 48 most relevant features. The
authors employed the naïve Bayesian classifier and used the
top 5, 10, 15, and 20 k features with varied training sets
of 100, 250, 500, 1000, and 1600. The developed scheme
achieved accuracy of 92.1% using 1600 samples. Later, the
authors [125] further developed their work by extracting 358
features of API calls, SMS, commands, and permissions, and
categorized the extracted features into app attribute features,
permission features, and a combination of these features.
To rank the extracted features, they employedMI and selected
the 10, 15, 20 and 25 top features, and concluded that using
the top 10 features achieved accuracy of 88.4%, TPR of
85.4%, TNR of 91.3%, FPR of 8.7%, equal error rate (EER)
of 11.7%, and AUC of 89.5%, whereas for k = 50, the results

for accuracy, TPR, TNR, FPR, EER, and AUC were 97.5%,
97.3%, 97.7%, 2.3%, 2.5%, and 99.3%, respectively.

Merlo et al. [126] designed a tool to observe theWi-Fi and
CPU energy consumption using three methodologies. The
first methodology, called high-level measurement, observed
and read actions in relation to CPU, Wi-Fi, display, 3G radio,
GPS, and audio through the /sys file to compare each con-
sumption level, using a profiler service (saving activities on
the phone) and PowerTutor (responsible for the aggregated
profiling of the devices). The second method involved low-
level measurement and collected data regarding battery volt-
age and performed an experiment by sampling at 4 Hz using
a demon service. The third measurement, called the middle
level, used an extracted power utilization feature, utilizing
Skype calls, ping flood attacks, and Skype activities to assess
power consumption in terms of low and high application
levels. They found that Skype lost 0% of power before a ping
flood attack and saw a 1% loss once the attack was initiated.
The average measured traffic was 12%. The average error
was 6.56E − 2, with a maximum value of 1.65E − 1 and
a minimum value of 1.25E − 3.

Shabtai et al. [127] proposed a scheme comprising a GUI
(to observe communication with users), an alert handler
(to produce alerts), and a feature extractor and aggregator
(to identify and measure features in terms of a specific
period of time, and to analyze app behavior). The authors
constructed a dataset consisting of 15 apps (5 normal apps
and 10 malicious apps), performed an evaluation based on
the original normal apps that requested network access per-
mission and injected repackaged apps to monitor the traffic
patterns of popular, normal, and malicious apps. The authors
examined the system and selected eight apps, 150 sam-
ples, and 20 features, then employed linear regression [128],
decision tree [84], SVM [62], Gaussian process for regres-
sion [129], isotonic regression [130], and decision regres-
sion tree [131] techniques. The proposed scheme achieved
a TPR of 82% and accuracy of 87.5%. Anomalous records
for different versions of the same app were detected using a
decision tree and achieved TPR of 91% and ACC of 94%,
while for self-updating malware, it showed a low detection
rate of between 45% and 67.9%. Finally, the authors mea-
sured the CPU consumption (utilizing a Galaxy S GI-i900) of
13%± 1.5, and the time to learn a model for 50 samples was
249ms± 27.4.

Talha et al. [132] developed a APK Auditor tool, consist-
ing of three components. The first component is the Android
client, which utilized for downloadingAndroid apps, and then
requested permissions features were extracted. The second
component is a signature database that used for storing the
extracted features. The central server, which is considered as
the third component, employed to monitor the communica-
tion between the client and the database. To evaluate their
APK Auditor tool, the authors used a public dataset with
a total of 8762 apps (1853 normal apps installed from the
Google Play Store, and 6909 malicious apps from [44], [45],
and [43]. They used the following equation to compute the

146330 VOLUME 9, 2021



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

accuracy for distinguishing apps:

P =
ea+bx

1+ e(a+bx)
(6)

Here, a is a logistic regression and X is an independent
variable that calculates the app’s malware score (AMS) for
the APK Auditor, and found that the average accuracy was
88.28% for all predictions.

Rathore et al. [133] introduced a system for detecting
adversarial attacks. The authors initially collected samples
with a total of 11290 apps (5721 normal apps installed from
Google Play, and 5569 malware apps from [44]), extracted
permission features and represented them as feature vectors.
To construct the system, the authors employed several classi-
fiers, including logistic regression [82], SVM [62], DT [84],
RF [75], boosting algorithms and deep neural network
(DNN) [134]), ranking the features, and then selecting the
top 5, 10, 15, and all 197 features. Comparing all classifiers
and feature sets, RF obtained the highest accuracy with a
value of 93.81% using all features; however, the system
fell against adversarial attacks. Therefore, the authors devel-
oped new variants of malware using reinforcement learn-
ing, proposing two attacks: single-policy attack (white box),
which has as complete knowledge of the detection system,
and multi-policy attack (gray-box), which has no knowl-
edge of the model architecture. The authors obtained fool-
ing rates of 44.28%, and 29.44% for white and gray boxes,
respectively.

Wang et al. [135] initially developed four intrusions: pri-
vate leakage, SMS financial charges, malware installation,
and privilege escalation, and then implemented an APK tool
to extract features from Smali files to produce an API call
graph using Androguard [136] to construct an adjacency
matrix. They then implemented the WxShall-extended algo-
rithm to detect malware by examining calls in relation to
actions, and employed the machine’s pattern chain state by
defining a pattern graph. The system developed by [135] was
called DroidChain, and used a dataset comprised of 1260
malware apps [43]. A comparison was performed using SMS,
phone number, user account, financial charges, malware
installation and privilege escalation features, and obtained a
total accuracy of 73.29%.

Elish et al. [137] developed a workflow using the
definition-use graph [138] to extract the TriggerMetric fea-
ture of each API call, which determined whether a trigger
was executed by the user. The authors used 4117 apps
(2684 normal apps from Google Play, and 1433 malware
apps from [43]) as their dataset, and extracted features that
created by analyzing data dependencies and specific control
flows. The authors defined two rules classifiers. The first rule
is based on assurance scores. The examining app classifies
as a normal app if the assurance score V is equal to or
greater than the assurance threshold T . In the second rule, the
authors applied a weighted cosine similarity function [112]
to compute the similarity between the vector of the app
W , and the average malware vector M , and then used the

exponential function 2x to calculate the weighted similarity
vector. The app is classified as a normal app if it is classified
as normal in rules 1 and 2; otherwise, the appwill be classified
as a malware app. The authors computed assurance scores
for known malware apps and normal apps, and found that
66.6% of the malware apps had positive assurance scores,
while 80.5% of normal apps had 100% of assurance scores.
The authors evaluated their workflow using known malware,
in terms of accuracy and FNR, and gained 97.99%, and 2.1%,
respectively.

Idrees et al. [139] designed a PIndroid approach to identify
Android malware apps. The authors used a dataset consisting
of 1745 apps (445 normal apps and 1300 malware apps
from [43]–[45], VirusTotal, the Zoo, and MalShare), and
then extracted permissions and intent features. The authors
preprocessed features to produce a vector by applying an
unsupervised randomization filter, and applied six classi-
fiers: RF [75], naïve Bayes [86], decision tree [84], deci-
sion table [140], sequential minimal optimization [141],
and MLP [104]. They reported that popular apps have fewer
normal permissions than less-popular apps (8-16 permissions
for popular apps and 306 permissions for less-popular apps).
The average for using intents based on the degree of harm for
normal apps was between 1 and 40, while for the malware
apps it was in the range of 2 to 8. They used the Pearson
correlation coefficient to calculate the correlation between
intents and permissions and concluded that the decision table
achieved better results for TPR, FPR, precision, recall, and
AUC with values of 99.3%, 0.6%, 99.5%, 99.6%, 99.6% and
99.6%, respectively.

Isohara et al. [142] developed a model based on an anal-
ysis of the malware behavior. The model collects activities
at the kernel level using a log collector to track system call
actions in terms of process management (i.e., clone, execve,
and fork) and file I/O (accept, bind, open, read, etc.). The
authors analyzed the activities collected by implementing
a log analyzer tool to examine potential threats using a
signature detection method based on regular expressions to
obtain error rate detection results. They used an HTC Magic
smartphone and implemented a command program (strace)
to collect activities and applied two mechanisms to reduce
noise: selecting system calls and selecting a process tree.
They selected five normal apps: Friend, Fring, Facebook,
Norton mobile security, and a wireless tether app, and pro-
duced 16 different signatures. In an analysis of 230 sample
apps, they found that 37 apps leaked sensitive personal data
(IMEI and Android ID), 80 apps matched signatures that
used the names of mobile ads, 14 apps executed exploit code,
and 13 apps executed the ‘‘su’’ command.

Xie et al. [143] proposed a behavioral-based malware
detection system (pBMDS) that relies on observing and
learning from the transitions of app and user patterns. The
screen touch and keystroke events are collected to construct a
profile of each user to analyze processes and build a graph
pattern, which will be used as input patterns to learn user
behavior for the apps. The authors applied a hidden Markov

VOLUME 9, 2021 146331



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

model (HMM) [144] to examine system calls to determine if
the existing traces belong to malware by calculating the prob-
ability of sequence observation. The authors implemented
three types of malware: Cabir, Commonwarrior, and Lasco,
and then created an attack strategy based on SMS with ten
subjects, with a total of 317 complete and 29 incomplete
messages. The system was evaluated in terms of detection
rate, FPR and FNR as illustrated in Table 11.

TABLE 11. Experiment results based on a training size of 125.

Shamshirband and Chronopoulos [145] designed a scheme
that employed a high-performance extreme learning machine
(HP-ELM). The authors used two datasets: a malware
dataset which consisted of 1280 apps (20 normal apps and
1260 malware apps from [43]), while the second dataset
was based on CTU-13 and contained 13 real botnets. Here,
tcpdump was used to capture and select features: DstAddr,
sport, Proto, SrcAddr, Dport, Dur, State, sTos, dTos, Tot-
Bytes, SrcBytes and TotPkts features. The authors used the
F-score [146] and Fisher score [81] to identify the most
informative features. The designed scheme was able to obtain
accuracies using the malware dataset of 96.73% and 96.89%
for all features and the top five features, and for the second
dataset, it obtained accuracies of 96.25% and 95.9% for all
and the top five features, respectively.

Another static model called MaMaDroid was imple-
mented by Onwuzurike et al. [147] to detect Android mal-
ware. The size of the collected samples was 43,940 samples
(8,447 normal apps from Google Play store and 35,493 mal-
ware apps from Drebin [44]). The authors employed Markov
chains to construct feature vectors to represent the sequences
of abstracted API calls for each app, and utilized PCA to
select informative features. Then, they performed a com-
parison among four classifiers: random forests, 1-Nearest
Neighbor (1-NN), 3-Nearest Neighbor (3-NN), and SVM,
to evaluate the model in terms of detecting unknown mal-
ware samples, and obtained an F-measure of 0.99. They also
examined their model using sustainability within time spans
of one and two years, and achieved accuracies of 0.87 and
0.75, respectively.

In their study, Zhang et al. [148] proposed a framework
called APIGRAPH, which consisted of a node, represent-
ing a key entity such as an API call, exception, permis-
sions and edge: showing the relation between two entities.
The framework converts API entities into embedded clusters
by extracting API semantics from the graph. The authors
constructed a private dataset spanning of 6 years (between
2012 and 2018) which consisted of 322,594 samples
(290,505 normal apps and 32,089 malware apps), and

performed experiments using four frameworks: Mama-
Droid [147], DroidEvolver [149], Drebin [44], and Drebin-
DL [150] using RF, Model Pool, SVM, and DNN. The
authors performed two types of analyses: maintainability
and sustainability analyses. For the maintainability analyses,
they examined the number of malware to label for a period
between 2013 and 2018 for a fixed retrain threshold, and
found that APIGraph was able to save the number of samples
to label, with values of 33.07%, 37.82%, 96.30% and 67.29%,
for [44], [147], [149], and [150], respectively, while for the
varied retrain threshold, the authors used the AUT (F1, 12m)
metric for each classifier, which was introduced by [151],
and showed that the APIGraph is significant for all ratios
and for all frameworks. Another evaluation analysis based on
sustainability was based on examining all classifiers before
and after leveraging the API relation graph, and found that
the average improvement for [44], [147], [149], and [150]was
19.2%, 19.6%, 15.6% and 8%, respectively.

Suarez-Tangil et al. [152] proposed a DroidSieve system
to detect obfuscated and non-obfuscated samples of Android
malware. The authors collected a dataset with a total
of 124479 samples (107,078 normal apps and 17401 mal-
ware apps from McAfee Goodware, [43], [44], [46], and
Marvin Goodware). Then, they extracted resource-centric
feature, such as the certificate generated, package directory
and extension, and syntactic features such as API calls and
permission. To construct the model, the authors employed
four machine classifiers: SVM, RF, extra trees, and XGBoost.
The authors evaluated DroidSieve in terms of detecting mal-
ware and classifying malware families. For examining mal-
ware, DroidSieve achieved 99.82%, 99.81%, 98.42%, and
0.008%, for accuracy, F1-score, detection rate, and false pos-
itive rate, respectively, while for identifying malware family,
the DroidSieve gained 98.12% and 97.84% for the accuracy
and F1-score, respectively. A further evaluation performed
based on a mix of obfuscated and unobfuscated malware, the
DroidSieve detected the malware with accuracies of 99.71%
and 99.15% for families identification.

Avdiienko et al. [153] developed a mining unusual data
flow (MUDFLOW) system that relies on three phases.
First, the authors collected Android samples with total of
18204 apps (2,866 normal apps from Google Play store, and
15,338 malware samples from [43] and VirusShare). Second,
they extracted static taint analysis features, based on sensitive
resources, such as calendarContact Provider, accessed URL,
intent, and non-sensitive sources and sinks such as wallpaper
app. Third, SVM was employed as a machine learning, and
obtained accuracy of 86.4%. Among all collected apps, the
authors found that 10,552 apps were considered as malicious
apps in terms of leaking sensitive data.

Tables 13, 14, 15 and 16 summarize static feature analysis
approaches.

B. DYNAMIC ANALYSIS APPROACH
This approach uses various features such as analyzing the sys-
tem components that include CPU usage, processes running

146332 VOLUME 9, 2021



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

at the kernel level of the OS, and user/app-level functions,
such as Bluetooth and WiFi. It is also important to study
how smartphone owners interact with their devices in various
ways, for example, pressing buttons, zooming, navigating
pages, and tapping the screen. All these observations have to
be performed during the run times of the apps.

Alzailayee et al. [154] introduced a dynamic analysis
scheme called DanLog, which monitors the pattern and
signature of API calls to identify the lower-level features,
while extracting 31 dynamic features such as phone state
and SMS messages received for the high-level feature. The
authors collected Android samples comprising 1940 apps
(970 normal apps and 970malware apps fromMcAfee Labs),
and then employed a sandbox to compare the obtained results
before and after enhancements. For example, for the feature
of getDeviceId, which belongs to TelephonyManager cate-
gory, the results before and after using the sandbox were
10 and 14, and for the feature of getLineNumber, that belongs
to the TelephonyManager category, the results were 1 and 8
in terms of with and without using the sandbox. Another
comparison performed to compare the normal and malware
apps with respect to 44 extracted features from high-level
behavior, granular events, and API calls. Among all features,
PHONE_STATE feature was found in 905 malware apps
and 537 normal apps, while SEND_MESSAGE was found
in 6 malware apps and zero normal apps.

Later, Alzaylaee et al. [155] compared the effectiveness of
using emulator and real devices in terms of the extraction of
dynamic features. They modified DynaLog [154] to import
a contact list to the device using the SD card, identify which
apps were downloaded from a third party in order to delete
them, and examined the phone’s status, i.e., airplane mode,
battery level, and outgoing calls. Using the same dataset
used in [154], two environments were prepared: an actual
device and a constructed emulator environment. A total of
178 features were extracted, ranked, and were represented
as 0 or 1. Then, they employed SVM [62], naïve Bayes [86],
simple logistic [82], MLP [104], RF [75], and J48 [84]. In the
first experiment, they ran samples in both environments, and
found that the actual phone environment was able to identify
apps with accuracy of 94.3%, while the emulator obtained
identified apps with 70.5% accuracy. The second experiment
aimed to detect malware apps in both environments, using the
top 100 features, and obtained TPR of 92.4%, FPR of 0.98%,
TNR of 90.2%, and FNR of 0.76%, using the MLP classifier.

In their study, Yerima et al. [156] compared threemethods.
The first method is a random input generation method that
used the Monkey tool to produce pseudo-random events,
such as clicks, swipes, screen touches, and scrolling. The
second method is a state-based input generation method
that uses actions in the apps such as states and events as
transitions, utilizing the DroidBot tool. The third method
is a hybrid generation method that incorporates random-
and state-based models. The authors used two datasets: the
first dataset, dataset1, was used in [154], while the sec-
ond dataset dataset2 comprised 13530 apps. They extracted

178 dynamic features that relied on API calls and intents,
and then utilized SMO [141], naïve Bayes [86], simple logis-
tic [82], MLP [104], PART [102], RF [75], and J48 [84]
classifiers. They examined the features in terms of compa-
rable behavioral footprints among random and state mod-
els, observed code coverage using dataset1, and obtained
F-measures of 92.6%, 94.3%, and 93.4% for random, state,
and hybrid models, respectively. Incorporating dynamic
(API calls and intents) and static (permissions) features in
dataset2 improved the results obtained from 87.7%, 86.7%,
and 83.2% to 93%, 92.6%, and 91.8% for state-based, hybrid,
and random-based scenarios, respectively.

Alzaylaee et al. [157] generated two types of input: state-
ful and stateless (random-based), by utilizing the DynaLog
tool [154]. They initially distributed 8 Android devices, with
SIM cards to allow calling, texting, and connecting to a
network. They also added an SD card containing various
types of data such as photos, text, and other multimedia.
With this procedure, the authors downloaded 100 apps per
device every day and installed 100 apps per day. Therefore,
they constructed a dataset comprising 31125 apps (19620 nor-
mal apps and 11505 malware apps). The authors extracted
300 requested permissions, 97 features from app attributes,
and 23 action event features. To evaluate their system, the
authors employedMLPwith different configurations, and the
best obtained results were TPR of 97.6%, TNR of 90.86%,
FPR of 9.14%, FNR of 2.24%, and accuracy of 95.21%. They
also evaluated their system using naïve Bayes [86], simple
logistic [82], RF [75], SVM with radial base function, SVM
linear, decision tree [84], and PART [102], and found that
the MLP classifier outperformed the other seven classifiers
in relation to TPR of 99.56%, precision of 98.09%, recall of
99.56% and w-FM of 98.82%.

Vidal et al. [158] built a scheme to observe the patterns
of downloaded Android apps based on their origin. The
authors first tracked the activities to capture sequence cells
for all apps, which were identified by the Zygote process.
This process aims to activate the server to perform fur-
ther comparisons between normal and malware executions
shared by users. Hence, if an app is labeled as rightful, the
new sequences are knowledge-based candidates. Therefore,
2000 apps were monitored; then, the analysis action was
performed to produce metrics, such as scores gained by align-
ing sequences of system calls of legitimate and suspicious
apps, to make a decision about the nature of a suspected app.
The authors [158] applied a sequence-alignment algorithm
derived from theNeedleman–Wunsch algorithm [159], which
provides a calibration function (finding the average saturation
length of a set of reference samples), and enhanced the accu-
racy using a previous scoring function [160], which expressed
as follows:

F(Xi,Yj) =

{
1 if Xi = Yj
0 if Xi 6= Yj

(7)

Here, F(Xi,Yj) is defined as the similarity between
items Xi and Yj. Sub-datasets were constructed from the

VOLUME 9, 2021 146333



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

original dataset with respect to various numbers of instances
of sequence alignment processes. The authors selected two
main datasets: DREBIN [44] and Genome [43], with a total
of 2850 apps, and extracted 300 boot sequences for each app.
The analysis was performed one app at a time to observe the
patterns, and obtained 98.61%, 6.88%, 95.8%, and 96.8% for
TPR, FPR, accuracy, and AUC, respectively.

Wu and Hung [161] implemented a dynamic analysis
approach called DroidDolphin. The authors initially moni-
tored and recorded 25 API calls for analysis purposes, and
then downloaded a repackaged APK in an Android virtual
device (AVD) to gather various information, such as logs
of incoming and outgoing network data, as well as activi-
ties that involve write and read operations. They employed
an n-gram [162] to represent features with 56354 dimen-
sions. To evaluate DroidDolphin, the authors employed Lib-
SVM [123] using a private dataset comprising 64,000 apps.
Among the different quantities of samples, the approach
achieved accuracy of 86.1%, F-score of 85.7%, recall of 82%,
and precision of 90% using the quantity of 32K32K . The sec-
ond scenario tested relied on recollection data, called a re-log
mechanism, which examined 500 normal and 500 malware
apps over eight run times, and obtained accuracy of 78.6%,
F-score of 78.7%, recall of 77%, and precision of 81%.
The authors also performed an evaluation comparing cross-
validation and the testing set, using quantities of 32k32k , and
obtained accuracy of 86.1% and 92.5% for cross-validation
and the test set, respectively.

An automated and continuous malware detection sys-
tem called DroidEvolver was introduced by Xu et al. [149],
which consists of initialization and detection phases. The ini-
tialization phase is responsible for dealing with known apps
labeled as normal and malware apps, producing two types
of sets, features and detection models, and then submitted
to the detection phase. During this phase, the DroidEvolver
extracted APIs, recorded the Android API binary presence,
and produced the feature vectors for all apps, which will be
sent into the detection phase. The detection phase aims to
classify unknown samples, and provides updated information
to feature and model sets. To evaluate DroidEvolver, the
authors used AndroZoo [48] dataset to collect 68,016 apps
(33,294 benign apps and 34,722 malware apps). The authors
compared their systemwithMaMaDroid [147] in terms of six
time periods using F-measure, precision and recall metrics.
The highest performance of F-measure, precision and recall
among all sets for their system was 96.75%, 97.36% and
96.70%, while for MaMaDroid it was 81.99%, 91.99%, and
84.80%, respectively.

Cai and Jenkins [163] studied Android apps by tracing
method calls and intent ICCs. The authors installed 3,000
normal apps from the Google Play store, and then used [164]
to find possible app pairs based on matching the ICCs, then
selected 20 pairs randomly to perform further experiments
on the emulator. The authors defined 122 metrics, based
on general, ICCs and security perspectives. Later, Cai and
Jenkins [165] examined how the patterns of Android apps

changed over time; therefore, they introduced a sustainable
malware detector using feature engineering. The authors
employed 122 behavior metrics from [163], and added further
features: the extent, frequency, and distribution for the source
and sink invocations of sensitiveAPI calls. The authors down-
loaded 6432 apps (3431 normal and 3001 malware apps)
from several resources with different years. They created two
groups for the collected apps based on the developed year,
then compared the metrics, and found 52 metrics to be the
most informative out of 155. They, they built their system to
detect known and unknown malware samples. The authors
used the RF [75] classifier and obtained an accuracy of 93%.
They trained their classifier based on a sustainability metric
over a span of five years, and achieved accuracy of 82%.

Grace et al. [166] implemented a scheme called Risk-
Ranker that observes the irregular behavior of unknown
apps and categorizes these patterns into high, moderate, and
low risk. Figure.9 illustrates the systematic architecture of
Risk-Ranker, which is classified into first- and second-order
analyses. Among 15 different Android markets, the authors
collected 118,318 apps including 718 malware apps and
322 types of zero-day malware. Using first- and second-order
analysis, Risk-Ranker recognized 220 and 499 malware apps,
respectively. The scheme found that 9877 apps had native
code, and 499 were referred to zero-day attacks.

Droidscribe is a method introduced by Dash et al. [167]
aims to perform multi-class classification of Android mal-
ware. This approach initially employed CopperDroid [168]
to extract system calls and their arguments in terms of four
main features: network access, file access, binder methods,
and execute file. Then, the authors collected 5,560 sam-
ples from [44] and employed SVM, Conformal Prediction
(CP) [169] and hybrid prediction (CP augmenting SVM).
Among the three methods used, hybrid prediction was able
to obtain the highest performance, with 94% accuracy,
92% precision, and 96% recall.

Sun et al. [170] presented a cloud-based malware detec-
tion framework called Patronus, which consisted of client
and server sides. The client-side determines if there is a
predefined policy and extracts the permission features for
each process to produce an alarm, while the server side
is responsible for finding any policies not checked on the
client side, which are considered threats that aim to bypass
the system. To validate Patronus, the authors used 737 apps
(500 normal apps from Google Play and 237 malware apps
from [43]and [45]), and employed the Monkey tool to pro-
duce 500 events, such as click, touch, and gesture actions.
They initially calculated the overhead for CPU, memory, I/O,
2D, 3D and found values of 0.9%, 8%, 10.9%, 0.1%, and
1.6%, respectively. Then, the authors investigated the impact
of battery usage using a game app, and observed that their
system consumed 3% more battery power than the original
setting. Finally, they computed the precision and recall, which
gave values of 87% and 92% for BaseBridge (213 samples),
100% and 100% for FakeAV (9 samples), and 65% and 69%
for MobileTx (15 samples).

146334 VOLUME 9, 2021



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

FIGURE 9. Risk-Ranker architecture [166]. The first-order analysis
concentrated on alarms for high- and medium-risk apps. The
second-order risk observes apps behaviors, such as encryption and
dynamic code. The analysis process provides a sorted list that rates each
app based on the level of potential harm.

A system that leverages systemic app-level profil-
ing and a machine-learning algorithm was proposed by
Cai et al. [171], called Droidcat. The authors built a dataset
consisting of 34343 apps (17,365 normal apps and 16,978
malware apps). They examined each app for ten minutes,
accessed the APK through the Monkey tool, and reduced the
number of samples to 271 apps (136 normal apps, 135 mal-
ware apps). The authors defined 122 metrics based on struc-
ture (method calls, declaring classes, callback), ICC (intent,
carrying data through URI only), and security (distribution of
sources and sinks). Cai et al. employed RF [75] as the clas-
sifier for detecting malware, and obtained precision, recall
and F1-scores of 97.53%, 97.34% and 97.39%, respectively.
They performed another comparison to classify the malware
family, and achieved precision, recall and F1 of 97.96%,
97.91%, and 97.84%, respectively. Finally, they examined
their approach in terms of sustainability, using apps with a
span of eight years, resulting in small standard deviations in
F1-score of 1.34-2.38%.

Cai [172] implemented DroidSpan system, which is based
on behavioral profiling and evaluated it in terms of sustain-
ability metrics. The author gathered apps for a period of
eight years and created a dataset comprising 26382 samples
(13,627 normal apps and 12,755 malware apps, from Google
Play, VirusShare and [48]). Then, Cai extracted 52 features:
the extent of sensitive access (4 features), categorization of
sensitive data and operations accessed (22 features), and sen-
sitive method-level control flows (26 features). To construct

the system, the author compared various machine-learning
methods: RF, SVM with both linear and radial basis function
kernels, decision trees, k-NN, naïve Bayes with three models
(Gaussian, Multinomial, and Bernoulli), AdaBoost, gradient
tree boosting, extra trees, and the bagging classifier, in terms
of F1-measure, recall and precision, and found that RF
obtained the best performance compared to others. The author
compared DroidSpan and MaMaDroid [147] in terms of sta-
bility and re-usability. For stability analyses, relies on same-
period detection, DroidSpan achieved averages of 92.88%,
92.68% and 92.61% for precision, recall and F1- score, while
MaMaDroid obtained 88.81%, 88.34% and 88.48% for preci-
sion, recall and F1-score, respectively. For stability analysis,
the author calculated the average accuracy with 28 tests for
training and testing data over seven different years and found
that the baseline for MaMaDroid was 42.43%, while the
baseline for DroidSpan was 71.81%.

Chen et al. [173] developed an adversarial attack method
called DroidEye, which aims to bypass the detection of
Android apps. The authors used a public dataset from the
Comodo Cloud Security Center Lab comprising 14804 apps
(8059 normal apps, and 6745 malware apps), then extracted
a set of 812 features, including 105 permissions, 68 filtered
intents, 8 application attributes, 330 API calls, 259 new
instances, and 42 exceptions. Counting featurization was per-
formed to transform the binary feature space into continuous
probabilities to eliminate the adversarial gradient of the learn-
ing mode. Chen et al. employed two attack models: L0 [174]
and L∞ [175], and used SVM to construct their method.
The performance of DroidEye using TPR and FPR were
92.10% and 5.25%, respectively. Later, the authors [176] used
two crafting algorithms, the adversarial objective function
(C&W), and perturbing influential features based on the
indicative forward derivatives (JSMA). Chen et al. applied
these algorithms to two methods: MaMadroid [147], using a
sequence of API call features and Drebin [44] using permis-
sions, activities, and API call features. The authors consid-
ered different scenarios such as attackers knowing only the
feature set, or they know both the feature and training sets.
The collected data consisted of 11,439 samples (5879 normal
apps and 5560 abnormal apps) from PlayDrone [177], and
1,000 random samples from [44]. Using a neural network, the
model was able to detect malware and distinguish malware
families with F-measures of 88% and 96%, respectively.

Karbab and Debbabi [178] introduced a framework called
MalDy, by applying natural language processing using bag-
of-words (BoW) to detect Android malware. The authors
set up their framework using Android platforms (Droid-
Box (2016)4) and Windows platform (Win32). For the
Android platform, the authors collected 56,000 samples from
[43], [44], [48], Maldozer [179] and PlayDrone,5 while they
employed the ThreatAnalyzer sandbox using threat track6 to

4https://tinyurl.com/jaruzgr
5https://archive.org/details/android_apps
6https://threattrack.com/

VOLUME 9, 2021 146335



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

gather 20,000 instances for the Windows platform. Among
these platforms, the authors extracted dynamic features such
as file, network, register access records, then employed
N-gram (count sequence of words, and produce event log fea-
tures), feature hashing (calculated compacted feature vector),
and term frequency-inverse document frequency (TFIDF)
(compute the feature vectors of input pattern reports). The
authors utilized CART, RF, extremely randomized Trees,
KNN, SVM and XGBoost as machine learning algorithms.
They compared the classifiers using the hashing function
and obtained F1-scores of 99.61%, 99.62%, and 93.39% for
the Android platform using [43], [44], and Maldozer [179],
respectively, while they used hashing and TFIDF for the
Windows platform, and achieved F1-scores of 94.86% and
95.43%, respectively.

In their study, Zhang et al. [180] developed a cloud-based
malware detection system called SaaS. The authors imple-
mented a tool to crawl samples from Android markets, which
aimed to extract certification for each app and delete any
duplicate samples, giving a total of 1495 collected samples.
The authors extracted the instruction sequences of the DEX
file and employed three algorithms: the fuzzy hash algo-
rithm (responsible for constructing a fingerprint for each
instance, and examinedwhether the app is repackaged or not),
N-gram algorithm (utilized for extracting opcode n-gram
features from the Dalvik virtual machine), and the gray level
co-occurrence matrix (extracts an app’s GLCM-6 features
and produces a gray-scale image). Among 1495 samples,
SaaS achieved accuracy of 99.6%. Further improvement was
performed on the constructed model to deal with compli-
cated networks using a larger sample comprising 13682 apps
(5318 normal apps, 8364 malware apps). The authors
extracted sensitive APIs and permissions. They employed
J48, RF, SMO, naïve Bayes, and bagging, and found that
the bagging classifier obtained the best precision of 96.5%,
whereas when using RF the system achieved the best results
in terms of TPR, FPR, and ROC with values of 96.3%,
0.038% and 99.2%, respectively.

Tables 17 and 18 summarize dynamic feature analysis
approaches.

C. HYBRID ANALYSIS APPROACH
Onwuzurike et al. [181] modified a virtual device to capture
the sequence of API calls from runtime execution traces of
apps, and introduced an approach called AuntieDroid. The
authors employed the Monkey tool and recruited participants
to execute the APK samples with virtual devices to simulate
apps. To identify the patterns and frequent analysis activities
utilized by API call malware, Onwuzurike et al. developed a
trace parsing tool using dmtracedump [182]. The total size
of the dataset utilized was 5068 apps (2625 normal apps
and 2443 malware apps). The process of extracting features
relies on the family and packages of the app. A model based
on abstracted sequences of API calls was created using a
Markov chain technique [183], and RF [75] was selected as
the classifier method. Three experiments were performed to

TABLE 12. Experiment results using human and monkey stimulator in
dynamic analysis.

assess AuntieDroid. Table 12 summarizes the result obtained
using MaMaDroid, as a static method, AuntieDroid, as a
dynamic method, and a hybrid approach.

Tong and Yan [184] developed a framework that assumes
two situations: know and unknown instances. First, for known
instances, the framework produced a behavior for individual
and sequential systems calls with different calling depths:
1; 2; . . .X , which are related to file and network accesses.
Then, the frequency of sequential system calls for each depth
of the app was calculated and expressed as a fraction, i.e., the
number of times sequential system calls appeared compared
to the total number of sequential system calls. The normal
and malware apps were compared to create a set of observed
patterns to differentiate the samples. Second, for unknown
instances, the authors applied a dynamic method to record
runtime activities with respect to Y , the depth of file and
network accesses, extracted behavior related to the instances,
and compared them to regular behavior to make a decision.
The authors compiled a dataset of 2000 malware apps [43],
implemented a tool to track process_id and process_name,
and then integrated them with system calling.

Tong and Yan [184] generated two pattern sets: malware
pattern sets (MP) and normal pattern sets (NP), with sizes
of 430 apps (130 normal apps, and 300 malware apps),
and 910 apps (267 normal apps, and 643malware apps). They
defined following parameters: tn and tm are threshold values
to determine NP and MP, Nt and Mt are threshold values
for normal and malware pattern matches. They used two set
values: the first set is tn = 1 : 9,Nt = 1, tm = 5 : 1, and
Mt = 22, and Mt = 22, and the second set is tn = 2:31,
Nt = 1, tm = 5:9, and Mt = 29. The authors created
four groups: group one contained 273 apps (126 normal
apps and 147 malware apps), group two comprised 382
apps (187 normal apps and 195 malware apps), group three
included 602 apps (293 normal apps and 309 malware apps),
and group four had 920 apps (437 normal apps and 483 mal-
ware apps). The framework achieved accuracies of 90.19%

146336 VOLUME 9, 2021



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

TABLE 13. Recent studies using static feature analysis method, where ACC: Accuracy, DR: Detection Rate, FPR: False positive rate, TPR: True positive rate,
NA: Not available.

and 91.76% for sets one and two, respectively. The authors
also compared six types of malware, BaseBridge, Fake-
Installer, DroidKungFu, Lotoor, FakeBattScar, and Gold-
Dream, with accuracies of 77.78%, 89.71%, 80%, 85.42%,
46.43%, and 100%, respectively.

Lindorfer et al. [185] implemented a method integrates
static and dynamic analysis to detect unknown apps, called
MARVIN. The authors assigned a value for unknown apps
between zero (indicates that the app is normal) and ten
(indicates that the app is malware), while the middle values

VOLUME 9, 2021 146337



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

TABLE 14. Continued: Recent studies using static feature analysis method, where ACC: Accuracy, DR: Detection rate, FPR: False positive rate, TPR: True
positive rate, NA: Not available.

146338 VOLUME 9, 2021



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

TABLE 15. Continued: Recent studies using static feature analysis method, where ACC: Accuracy, DR: Detection Rate, FPR: False Positive rate, TPR: True
positive rate, NA: Not available.

VOLUME 9, 2021 146339



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

TABLE 16. Continued: Recent studies using static feature analysis method, where ACC: Accuracy, DR: Detection rate, FPR: False positive rate, TPR: True
positive rate, NA: Not available.

indicate adware. The authors then employed the discrete lev-
els to classify the apps as normal, malware, or unknown. They
collected 124,198 apps (84,980 normal apps from Google
Play store, 11733 malware apps from [45] and [43]), and
extracted 154,939 dynamic features such as those related
to file and network operations, phone events, data leaks,
dynamically loaded leaks, and dynamically registered broad-
cast receivers, and 342,004 static features such as Java pack-
age name, permissions requested by the app, publisher ID,
and publisher’s certificate. Among all the extracted features,
they applied the fisher score to rank the features and lin-
ear classifiers L1 [186], L2 [70], SVM [62], to construct
MARVIN. Among 124,189 apps, MARVIN classified them
as normal (89980 apps), malware (11733 apps) and unknown
(27476 apps). The performance of the MARVIN method
was 99.76%, 99.85%, and 99.83% using SVM, L1, and L2,
respectively.

Android firmware and pre-installed apps are consid-
ered solution to detect Android malware. Therefore,
Zheng et al. [187] created a scheme combining static and
dynamic analysis methods called DroidRay. The authors

first created a private dataset consisting of 250 firmware
and 24009 apps, extracted various features such as firmware
name, product model, and Android version. The authors
applied static and dynamic analyses in terms of system
signature vulnerability (implementing two signature sce-
narios), network security analysis (host security and IP
tables), and privilege escalation vulnerability detection. The
researchers employed the signature message-digest algorithm
(MD5) [41] and a package name to recognize the possible
vulnerabilities of each app. All analyzed apps were stored in
a database to generate the report. DroidRay was evaluated
to examine application and system levels. At the application
level, they found that 1947 apps were vulnerable to sig-
nature attacks, and 19 firmware had pre-installed malware.
At the system level, 142 firmware had default vulnerabilities,
5 had malicious host files, and 249 had Java-level privilege
escalation vulnerabilities.

Kabakus and Dogru [188] implemented a hybrid Android
malware analysis tool called mad4a. The authors applied
static analysis using PScout II, finding API calls and orga-
nizing the calls into groups based on extracted features, such

146340 VOLUME 9, 2021



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

TABLE 17. Recent studies using dynamic analysis method, where ACC: Accuracy, DR: Detection rate, FPR: False positive rate, TPR: True positive rate, NA:
Not available.

as location, cameras, calendars, calls, contacts, SMS mes-
sages, microphones, and storage, while they used an aapt
tool to extract permission features. The authors used the

monkeyrunner tool to control both the devices and emula-
tor. To evaluate mad4a, the authors used a dataset compris-
ing 5808 samples (2809 normal and 2999 malware samples)

VOLUME 9, 2021 146341



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

TABLE 18. Continued: Recent studies using dynamic analysis method, where ACC: Accuracy, DR: Detection rate, FPR: False positive rate, TPR: True positive
rate, NA: Not available.

from Google Play Store, ASHISHB malware,7 [43], [44],
and [45]. Based on API calls, the authors found that the con-
tacts (2790 apps), calendar (10 apps), and location (3 apps)
for malware apps requested permissions, while for the normal
apps, they found contacts (2994 apps), location (3 apps),
and camera (2 apps) requested permissions. They compared
normal and malware apps using dynamic analysis and found
that the average number of incoming and outgoing connec-
tions was 87 for malware apps and 233 for normal apps. The
average uploaded size was 2 MB for malware and 18 MB for
normal apps, and the average downloaded size was 5 MB for
abnormal and 671 MB for normal apps. The average number
of INTERNET _CLOSE was 519 for abnormal and 464 for
normal apps.

Fu and Cai [189] developed a classification approach,
and manually selected a subset of metrics that adopted by
[171], [189], and [165]. The authors employed RF [75] as
the machine learning classifier. and compared their approach
with four approaches: MamaDroid [147], Droid-Sieve [152],
Afonso [190], and RevealDroid [191], based on same-period

7https://github.com/ashishb/android-malware

and over-time settings. The authors used a dataset consisting
of 24,780 apps (13,627 normal apps and 11,153 malware
apps). For the same-period setting, they combined normal and
malware apps, and obtained average accuracies of 93.75%,
88.05%, 82.36%, 86.71%, and 85.02% for [147], [152],
[190], and [191], respectively. For the over-time setting, they
achieved average accuracies of 71.43%, 63.67%, 29.87%,
49.91%, and 45.94%, for [147], [152], [190], and [191],
respectively.

Vinayakumar et al. [192] employed a text-mining approach
to detect Android malware using long short-term memory
(LSTM), which aims to convert extracted permission features
into vectors/words. The authors generated two dictionaries,
mapping words to words with a total size of 500, and
then built two matrices for training and testing, with fixed
sizes for both of 1785 ∗ 300. These matrixes passed into
embedding layers to construct a new matrix with a size of
500 ∗ 128, to be used in the LSTM layer. The performance
was evaluated using the developed approach and achieved
accuracy, precision, and recall of 89.7%, 91%, and 96%,
respectively. Subsequently, the authors [193] applied LSTM
using permission features as a static analysis with a size

146342 VOLUME 9, 2021



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

TABLE 19. Recent studies using hybrid feature analysis method, where ACC: Accuracy, DR: Detection rate, FPR: False positive rate, TPR: True positive rate,
NA: Not available.

of 558 apps (279 normal apps, 279 malware apps from [43]),
and dynamic analysis features using battery, binder, memory,
and permission requested using the Monkey tool, using 1738
apps (408 normal apps, 1330malware apps), and 6832 feature
vectors. The Vinayakumar et al. listed different feature sets:
battery + permission, binder + permission, Memory +
CPU + permission, and network + permission, and then
evaluated their approach using LSTM and RNN. The best
accuracies using LSTM and RNN were 94.7% and 93.7%,
respectively, using binder + permission feature se for both
classifiers.

Hou et al. [194] applied a heterogeneous graph (HG) to
detect Android malware by implementing two attack models:
an adversarial attack model called HG-Attack and a defense
attack model called Rad-HGC. These models rely on the
capability of the attackers; for instance, how to compromise
the devices, and the knowledge of how to use samples (avail-
able information) to compromise the devices. To construct
their model, the authors used a public dataset from Tencent
Security Lab with a sample size of 1,389,408 (547366 normal
apps, 217107 malware apps, and 624,935 unclassified apps),
and a private dataset with size of 13,129 apps. Based on the
dataset, Hou et al. extracted API call sequences from the

execution of each Android app, and then extracted semantic
relations such as whether the app is downloaded on the device
or not, the certified signature for the app, and the package
name. The authors used the heterogeneous graph as the node
classification, and employed meta-path-based random walks
and heterogeneous skip-grams for detecting the malware.
SVM downstream classifier after the learning representations
of apps in HG were also utilized. The authors evaluated both
attack and defense models, and found that HG-Attack was
able to evade 5 devices out of 10 and injected 298 nodes out of
400. In contrast, Rad-HGC was able to detect attacks with an
average accuracy of 96.31% and showed stability over time,
with TPR of 98.12%.

Table 19 summarizes the hybrid feature analysis
approaches.

V. OPEN PROBLEMS, LESSONS LEARNED,
AND FUTURE TRENDS
As the number of smartphone users has risen recently, the
potential for malware threats has increased, too. This section
highlights open problems that might interest researchers,
summarizes lessons learned from published papers, and pro-
vides a brief section on future trends.

VOLUME 9, 2021 146343



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

A. OPEN PROBLEMS
The identification and detection of Android malware are
considered hot topics in mobile security; however, there are
problems available for consideration in both research and
technical fields, which are listed below.

1) STEGANOGRAPHY IN MALWARE
Steganography is a technique that can be employed by attack-
ers to hide files and extend the time before malware is recog-
nized. The time required to detect and identify the intrusion is
important because the risk of stealing information increases
with time. Various existing studies have not considered the
time required to detect malware; therefore, there is a need to
develop an effective method that balances the detection rate
and the time required to identify malware.

2) PRESERVING PRIVACY
Several frameworks have used cloud-based distributionmeth-
ods to collect, analyze, and examine the validity of malware
detection; however, they did not discuss how to protect the
privacy of the collected data, which can lead to privacy leak-
ages because gathering and storing data will take place in the
cloud. Using a third party to perform additional experiments
could also put cloud-based data at risk. Therefore, it is impor-
tant to consider how to secure the developed frameworks that
rely on cloud-based storage.

3) PUBLIC DATASETS
Although the number of smartphone users has increased, pos-
sible threats and attacks rise annually. It is important to deal
with the patterns of developed malware; therefore, authors
tend to use publicly available datasets, which have various
weaknesses, for example, some of them are out of date, some
of them do not consider different types of malware, and
the sample size might not be sufficient. Looking at recent
research, there are many approaches that utilize relatively
small sample sets, that is, several hundred to a few thou-
sand samples. With such sample sets, performance results
may be impressive; however, the evaluation might not reflect
the detection results in real-world situations. Performing an
experiment with a large number of samples and updating
samples could be one possible way to improve detection rates.

4) FAMILY CLASSIFICATION
Most existing studies have focused on detecting Android
malware. However, they ignored family classification.
In addition, classifyingmalicious code into families of related
malware is an important step in forensic analysis and threat
assessment. It allows analysts to identify malware that comes
from the same source and likely follows similar malicious
intent.

B. LESSONS LEARNED
Android malware detection has gained considerable atten-
tion; therefore, this paper has discussed more than one

hundred papers with respect to the analysis of feature pat-
terns. Based on this study, there are several lessons learned
from recent approaches, which are listed below.

1) The constructing of Android malware detection relies
on collecting the appropriate samples. Most of the
current studies have used samples gathered since 2010
and employed unbalanced datasets, which can lead to
unreliable results. Therefore, it is a crucial to collect
instances that reflect malware behavior using a suitable
sample size to evaluate the developed model.

2) Most existing studies have employed machine-learning
algorithms. However, there are several additional avail-
able techniques that can be used to solve this problem,
such as natural language processing, image processing,
and deep learning algorithms, which can improve the
performance of implemented frameworks.

3) Comparing and evaluating projects would be more
effective and instructive if a common evaluation metric
was to be adopted.

4) It is important to evaluate and compare works using
the same dataset. There is a need to build a dataset
and make it available for research purposes; therefore,
it is essential to construct a public corpus that can
be updated regularly, which contains normal and mal-
ware apps.

C. FUTURE TRENDS
Because the number of malware that is uploaded into official
markets has been raised annually, attackers tend to employ
innovative techniques to make the detection difficult in a
short period of time. Therefore, the direction of the near
future in this field should consider how to recognize the
malware promptly, no need to retrain samples and must to
be sustained. Employing different techniques such as deep
learning algorithms, image processing and natural language
processing may also be considered in the near future.

VI. CONCLUSION
Over the last decade, the number of smartphone owners has
increased globally. Users can use these devices for various
personal and professional operations and activities. Various
activities have increased the amount of classified and valuable
information that can be targeted by malicious actors. In turn,
the techniques and methods used to infiltrate these devices
have become more sophisticated. To overcome such attacks,
researchers in both academic and industrial fields have devel-
oped methods for detecting malware apps.

This paper focuses on the risks associated with malware
that targets mobile devices, and considers current approaches
and mechanisms used to detect malware with respect to
methodology, associated datasets, and evaluation approaches
for studies in the mobile malware field published since 2010.
Finally, we considered possible open problems that could be
addressed in future studies, highlightedwhat we have learned,
and introduced possible future trends in this field.

146344 VOLUME 9, 2021



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

ACKNOWLEDGMENT
The author would like to thank the Deanship of Scientific
Research at Umm Al-Qura University for supporting this
work by Grant Code: 18-COM-1-01-0007. The author wishes
to thank the anonymous reviewers for their helpful and valu-
able comments that greatly contributed to improving the
manuscript.

REFERENCES
[1] Statcounter. (Mar. 2020). Desktop vs Mobile vs Tablet Market

Share Worldwide. Accessed: Oct. 20, 2021. [Online]. Available:
https://gs.statcounter.com/platform-market-share/desktop-mobile-
tablet/worldwide

[2] Statista. (Mar. 2020). Computing Device Shipments Forecast Worldwide
From 2013 to 2022, by Segment Type. Accessed: Oct. 20, 2021. [Online].
Available: https://www.statista.com/statistics/265878/global-shipments-
of-pcs-tablets-ultra-mobiles-mobile-phones/

[3] Statcounter. (Mar. 2020). Mobile Operating System Market
Share Worldwide. Accessed: Oct. 20, 2021. [Online]. Available:
https://gs.statcounter.com/os-market-share/mobile/worldwide

[4] Statista. (Feb. 2020). Mobile Operating Systems’ Market Share World-
wide From Jan. 2012 to December 2019. Accessed: Oct. 20, 2021.
[Online]. Available: https://www.statista.com/statistics/272698/global-
market-share-held-by-mobile-operating-systems-since-2009/

[5] A. Charland and B. Leroux, ‘‘Mobile application development: Web vs.
native,’’ Commun. ACM, vol. 54, no. 5, pp. 49–53, May 2011.

[6] Statista. (Jan. 2020). Number of Apps Available in Leading App Stores
as of 4th Quarter 2019. Accessed: Oct. 20, 2021. [Online]. Available:
https://www.statista.com/statistics/276623/number-of-apps-available-in-
leading-app-stores/

[7] Statista. (Jan. 2020). Number of iOS and Google Play Mobile App
Downloads Worldwide From 3rd Quarter 2016 to 4th Quarter 2019.
Accessed: Oct. 20, 2021. [Online]. Available: https://www.statista.
com/statistics/695094/quarterly-number-of-mobile-app-downloads-
store/ Jan. 2020,

[8] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, ‘‘A survey of
mobile malware in the wild,’’ in Proc. 1st ACM Workshop Secur. Privacy
Smartphones Mobile Devices (SPSM), 2011, pp. 3–14.

[9] Statista. (Feb. 2020). Mobile Malware Evolution 2019.
Accessed: Oct. 20, 2021. [Online]. Available: https://securelist.
com/mobile-malware-evolution-2019/96280/

[10] V. Chebyshev. (Feb. 2020). Mobile Malware Evolution 2019.
Accessed: Oct. 20, 2021. [Online]. Available: https://securelist.
com/mobile-malware-evolution-2019/96280/

[11] M. LABS. Mobile Signatures. Accessed: Oct. 20, 2021. [Online]. Avail-
able: https://blog.malwarebytes.com/glossary/stalkerware/

[12] V. Kouliaridis and G. Kambourakis, ‘‘A comprehensive survey on
machine learning techniques for Android malware detection,’’ Informa-
tion, vol. 12, no. 5, p. 185, Apr. 2021.

[13] S. Selvaganapathy, S. Sadasivam, and V. Ravi, ‘‘A review on Android
malware: Attacks, countermeasures and challenges ahead,’’ J. Cyber
Secur. Mobility, vol. 10, no. 1, pp. 177–230, Mar. 2021.

[14] K. Liu, S. Xu, G. Xu,M. Zhang, D. Sun, andH. Liu, ‘‘A review of Android
malware detection approaches based on machine learning,’’ IEEE Access,
vol. 8, pp. 124579–124607, 2020.

[15] J. Qiu, J. Zhang, W. Luo, L. Pan, S. Nepal, and Y. Xiang, ‘‘A survey
of Android malware detection with deep neural models,’’ ACM Comput.
Surveys, vol. 53, no. 6, pp. 1–36, Feb. 2021.

[16] V. Kouliaridis, K. Barmpatsalou, G. Kambourakis, and S. Chen, ‘‘A sur-
vey on mobile malware detection techniques,’’ IEICE Trans. Inf. Syst.,
vol. 103-D, no. 2, pp. 204–211, 2020.

[17] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti,
and M. Rajarajan, ‘‘Android security: A survey of issues, malware pen-
etration, and defenses,’’ IEEE Commun. Surv. Tuts., vol. 17, no. 2,
pp. 998–1022, 2nd Quart., 2014.

[18] W. Enck, ‘‘Defending users against smartphone apps: Techniques and
future directions,’’ in Proc. Int. Conf. Inf. Syst. Secur. Berlin, Germany:
Springer, 2011, pp. 49–70.

[19] M. L. Polla, F. Martinelli, and D. Sgandurra, ‘‘A survey on security
for mobile devices,’’ IEEE Commun. Surveys Tuts., vol. 15, no. 1,
pp. 446–471, 1st Quart., 2013.

[20] A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab, ‘‘A review
on feature selection in mobile malware detection,’’ Digit. Invest., vol. 13,
pp. 22–37, Jun. 2015.

[21] P. Yan and Z. J. S. Q. J. Yan, ‘‘A survey on dynamic mobile malware
detection,’’ Softw. Qual. J., vol. 26, no. 3, pp. 891–919, 2018.

[22] A. Eshmawi and S. Nair, ‘‘Smartphone applications security: Survey of
new vectors and solutions,’’ in Proc. ACS Int. Conf. Comput. Syst. Appl.
(AICCSA), May 2013, pp. 1–4.

[23] A. Amamra, C. Talhi, and J.-M. Robert, ‘‘Smartphone malware detection:
From a survey towards taxonomy,’’ in Proc. 7th Int. Conf. Malicious
Unwanted Softw., Oct. 2012, pp. 79–86.

[24] S. Arshad, A. Khan, M. A. Shah, and M. Ahmed, ‘‘Android malware
detection & protection: A survey,’’ Int. J. Adv. Comput. Sci. Appl., vol. 7,
no. 2, pp. 463–475, 2016.

[25] R. Zachariah, K. Akash, M. S. Yousef, and A. M. Chacko, ‘‘Android
malware detection a survey,’’ in Proc. IEEE Int. Conf. Circuits Syst.
(ICCS), Dec. 2017, pp. 238–244.

[26] M. Odusami, O. Abayomi-Alli, S. Misra, O. Shobayo, R. Damasevicius,
and R.Maskeliunas, ‘‘Androidmalware detection: A survey,’’ inProc. Int.
Conf. Appl. Informat. Cham, Switzerland: Springer, 2018, pp. 255–266.

[27] N. K. Gyamfi and E. Owusu, ‘‘Survey of mobile malware analysis,
detection techniques and tool,’’ in Proc. IEEE 9th Annu. Inf. Technol.,
Electron. Mobile Commun. Conf. (IEMCON), Nov. 2018, pp. 1101–1107.

[28] A. Souri and R. Hosseini, ‘‘A state-of-the-art survey of malware detection
approaches using data mining techniques,’’ Hum.-Centric Comput. Inf.
Sci., vol. 8, no. 1, pp. 1–22, Dec. 2018.

[29] P. Agrawal and B. Trivedi, ‘‘A survey on Android malware and their
detection techniques,’’ inProc. IEEE Int. Conf. Electr., Comput. Commun.
Technol. (ICECCT), Feb. 2019, pp. 1–6.

[30] M. LABS. Android/Adware.MobiDash. Accessed: Oct. 20, 2021.
[Online]. Available: https://blog.malwarebytes.com/detections/android-
adware-mobidash/

[31] E. Kabirova. (2014). 10 Years Since the First Smartphone
Malware–to the Day. Accessed: Oct. 20, 2021. [Online]. Available:
https://eugene.kaspersky.com/2014/06/15/10-years-since-the-first-
smartphone-malware-to-the-minute/

[32] M. LABS. Spyware.InfoStealer. Accessed: Apr. 29, 2021. [Online].
Available: https://blog.malwarebytes.com/detections/spyware-
infostealer/

[33] D. Maslennikov. (2011). ZeuS-in-the-Mobile—Facts and Theories.
Accessed: Oct. 20, 2021. [Online]. Available: https://securelist.com/zeus-
in-the-mobile-facts-and-theories/36424/

[34] D. Maslennikov. Hummer. Accessed: Oct. 20, 2021. [Online]. Available:
https://malware.wikia.org/wiki/Hummer

[35] P. Shoshin. (2020). PhantomLance Android Backdoor Discovered
on Google Play. Accessed: Oct. 20, 2021. [Online]. Available:
https://www.kaspersky.com/blog/phantomlance-android-backdoor-
trojan/35234/

[36] J. Cannell. (2013). Cryptolocker Ransomware: What You Need to
Know. Accessed: Oct. 20, 2021. [Online]. Available: https://blog.
malwarebytes.com/101/2013/10/cryptolocker-ransomware-what-you-
need-to-know/

[37] F. Tchakounté and F. Hayata, ‘‘Supervised learning based detection of
malware on Android,’’ in Mobile Security and Privacy. Amsterdam,
The Netherlands: Elsevier, 2017, pp. 101–154.

[38] X. Jiang. (2011). Security Alert: New Sophisticated Android
Malware DroidKungFu Found in Alternative Chinese App Markets.
Accessed: Oct. 20, 2021. [Online]. Available: https://www.csc2.
ncsu.edu/faculty/xjiang4/DroidKungFu.html

[39] M. Zaman, T. Siddiqui, M. R. Amin, and M. S. Hossain, ‘‘Malware
detection inAndroid by network traffic analysis,’’ inProc. Int. Conf. Netw.
Syst. Secur. (NSysS), Jan. 2015, pp. 1–5.

[40] uniper Networks Mobile Threat Center (MTC). Mobile
Signatures. Accessed: Oct. 20, 2021. [Online]. Available: https://
www.juniper.net/us/en/security/mobile-threat-center/

[41] R. Rivest and S. Dusse, ‘‘TheMD5message-digest algorithm,’’ MIT Lab.
Comput. Sci. RSA Data Secur., Cambridge, MA, USA, Tech. Rep. RFC
1321, 1992.

[42] D. Eastlake and P. Jones, ‘‘US secure hash algorithm 1 (SHA1),’’ Internet
Soc., VA, USA, Tech. Rep. RFC 3174, 2001.

[43] Y. Zhou and X. Jiang, ‘‘Dissecting Android malware: Characteriza-
tion and evolution,’’ in Proc. IEEE Symp. Secur. Privacy, May 2012,
pp. 95–109.

[44] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, ‘‘DREBIN: Effective and explainable detection of Android
malware in your pocket,’’ in Proc. NDSS, vol. 14, 2014, pp. 23–26.

[45] M. Parkour. (2008). Mobile Signatures. Accessed: Oct. 20, 2021.
[Online]. Available: http://contagiodump.blogspot.com/

VOLUME 9, 2021 146345



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

[46] D. Maiorca, D. Ariu, I. Corona, M. Aresu, and G. Giacinto, ‘‘Stealth
attacks: An extended insight into the obfuscation effects on Android
malware,’’ Comput. Secur., vol. 51, pp. 16–31, Jun. 2015.

[47] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, ‘‘Deep ground truth analysis
of current Android malware,’’ in Proc. Int. Conf. Detection Intrusions
Malware, Vulnerability Assessment. Cham, Switzerland: Springer, 2017,
pp. 252–276.

[48] K. Allix, T. F. Bissyandé, J. Klein, and Y. L. Traon, ‘‘AndroZoo: Collect-
ing millions of Android apps for the research community,’’ in Proc. 13th
Int. Conf. Mining Softw. Repositories, May 2016, pp. 468–471.

[49] W. Li, X. Fu, and H. Cai, ‘‘AndroCT: Ten years of app call traces in
Android,’’ in Proc. IEEE/ACM 18th Int. Conf. Mining Softw. Repositories
(MSR), May 2021, pp. 570–574.

[50] H. Cai andB.G. Ryder, ‘‘Artifacts for dynamic analysis of Android apps,’’
in Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2017,
p. 659.

[51] H. Cai, X. Fu, and A. Hamou-Lhadj, ‘‘A study of run-time behavioral evo-
lution of benign versus malicious apps in Android,’’ Inf. Softw. Technol.,
vol. 122, Jun. 2020, Art. no. 106291.

[52] H. Cai and B. G. Ryder, ‘‘A longitudinal study of application struc-
ture and behaviors in Android,’’ IEEE Trans. Softw. Eng., early access,
Feb. 19, 2020, doi: 10.1109/TSE.2020.2975176.

[53] J.-F. Lalande, V. V. T. Tong, M. Leslous, and P. Graux, ‘‘Challenges
for reliable and large scale evaluation of Android malware analysis,’’
in Proc. Int. Conf. High Perform. Comput. Simul. (HPCS), Jul. 2018,
pp. 1068–1070.

[54] E. Rahm and H. H. Do, ‘‘Data cleaning: Problems and current
approaches,’’ IEEE Data Eng. Bull., vol. 23, no. 4, pp. 3–13, Dec. 2000.

[55] S. García, J. Luengo, and F. Herrera,Data Preprocessing in Data Mining,
vol. 72. Cham, Switzerland: Springer, 2015.

[56] P. A. Estévez, M. Tesmer, C. A. Perez, and J. M. Zurada, ‘‘Normalized
mutual information feature selection,’’ IEEE Trans. Neural Netw., vol. 20,
no. 2, pp. 189–201, Feb. 2009.

[57] M. L. McHugh, ‘‘The chi-square test of independence,’’ Biochemia Med-
ica, vol. 23, no. 2, pp. 143–149, 2013.

[58] S. Akaho, ‘‘A kernel method for canonical correlation analysis,’’ arXiv
preprint cs/0609071, 2006.

[59] Q. Tao, G. Wu, F. Wang, and J. Wang, ‘‘Posterior probability support
vector machines for unbalanced data,’’ IEEE Trans. Neural Netw., vol. 16,
no. 6, pp. 1561–1573, Jun. 2015.

[60] A. Alzubaidi and J. Kalita, ‘‘Authentication of smartphone users using
behavioral biometrics,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 3,
pp. 1998–2026, 3rd Quart., 2016.

[61] A. S. Shamili, C. Bauckhage, and T. Alpcan, ‘‘Malware detection on
mobile devices using distributed machine learning,’’ in Proc. 20th Int.
Conf. Pattern Recognit., Aug. 2010, pp. 4348–4351.

[62] J. A. K. Suykens and J. Vandewalle, ‘‘Least squares support vector
machine classifiers,’’ Neural Process. Lett., vol. 9, no. 3, pp. 293–300,
Jun. 1999.

[63] N. Eagle and A. Pentland, ‘‘Reality mining: Sensing complex social
systems,’’ Pers. Ubiquitous Comput., vol. 10, no. 4, pp. 255–268, 2005.

[64] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, ‘‘Crowdroid: Behavior-
based malware detection system for Android,’’ in Proc. 1st ACM
Workshop Secur. Privacy Smartphones Mobile Devices (SPSM), 2011,
pp. 15–26.

[65] A. Likas, N. Vlassis, and J. J. Verbeek, ‘‘The global k-means clus-
tering algorithm,’’ Pattern Recognit., vol. 36, no. 2, pp. 451–461,
Feb. 2003.

[66] A. Shabtai, U. Kanonov, and Y. Elovici, ‘‘Intrusion detection for mobile
devices using the knowledge-based, temporal abstraction method,’’
J. Syst. Softw., vol. 83, no. 8, pp. 1524–1537, Aug. 2010.

[67] A. Shabtai, Y. Fledel, Y. Elovici, andY. Shahar, ‘‘Using the KBTAmethod
for inferring computer and network security alerts from time-stamped,
raw system metrics,’’ J. Comput. Virol., vol. 6, no. 3, pp. 239–259,
Aug. 2010.

[68] T. Alpcan, C. Bauckhage, and A.-D. Schmidt, ‘‘A probabilistic diffu-
sion scheme for anomaly detection on smartphones,’’ in Proc. IFIP Int.
Workshop Inf. Secur. Theory Practices. Berlin, Germany: Springer, 2010,
pp. 31–46.

[69] J. E. Hopcroft and R. M. Karp, ‘‘An n5/2 algorithm for maximum match-
ings in bipartite graphs,’’ SIAM J. Comput., vol. 2, no. 4, pp. 225–231,
1973.

[70] L. Rüschendorf and S. T. Rachev, ‘‘A characterization of random vari-
ables with minimum L2-distance,’’ J. Multivariate Anal., vol. 32, no. 1,
pp. 48–54, Jan. 1990.

[71] R. De Maesschalck, D. Jouan-Rimbaud, and D. L. Massart,
‘‘The Mahalanobis distance,’’ Chemometrics Intell. Lab. Syst., vol. 50,
no. 1, pp. 1–18, 2000.

[72] T. Kohonen, ‘‘Exploration of very large databases by self-organizing
maps,’’ in Proc. Int. Conf. Neural Netw. (ICNN), vol. 1, 1997,
pp. PL1–PL6.

[73] S. Zonouz, A. Houmansadr, R. Berthier, N. Borisov, and W. Sanders,
‘‘Secloud: A cloud-based comprehensive and lightweight security
solution for smartphones,’’ Comput. Secur., vol. 37, pp. 215–227,
Sep. 2013.

[74] M. S. Alam and S. T. Vuong, ‘‘Random forest classification for detecting
Android malware,’’ in Proc. IEEE Int. Conf. Green Comput. Commun.,
IEEE Internet Things IEEE Cyber, Phys. Social Comput., Aug. 2013,
pp. 663–669.

[75] M. Pal, ‘‘Random forest classifier for remote sensing classification,’’ Int.
J. Remote Sens., vol. 26, no. 1, pp. 217–222, 2005.

[76] B. Amos. (May 2013). Android Antimalware. Accessed: Oct. 20,
2021. [Online]. Available: https://github.com/VT-Magnum-Research/
antimalware

[77] D. Damopoulos, G. Kambourakis, and G. Portokalidis, ‘‘The best of both
worlds: A framework for the synergistic operation of host and cloud
anomaly-based IDS for smartphones,’’ in Proc. 7th Eur. Workshop Syst.
Secur. (EuroSec), 2014, pp. 1–6.

[78] K. Riad and L. Ke, ‘‘RoughDroid: Operative scheme for functional
Android malware detection,’’ Secur. Commun. Netw., vol. 2018, pp. 1–10,
Sep. 2018.

[79] A. Shabtai and Y. Elovici, ‘‘Applying behavioral detection on Android-
based devices,’’ in Proc. Int. Conf. Mobile Wireless Middleware, Operat-
ing Syst., Appl. Berlin, Germany: Springer, 2010, pp. 235–249.

[80] C. Stachniss, G. Grisetti, and W. Burgard, ‘‘Information gain-based
exploration using rao-blackwellized particle filters,’’ in Robotics: Science
and Systems, vol. 2. Cambridge, MA, USA: Massachusetts Institute of
Technology, 2005, pp. 65–72.

[81] Q. Gu, Z. Li, and J. Han, ‘‘Generalized Fisher score for feature selection,’’
2012, arXiv:1202.3725.

[82] F. Y. Hsieh, D. A. Bloch, and M. D. Larsen, ‘‘A simple method of sample
size calculation for linear and logistic regression,’’ Statist. Med., vol. 17,
no. 14, pp. 1623–1634, Jul. 1998.

[83] T. Penna and H. Herrmann, ‘‘Broad histogram method,’’ 1996,
arXiv:cond-mat/9610041.

[84] J. R. Quinlan, ‘‘Induction of decision trees,’’ Mach. Learn., vol. 1, no. 1,
pp. 81–106, 1986.

[85] N. Friedman, D. Geiger, and M. Goldszmidt, ‘‘Bayesian network classi-
fiers,’’Mach. Learn., vol. 29, no. 2, pp. 131–163, Nov. 1997.

[86] Q. Wang, G. M. Garrity, J. M. Tiedje, and J. R. Cole, ‘‘Naïve Bayesian
classifier for rapid assignment of rRNA sequences into the new bacterial
taxonomy,’’ Appl. Environ. Microbiol., vol. 73, no. 16, pp. 5261–5267,
Aug. 2007.

[87] M. Curti, A. Merlo, M. Migliardi, and S. Schiappacasse, ‘‘Towards
energy-aware intrusion detection systems on mobile devices,’’ in Proc.
Int. Conf. High Perform. Comput. Simulation (HPCS), Jul. 2013,
pp. 289–296.

[88] M. Damshenas, A. Dehghantanha, K.-K. R. Choo, and R. Mahmud,
‘‘M0Droid: An Android behavioral-based malware detection
model,’’ J. Inf. Privacy Secur., vol. 11, no. 3, pp. 141–157,
Sep. 2015.

[89] A. Merlo, M. Migliardi, and P. Fontanelli, ‘‘On energy-based profiling
of malware in Android,’’ in Proc. Int. Conf. High Perform. Comput.
Simulation (HPCS), Jul. 2014, pp. 535–542.

[90] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang, ‘‘Accurate online power estimation and automatic bat-
tery behavior based power model generation for smartphones,’’ in Proc.
8th IEEE/ACM/IFIP Int. Conf. Hardw., Softw. Codesign Syst. Synth.
(CODES/ISSS), 2010, pp. 105–114.

[91] F. Yuan, L. Zhai, Y. Cao, and L. Guo, ‘‘Research of intrusion detection
system on Android,’’ in Proc. IEEE 9th World Congr. Services, Jun. 2013,
pp. 312–316.

[92] R. S. R. James, A. Albasir, K. Naik, M. Y. Dabbagh, P. Dash, M. Zamani,
and N. Goel, ‘‘Detection of anomalous behavior of smartphones using
signal processing and machine learning techniques,’’ in Proc. IEEE
28th Annu. Int. Symp. Pers., Indoor, Mobile Radio Commun. (PIMRC),
Oct. 2017, pp. 1–7.

[93] X. Kou and Q. Wen, ‘‘Intrusion detection model based on Android,’’
in Proc. 4th IEEE Int. Conf. Broadband Netw. Multimedia Technol.,
Oct. 2011, pp. 624–628.

146346 VOLUME 9, 2021

http://dx.doi.org/10.1109/TSE.2020.2975176


A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

[94] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, ‘‘Paranoid
Android: Versatile protection for smartphones,’’ in Proc. 26th Annu.
Comput. Secur. Appl. Conf. (ACSAC), 2010, pp. 347–356.

[95] T.-E. Wei, C.-H. Mao, A. B. Jeng, H.-M. Lee, H.-T. Wang, and D.-J. Wu,
‘‘Android malware detection via a latent network behavior analysis,’’
in Proc. IEEE 11th Int. Conf. Trust, Secur. Privacy Comput. Commun.,
Jun. 2012, pp. 1251–1258.

[96] S. Kumar, A. Viinikainen, and T. Hamalainen, ‘‘Evaluation of ensemble
machine learning methods in mobile threat detection,’’ in Proc. 12th Int.
Conf. Internet Technol. Secured Trans. (ICITST), 2017, pp. 261–268.

[97] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,
V. V. D. Veen, and C. Platzer, ‘‘ANDRUBIS–1,000,000 apps later: A view
on current Android malware behaviors,’’ in Proc. 3rd Int. Workshop
Building Anal. Datasets Gathering Exper. Returns Secur. (BADGERS),
Sep. 2014, pp. 3–17.

[98] D. Oktavianto and I. Muhardianto, Cuckoo Malware Analysis.
Birmingham, U.K.: Packt, 2013.

[99] B. Trammell and E. Boschi, Bidirectional Flow Export Using IP Flow
Information Export (IPFIX), document RFC 5103, Jan. 2008.

[100] A. Rajput, R. P. Aharwal, M. Dubey, S. Saxena, and M. Raghuvanshi,
‘‘J48 and JRIP rules for e-governance data,’’ Int. J. Comput. Sci. Secur.,
vol. 5, no. 2, p. 201, 2011.

[101] V. Veeralakshmi and D. Ramyachitra, ‘‘Ripple Down Rule
learner (RIDOR) classifier for IRIS dataset,’’ Issues, vol. 1, no. 1,
pp. 79–85, 2015.

[102] E. Frank and I. H. Witten, ‘‘Generating accurate rule sets without global
optimization,’’ in Proc. 15th Int. Conf. Mach. Learn., J. Shavlik, Ed.
San Mateo, CA, USA: Morgan Kaufmann, 1998, pp. 144–151.

[103] F. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani, ‘‘Evaluation of
machine learning classifiers for mobile malware detection,’’ Soft Com-
put., vol. 20, no. 1, pp. 343–357, 2016.

[104] E. A. Zanaty, ‘‘Support vector machines (SVMs) versus multilayer per-
ception (MLP) in data classification,’’ Egyptian Informat. J., vol. 13,
no. 3, pp. 177–183, Nov. 2012.

[105] P. Soucy and G. W. Mineau, ‘‘A simple KNN algorithm for text catego-
rization,’’ in Proc. IEEE Int. Conf. Data Mining, Nov. 2001, pp. 647–648.

[106] J. Ribeiro, F. B. Saghezchi, G. Mantas, J. Rodriguez, S. J. Shepherd, and
R. A. Abd-Alhameed, ‘‘An autonomous host-based intrusion detection
system for Android mobile devices,’’ Mobile Netw. Appl., vol. 25, no. 1,
pp. 164–172, Feb. 2020.

[107] S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopoulos, ‘‘DroidLight:
Lightweight anomaly-based intrusion detection system for smartphone
devices,’’ in Proc. 21st Int. Conf. Distrib. Comput. Netw., Jan. 2020,
pp. 1–10.

[108] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, ‘‘DroidMat:
Android malware detection through manifest and API calls tracing,’’ in
Proc. 7th Asia Joint Conf. Inf. Secur., Aug. 2012, pp. 62–69.

[109] G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions,
vol. 382. Hoboken, NJ, USA: Wiley, 2007.

[110] H.-J. Zhu, Z.-H. You, Z.-X. Zhu, W.-L. Shi, X. Chen, and L. Cheng,
‘‘DroidDet: Effective and robust detection of Android malware using
static analysis along with rotation forest model,’’ Neurocomputing,
vol. 272, pp. 638–646, Jan. 2018.

[111] A. A. Hakim, A. Erwin, K. I. Eng, M. Galinium, and W. Muliady, ‘‘Auto-
mated document classification for news article in Bahasa Indonesia based
on term frequency inverse document frequency (TF-IDF) approach,’’
in Proc. 6th Int. Conf. Inf. Technol. Electr. Eng. (ICITEE), Oct. 2014,
pp. 1–4.

[112] S. Tata and J. M. Patel, ‘‘Estimating the selectivity of tf −idf based cosine
similarity predicates,’’ ACM SIGMOD Rec., vol. 36, no. 2, pp. 7–12,
Jun. 2007.

[113] S. Wold, K. Esbensen, and P. Geladi, ‘‘Principal component analysis,’’
Chemometrics Intell. Lab. Syst., vol. 2, nos. 1–3, pp. 37–52, 1987.

[114] Y. Aafer, W. Du, and H. Yin, ‘‘DroidAPIMiner: Mining api-level features
for robust malware detection in Android,’’ in Proc. Int. Conf. Secur.
Privacy Commun. Syst. Cham, Switzerland: Springer, 2013, pp. 86–103.

[115] J. R. Quinlan, C4. 5: Programs for Machine Learning. Amsterdam,
The Netherlands: Elsevier, 2014.

[116] N. Milosevic, A. Dehghantanha, and K.-K. R. Choo, ‘‘Machine learning
aided Android malware classification,’’ Comput. Elect. Eng., vol. 61,
pp. 266–274, Jul. 2017.

[117] Y. Zhang, R. Jin, and Z. Zhou, ‘‘Understanding bag-of-words model:
A statistical framework,’’ Int. J. Mach. Learn. Cybern., vol. 1, nos. 1–4,
pp. 43–52, Dec. 2010.

[118] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, ‘‘MADAM:
Effective and efficient behavior-based Android malware detection and
prevention,’’ IEEE Trans. Depend. Sec. Comput., vol. 15, no. 1,
pp. 83–97, Jan./Feb. 2018.

[119] S. Chen and X. Yang, ‘‘Alternative linear discriminant classifier,’’ Pattern
Recognit., vol. 37, no. 7, pp. 1545–1547, Jul. 2004.

[120] S. Srivastava, M. R. Gupta, and B. A. Frigyik, ‘‘Bayesian quadratic
discriminant analysis,’’ J. Mach. Learn. Res., vol. 8, pp. 1277–1305,
Jun. 2007.

[121] D. K. Wedding and K. J. Cios, ‘‘Certainty factors versus Parzen windows
as reliability measures in RBF networks,’’ Neurocomputing, vol. 19,
nos. 1–3, pp. 151–165, Apr. 1998.

[122] Y.-F. Lu, C.-F. Kuo, H.-Y. Chen, C.-W. Chen, and S.-C. Chou, ‘‘A SVM-
based malware detection mechanism for Android devices,’’ in Proc. Int.
Conf. Syst. Sci. Eng. (ICSSE), Jun. 2018, pp. 1–6.

[123] C. C. Chang and C. J. Lin, ‘‘LIBSVM: A library for support vector
machines,’’ ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1–27,
2011.

[124] S. Y. Yerima, S. Sezer, G. McWilliams, and I. Muttik, ‘‘A new
Android malware detection approach using Bayesian classification,’’ in
Proc. IEEE 27th Int. Conf. Adv. Inf. Netw. Appl. (AINA), Mar. 2013,
pp. 121–128.

[125] S. Y. Yerima, S. Sezer, and I. Muttik, ‘‘High accuracy Android mal-
ware detection using ensemble learning,’’ IET Inf. Secur., vol. 9, no. 6,
pp. 313–320, 2015.

[126] A. Merlo, M. Migliardi, and P. Fontanelli, ‘‘Measuring and estimating
power consumption in Android to support energy-based intrusion detec-
tion,’’ J. Comput. Secur., vol. 23, no. 5, pp. 611–637, 2015.

[127] A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach, B. Shapira,
and Y. Elovici, ‘‘Mobile malware detection through analysis of deviations
in application network behavior,’’Comput. Secur., vol. 43, no. 6, pp. 1–18,
2014.

[128] G. A. Seber andA. J. Lee, Linear Regression Analysis, vol. 329. Hoboken,
NJ, USA: Wiley, 2012.

[129] O. Stegle, S. V. Fallert, D. J. C. MacKay, and S. Brage, ‘‘Gaussian process
robust regression for noisy heart rate data,’’ IEEE Trans. Biomed. Eng.,
vol. 55, no. 9, pp. 2143–2151, Sep. 2008.

[130] R. E. Barlow and H. D. Brunk, ‘‘The isotonic regression problem and its
dual,’’ J. Amer. Stat. Assoc., vol. 67, no. 337, pp. 140–147, Mar. 1972.

[131] W.-Y. Loh, ‘‘Fifty years of classification and regression trees,’’ Int. Stat.
Rev., vol. 82, no. 3, pp. 329–348, 2014.

[132] K. A. Talha, D. I. Alper, and C. Aydin, ‘‘APK Auditor: Permission-based
Android malware detection system,’’ Digital Invest., vol. 13, pp. 1–14,
Jun. 2015.

[133] H. Rathore, S. K. Sahay, P. Nikam, and M. Sewak, ‘‘Robust Android
malware detection system against adversarial attacks using Q-learning,’’
Inf. Syst. Frontiers, vol. 23, no. 4, pp. 1–16, 2020.

[134] G. E. Hinton and R. R. Salakhutdinov, ‘‘Reducing the dimensionality of
data with neural networks,’’ Science, vol. 313, no. 5786, pp. 504–507,
2006.

[135] Z. Wang, C. Li, Z. Yuan, Y. Guan, and Y. Xue, ‘‘DroidChain: A novel
Android malware detection method based on behavior chains,’’ Pervas.
Mobile Comput., vol. 32, pp. 3–14, Oct. 2016.

[136] A. Desnos and G. Gueguen. (2013). Androguard-Reverse Engineering,
Malware and Goodware Analysis of Android Applications. [Online].
Available: htpp://www.code.google.com/p/androguard

[137] K. O. Elish, X. Shu, D. D. Yao, B. G. Ryder, and X. Jiang, ‘‘Profiling
user-trigger dependence for Androidmalware detection,’’Comput. Secur.,
vol. 49, pp. 255–273, Mar. 2015.

[138] J. Ching, ‘‘Nondeterministic parallel control-flow/definition-use nets and
their applications,’’ in Parallel Computing: Trends and Applications.
Amsterdam, The Netherlands: Elsevier, 1994, pp. 589–592.

[139] F. Idrees, M. Rajarajan, M. Conti, T. M. Chen, and Y. Rahulamathavan,
‘‘Pindroid: A novel Android malware detection system using ensemble
learning methods,’’ Comput. Secur., vol. 68, pp. 36–46, Jul. 2017.

[140] G.-Y. Wang, H. Yu, and D.-C. Yang, ‘‘Decision table reduction based
on conditional information entropy,’’ Chin. J. Comput., vol. 25, no. 7,
pp. 759–766, 2002.

[141] J. Platt, ‘‘Sequential minimal optimization: A fast algorithm for training
support vector machines,’’ Microsoft Res., Tech. Rep. MSR-TR-98-14,
1998.

[142] T. Isohara, K. Takemori, and A. Kubota, ‘‘Kernel-based behavior analysis
for Android malware detection,’’ in Proc. 7th Int. Conf. Comput. Intell.
Secur., Dec. 2011, pp. 1011–1015.

VOLUME 9, 2021 146347



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

[143] L. Xie, X. Zhang, J.-P. Seifert, and S. Zhu, ‘‘PBMDS: A behavior-based
malware detection system for cellphone devices,’’ inProc. 3rd ACMConf.
Wireless Netw. Secur. (WiSec), 2010, pp. 37–48.

[144] S. Fine, Y. Singer, and N. Tishby, ‘‘The hierarchical hidden Markov
model: Analysis and applications,’’ Mach. Learn., vol. 32, no. 1,
pp. 41–62, 1998.

[145] S. Shamshirband and A. T. Chronopoulos, ‘‘A new malware detection
system using a high performance-ELM method,’’ in Proc. 23rd Int.
Database Appl. Eng. Symp. (IDEAS), 2019, pp. 1–10.

[146] K. Polat and S. Güneş, ‘‘A new feature selection method on classification
of medical datasets: Kernel F-score feature selection,’’ Expert Syst. Appl.,
vol. 36, no. 7, pp. 10367–10373, Sep. 2009.

[147] L. Onwuzurike, E. Mariconti, P. Andriotis, E. De Cristofaro, G. Ross,
and G. Stringhini, ‘‘MaMaDroid: Detecting Android malware by building
Markov chains of behavioral models (extended version),’’ ACM Trans.
Privacy Secur., vol. 22, no. 2, pp. 1–34, 2019.

[148] X. Zhang, Y. Zhang,M. Zhong, D. Ding, Y. Cao, Y. Zhang,M. Zhang, and
M. Yang, ‘‘Enhancing state-of-the-art classifiers with API semantics to
detect evolved Android malware,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Oct. 2020, pp. 757–770.

[149] K. Xu, Y. Li, R. Deng, K. Chen, and J. Xu, ‘‘DroidEvolver: Self-evolving
Android malware detection system,’’ in Proc. IEEE Eur. Symp. Secur.
Privacy (EuroS P), Jun. 2019, pp. 47–62.

[150] O. Suciu, S. E. Coull, and J. Johns, ‘‘Exploring adversarial examples in
malware detection,’’ in Proc. IEEE Secur. Privacy Workshops (SPW). San
Francisco, CA, USA: Springer, 2019, pp. 8–14.

[151] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro,
‘‘TESSERACT: Eliminating experimental bias in malware classification
across space and time,’’ in Proc. 28th USENIX Secur. Symp. (USENIX
Secur.), 2019, pp. 729–746.

[152] G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto, and
L. Cavallaro, ‘‘DroidSieve: Fast and accurate classification of obfuscated
Android malware,’’ in Proc. 7th ACM Conf. Data Appl. Secur. Privacy,
Mar. 2017, pp. 309–320.

[153] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,
and E. Bodden, ‘‘Mining apps for abnormal usage of sensitive data,’’ in
Proc. IEEE/ACM 37th IEEE Int. Conf. Softw. Eng., vol. 1, May 2015,
pp. 426–436.

[154] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, ‘‘DynaLog: An automated
dynamic analysis framework for characterizing Android applications,’’ in
Proc. Int. Conf. Cyber Secur. Protection Digit. Services (Cyber Secur.),
2016, pp. 1–8.

[155] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, ‘‘EMULATOR vs REAL
PHONE: Android malware detection using machine learning,’’ in Proc.
3rd ACM Int. Workshop Secur. Privacy Analytics, Mar. 2017, pp. 65–72.

[156] S. Y. Yerima, M. K. Alzaylaee, and S. Sezer, ‘‘Machine learning-
based dynamic analysis of Android apps with improved code coverage,’’
EURASIP J. Inf. Secur., vol. 2019, no. 1, p. 4, Dec. 2019.

[157] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, ‘‘DL-droid: Deep learning
based Android malware detection using real devices,’’ Comput. Secur.,
vol. 89, Feb. 2020, Art. no. 101663.

[158] J. M. Vidal, M. A. S. Monge, and L. J. García-Villalba, ‘‘A novel
pattern recognition system for detecting Android malware by analyzing
suspicious boot sequences,’’ Knowl.-Based Syst., vol. 150, pp. 198–217,
Jun. 2018.

[159] A. Apvrille, ‘‘The evolution of mobile malware,’’ Comput. Fraud Secur.,
vol. 2014, no. 8, pp. 18–20, Aug. 2014.

[160] S. B. Needleman and C. D. Wunsch, ‘‘A general method applicable to
the search for similarities in the amino acid sequence of two proteins,’’
J. Molecular Biol., vol. 48, no. 3, pp. 443–453, 1970.

[161] W.-C. Wu and S.-H. Hung, ‘‘DroidDolphin: A dynamic Android malware
detection framework using big data andmachine learning,’’ in Proc. Conf.
Res. Adapt. Convergent Syst. (RACS), 2014, pp. 247–252.

[162] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra, and
J. C. Lai, ‘‘Class-based n-gram models of natural language,’’ J. Comput.
Linguistics, vol. 18, no. 4, pp. 467–479, 1992.

[163] H. Cai and B. G. Ryder, ‘‘Understanding Android application program-
ming and security: A dynamic study,’’ in Proc. IEEE Int. Conf. Softw.
Maintenance Evol. (ICSME), Sep. 2017, pp. 364–375.

[164] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel, ‘‘Composite
constant propagation: Application to Android inter-component commu-
nication analysis,’’ in Proc. IEEE/ACM 37th IEEE Int. Conf. Softw. Eng.
(ICSE), vol. 1, May 2015, pp. 77–88.

[165] H. Cai and J. Jenkins, ‘‘Towards sustainable Android malware detection,’’
in Proc. 40th Int. Conf. Softw. Eng., Companion, May 2018, pp. 350–351.

[166] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, ‘‘RiskRanker: Scal-
able and accurate zero-day Android malware detection,’’ in Proc. 10th
Int. Conf. Mobile Syst., Appl., Services (MobiSys), 2012, pp. 281–294.

[167] S. K. Dash, G. Suarez-Tangil, S. Khan, K. Tam, M. Ahmadi, J. Kinder,
and L. Cavallaro, ‘‘DroidScribe: Classifying Android malware based
on runtime behavior,’’ in Proc. IEEE Secur. Privacy Workshops (SPW),
May 2016, pp. 252–261.

[168] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, ‘‘CopperDroid: Auto-
matic reconstruction of Android malware behaviors,’’ in Proc. Netw.
Distrib. Syst. Secur. Symp., 2015, pp. 1–15.

[169] V. Vovk, A. Gammerman, and G. Shafer, Algorithmic Learning in a
Random World. Berlin, Germany: Springer, 2005.

[170] M. Sun,M. Zheng, J. C. S. Lui, andX. Jiang, ‘‘Design and implementation
of an Android host-based intrusion prevention system,’’ in Proc. 30th
Annu. Comput. Secur. Appl. Conf., Dec. 2014, pp. 226–235.

[171] H. Cai, N. Meng, B. G. Ryder, and D. Yao, ‘‘DroidCat: Effective Android
malware detection and categorization via app-level profiling,’’ IEEE
Trans. Inf. Forensics Security, vol. 14, no. 6, pp. 1455–1470, Nov. 2018.

[172] H. Cai, ‘‘Assessing and improving malware detection sustainability
through app evolution studies,’’ ACM Trans. Softw. Eng. Methodol.,
vol. 29, no. 2, pp. 1–28, Apr. 2020.

[173] L. Chen, S. Hou, Y. Ye, and S. Xu, ‘‘DroidEye: Fortifying security of
learning-based classifier against adversarial Androidmalware attacks,’’ in
Proc. IEEE/ACM Int. Conf. Adv. Social Netw. Anal. Mining (ASONAM),
Aug. 2018, pp. 782–789.

[174] L. Chen and Y. Ye, ‘‘SecMD: Make machine learning more secure against
adversarial malware attacks,’’ in Proc. Australas. Joint Conf. Artif. Intell.
Cham, Switzerland: Springer, 2017, pp. 76–89.

[175] I. J. Goodfellow, J. Shlens, and C. Szegedy, ‘‘Explaining and harnessing
adversarial examples,’’ 2014, arXiv:1412.6572.

[176] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and
K. Ren, ‘‘Android HIV: A study of repackaging malware for evading
machine-learning detection,’’ IEEE Trans. Inf. Forensics Security, vol. 15,
no. 1, pp. 987–1001, Jul. 2019.

[177] N. Viennot, E. Garcia, and J. Nieh, ‘‘A measurement study of Google
play,’’ in Proc. ACM Int. Conf. Meas. Modeling Comput. Syst. (SIGMET-
RICS), 2014, pp. 221–233.

[178] E. B. Karbab and M. Debbabi, ‘‘MalDy: Portable, data-driven mal-
ware detection using natural language processing and machine learn-
ing techniques on behavioral analysis reports,’’ Digit. Invest., vol. 28,
pp. S77–S87, Apr. 2019.

[179] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, ‘‘MalDozer:
Automatic framework for Android malware detection using deep learn-
ing,’’ Digit. Invest., vol. 24, pp. S48–S59, Mar. 2018.

[180] Y. Zhang,W. Ren, T. Zhu, andY. Ren, ‘‘SaaS: A situational awareness and
analysis system for massive Android malware detection,’’ Future Gener.
Comput. Syst., vol. 95, pp. 548–559, Jun. 2019.

[181] L. Onwuzurike, M. Almeida, E. Mariconti, J. Blackburn, G. Stringhini,
and E. De Cristofaro, ‘‘A family of droids-Android malware detec-
tion via behavioral modeling: Static vs dynamic analysis,’’ 2018,
arXiv:1803.03448.

[182] A. developer. (2017). Inspect Trace Logs With Traceview.
Accessed: Oct. 20, 2021. [Online]. Available: https://developer.
android.com/studio/profile/traceview.html

[183] C. J. Geyer, ‘‘Practical Markov chain Monte Carlo,’’ Stat. Sci., vol. 7,
no. 4, pp. 473–483, Nov. 1992.

[184] F. Tong and Z. Yan, ‘‘A hybrid approach of mobile malware detection in
Android,’’ J. Parallel Distrib. Comput., vol. 103, pp. 22–31, May 2017.

[185] M. Lindorfer, M. Neugschwandtner, and C. Platzer, ‘‘MARVIN: Efficient
and comprehensive mobile app classification through static and dynamic
analysis,’’ in Proc. COMPSAC, vol. 2, Jul. 2015, pp. 422–433.

[186] S. Rane, W. Sun, and A. Vetro, ‘‘Privacy-preserving approximation of L1
distance for multimedia applications,’’ in Proc. IEEE Int. Conf. Multime-
dia Expo, Jul. 2010, pp. 492–497.

[187] M. Zheng, M. Sun, and J. C. S. Lui, ‘‘DroidRay: A security evaluation
system for customized Android firmwares,’’ in Proc. 9th ACM Symp. Inf.,
Comput. Commun. Secur., Jun. 2014, pp. 471–482.

[188] A. T. Kabakus and I. A. Dogru, ‘‘An in-depth analysis of Androidmalware
using hybrid techniques,’’ Digit. Invest., vol. 24, pp. 25–33, Mar. 2018.

[189] X. Fu and H. Cai, ‘‘On the deterioration of learning-based malware
detectors for Android,’’ in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng.,
Companion Proc. (ICSE-Companion), May 2019, pp. 272–273.

[190] V. M. Afonso, M. F. de Amorim, A. R. A. Grégio, G. B. Junquera, and
P. L. de Geus, ‘‘Identifying Android malware using dynamically obtained
features,’’ J. Comput. Virol. Hacking Techn., vol. 11, no. 1, pp. 9–17,
2015.

146348 VOLUME 9, 2021



A. Alzubaidi: Recent Advances in Android Mobile Malware Detection: Systematic Literature Review

[191] J. Garcia,M.Hammad, and S.Malek, ‘‘Lightweight, obfuscation-resilient
detection and family identification of Android malware,’’ ACM Trans.
Softw. Eng. Methodol., vol. 26, no. 3, pp. 1–29, Jan. 2018.

[192] R. Vinayakumar, K. P. Soman, and P. Poornachandran, ‘‘Deep Android
malware detection and classification,’’ in Proc. Int. Conf. Adv. Comput.,
Commun. Informat. (ICACCI), Sep. 2017, pp. 1677–1683.

[193] R. Vinayakumar, K. P. Soman, P. Poornachandran, and S. S. Kumar,
‘‘Detecting Android malware using long short-term memory (LSTM),’’
J. Intell. Fuzzy Syst., vol. 34, no. 3, pp. 1277–1288, Mar. 2018.

[194] S. Hou, Y. Fan, Y. Zhang, Y. Ye, J. Lei, W. Wan, J. Wang, Q. Xiong,
and F. Shao, ‘‘αCyber: Enhancing robustness of Android malware detec-
tion system against adversarial attacks on heterogeneous graph based
model,’’ in Proc. 28th ACM Int. Conf. Inf. Knowl. Manage., Nov. 2019,
pp. 609–618.

[195] B. Amos, H. Turner, and J.White, ‘‘Applyingmachine learning classifiers
to dynamic Androidmalware detection at scale,’’ inProc. 9th Int. Wireless
Commun. Mobile Comput. Conf. (IWCMC), 2013, pp. 1666–1671.

[196] M.W. Gardner and S. Dorling, ‘‘Artificial neural networks (the multilayer
perceptron)—A review of applications in the atmospheric sciences,’’
Atmos. Environ., vol. 32, nos. 14–15, pp. 2627–2636, 1998.

[197] P. S. Chen, S.-C. Lin, and C.-H. Sun, ‘‘Simple and effective method
for detecting abnormal internet behaviors of mobile devices,’’ Inf. Sci.,
vol. 321, pp. 193–204, Nov. 2015.

[198] H. Cuntz, F. Forstner, A. Borst, and M. Häusser, ‘‘One rule to grow them
all: A general theory of neuronal branching and its practical application,’’
PLoS Comput. Biol., vol. 6, no. 8, Aug. 2010, Art. no. e1000877.

[199] J. J. Gómez-Hernández and X.-H. Wen, ‘‘To be or not to be multi-
Gaussian? A reflection on stochastic hydrogeology,’’ Adv. Water Resour.,
vol. 21, no. 1, pp. 47–61, Feb. 1998.

[200] M. Anderson, T. Adalı, and X.-L. Li, ‘‘Joint blind source separation
with multivariate Gaussian model: Algorithms and performance anal-
ysis,’’ IEEE Trans. Signal Process., vol. 60, no. 4, pp. 1672–1683,
Apr. 2011.

[201] J. Sahs and L. Khan, ‘‘A machine learning approach to Android mal-
ware detection,’’ in Proc. Eur. Intell. Secur. Informat. Conf., Aug. 2012,
pp. 141–147.

[202] Z. Aung and W. Zaw, ‘‘Permission-based Android malware detection,’’
Int. J. Sci. Technol. Res., vol. 2, no. 3, pp. 228–234, 2013

[203] P.-E. Danielsson, ‘‘Euclidean distance mapping,’’ Comput. Graph. Image
Process., vol. 14, no. 3, pp. 227–248, 1980.

[204] R. J. Lewis, ‘‘An introduction to classification and regression tree (CART)
analysis,’’ in Proc. Annu. Meeting Soc. Academic Emergency Med.,
San Francisco, CA, USA, vol. 14, 2000, pp. 1–14.

[205] D. Li, Z. Wang, and Y. Xue, ‘‘Fine-grained Android malware detection
based on deep learning,’’ in Proc. IEEE Conf. Commun. Netw. Secur.
(CNS), May 2018, pp. 1–2.

[206] M. Z. Mas’ud, S. Sahib, M. F. Abdollah, S. R. Selamat, and R. Yusof,
‘‘Analysis of features selection andmachine learning classifier in Android
malware detection,’’ in Proc. Int. Conf. Inf. Sci. Appl. (ICISA), May 2014,
pp. 1–5.

[207] R. Graf, L. A. Kaplan, and R. King, ‘‘Neural network-based technique for
Android smartphone applications classification,’’ in Proc. 11th Int. Conf.
Cyber Conflict (CyCon), May 2019, pp. 1–17.

[208] F. Hayes-Roth, D. A.Waterman, andD. B. Lenat,Building Expert System.
Reading, MA, USA: Addison-Wesley, 1983.

[209] A. Salman, I. H. Elhajj, A. Chehab, and A. Kayssi, ‘‘DAIDS: An archi-
tecture for modular mobile IDS,’’ in Proc. 28th Int. Conf. Adv. Inf. Netw.
Appl. Workshops, May 2014, pp. 328–333.

[210] M. Karami,M. Elsabagh, P. Najafiborazjani, and A. Stavrou, ‘‘Behavioral
analysis of Android applications using automated instrumentation,’’ in
Proc. IEEE 7th Int. Conf. Softw. Secur. Rel. Companion, Jun. 2013,
pp. 182–187.

ABDULAZIZ ALZUBAIDI received the bach-
elor’s degree in computer science from the
University College, King Abdulaziz University,
Saudi Arabia, in 2001, the Master of Science
degree from Jordan University, and the Ph.D.
degree from the University of Colorado at Col-
orado Springs, USA, in 2017. His research inter-
ests include intrusion detection, computer vision,
human activity recognition, cyber-security aware-
ness’s, and smart-devices security.

VOLUME 9, 2021 146349


