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ABSTRACT This research focuses on analyzing the robustness of different regression paradigms under
regressand noise, which has not been examined in depth in the specialized literature. Furthermore, their
synergy with fourteen noise preprocessing techniques adapted from the field of classification, known as
noise filters, is studied. In order to do this, several noise levels are injected into the output variable of 20
real-world datasets. They are used to evaluate the performance of each regression algorithm with and without
the employment of noise filters. The results obtained allow building a robustness ranking of the regression
methods to regressand noise. This provides interesting findings, such as some learning paradigms change
their well-know behavior with noise in classification problems when they are applied to regression data.
On the other hand, the usage of noise filters improves the performance of regression methods, showing
different synergies depending on the regression paradigm and filter employed.

INDEX TERMS Filtering, noisy data, regressand noise, regression, robustness.

I. INTRODUCTION

Real-world data often present errors or imperfections caused
by device deficiencies, measurement tool limitations or data
transcription failures [1], [2]. Fighting these issues can repre-
sent more than half the time required to develop a data mining
project [3], [4]. In fact, one of the main problems in data anal-
ysis is noise [5], [6], which is defined as corruptions altering
the values in a dataset. Noise can affect both classification [7],
[8] and regression [9], [10] data causing numerous problems,
such as reduction of performance in the models created and
increase in their building time and complexity [5], [11].

In classification, in which the output variable is a discrete
class label, noise refers to any disturbance that obscures
the relationship between the attributes of a sample and
its class [12]. Thus, two types of noise are distinguished:
attribute noise [13], which refers to corrupted values in one
or more attributes, and class noise [14], which is produced
when the samples are incorrectly labeled. Among them, noise
in the output variable is usually the most harmful to build
models [5], [15]. Significative research efforts have been
made to reduce the negative impacts of class noise, moti-
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vating the analysis of robustness of classification methods
with noisy data [16], [17]. For example, it is well-known
that C4 . 5 [18] is robust due to its pruning scheme, whereas
Nearest Neighbor (NN) [19] is considered sensitive to noise.
In addition, plenty of works have been proposed to improve
data quality by applying noise preprocessing techniques [12].
One of the main alternatives is noise filtering [20], which aims
at removing samples with noise in the output variable.
Similar to class noise in classification, regressand noise
in regression can be defined as imperfections affecting the
output variable. However, the identification of regressand
noise is more complex than that of class noise. In classifica-
tion, boundaries among classes must be determined to detect
potential noisy samples [21], which are usually identified
as those samples falling outside the decision limits of their
class. Furthermore, since the amount of labels for a given
sample are limited, errors can be identified easier. Because
of this, contrary to classification [12], the problem of noisy
data has not been addressed in depth in the field of regression.
Research on the robustness of different regression methods
with several regressand noise levels is scarce in the spe-
cialized literature. Furthermore, there are few noise filtering
alternatives in regression. The main proposal is that of Kordos
and Blachnik [22], which adapted two well-known filters
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from the field of classification (Edited Nearest Neighbors
(ENN) and Condensed Nearest Neighbors (CNN) [23]) to
regression problems.

This paper aims to strengthen the research in this area,
analyzing the robustness of different regression paradigms
under regressand noise. The experimentation carried out
considers 20 real-world datasets, into which several regres-
sand noise levels have been injected (from 5% to 30%,
by increments of 5%). These datasets have been used to
create regression models with 5 algorithms of a different
nature, such as Recursive Partitioning and Regression Trees
(RPART) [24], NN [19], Support Vector Machine (SVM) [25],
Extreme Learning Machine (ELM) [26] and Extreme Gradi-
ent Boosting (XGBoost) [27]. Based on the work of [22],
14 noise filters (most of which have not been previously
tested in regression problems) are designed to evaluate
their synergy with these regression methods. The perfor-
mance of the regression algorithms with or without noise
filtering has been analyzed using the appropriate statistical
tests [28]. Full results and details of the experiments are
available in the webpage associated with this research at
https://juanmartinsantos.github.io/regressandnoise/.

Thus, the main contributions of this work are:

1) Analysis of robustness to regressand noise of dif-
ferent regression paradigms. The impact of several
noise levels in the prediction performance of regres-
sion methods of a different noise sensitiveness is
analyzed.

2) Adaptation of noise filters taken from the classification
literature to regression problems. A wide variety of
filtering techniques, most of which have not been previ-
ously considered in regression problems, are designed
to deal with noisy regression data.

3) Examination of the suitability of noise filters in regres-
sion problems. The improvement in performance of
noise filters with respect to not preprocessing in prob-
lems with regressand noise is examined.

4) Study of synergies between noise filters and regression
methods. The most and less recommended noise filters
depending on the regression method used are analyzed
in a thorough experimental study.

The remaining of this research is organized as follows.
Section II focuses on the main alternatives to deal with noisy
data in supervised learning. Section III details the foundations
for noise filtering in regression, as well as how noise filters are
adapted from the field of classification. Section IV describes
the experimental framework. Section V focuses on analyzing
the robustness of regression techniques to noise in absence of
preprocessing. Section VI analyzes the results of regression
noise filters. Finally, Section VII concludes this work and
offers ideas about future research.

Il. ADDRESSING NOISE IN SUPERVISED LEARNING
In the specialized literature, there exist two main alternatives
to deal with the problems caused by noise [12]:
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o Algorithm level approaches [18], [29]. These methods,
known as robust learners, are characterized by being less
influenced by noise.

o Data level approaches [23], [30]. They preprocess the

dataset using noise filters to remove noisy samples.
This section introduces both approaches. Section II-A

focuses on the robustness of learning algorithms, whereas
Section II-B describes previous research on noise filtering.

A. ROBUSTNESS OF LEARNING ALGORITHMS

Robustness refers to the capability of algorithms to build
models that are tolerant to noisy data [31]. This fact implies
that their performance is less affected by errors. In clas-
sification, there are a large number of works studying the
robustness of algorithms [12], [16], [17]. Thus, C4 .5 [18] is
considered robust due to its pruning strategies to reduce the
overfitting to noisy samples [32]. Random Forest (RF) [33]
counteracts the presence of noise using a random selection
of features to split each node. Other techniques, such as
XGBoost [27], have shown a better performance than other
traditional learning algorithms dealing with classification
problems with noisy data [34], [35].

On the other hand, there are classification methods that
are considered sensitive to noise [19], [25]. For example,
the robustness of k-NN [19] depends on the value of k: the
decision model can be easily altered by individual samples
if one nearest neighbor is considered, whereas higher values
of k make the model more robust [16]. SVM [25] is usually
accurate enough when data are relatively clean, whereas its
performance is quite deteriorated when considering increased
noise levels since the hyperplane found may be affected by
samples with errors [17], [36].

In the regression literature, there are fewer studies on the
robustness of learning algorithms. Most of them are related to
SVM [37]-[39]. Cherkassky and Ma [37] studied the selection
of parameters for SVM dealing with data with Gaussian noise.
Suykens et al. [38] analyzed the improvement in regression
performance with noisy data by applying a weighted version
of Least Squares Support Vector Machine (LS-SVM) [40],
whereas Yang et al. [41] proposed a robust alternative to
LS-SVM to reduce the effect of noise.

This research aims to deepen the understanding of the
behavior of different regression methods dealing with data
with regressand noise, as well as checking if the findings
known in the literature on noisy classification data are main-
tained in regression problems. Note that noise sensitive tech-
niques, either classification or regression methods, need the
usage of preprocessing approaches to reduce the negative
impacts of noise. These are briefly described in the next
section.

B. NOISE FILTERING TECHNIQUES

In classification, noise filtering consists of removing samples
with class noise from the training dataset [21], [30]. Noise
filters can be used with datasets regardless of the character-
istics of noisy data distributions and, thus, they can deal with
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both symmetric and asymmetric noise [42]. The separation of
noise detection and learning has the advantage that noisy sam-
ples do not influence the model building [11]. The removal
of such samples reduces the size of the original dataset by
selecting relevant data, which improves the performance of
the models learned later [11], [43].

There are two main types of noise filters [21], [23]:
similarity-based filters (which are those based on k-NN and
distances among samples) and ensemble-based filters (which
are those based on the predictions of several classification
models).

One of the most well-know similarity filters is ENN [23].
It removes a sample if its class label is different from that
of the majority of its nearest neighbors. Based on ENN,
All-k Edited Nearest Neighbors (AENN) [44] applies ENN
from 1 to k and removes those noisy samples considered
by any ENN. A different strategy is followed by Blame
Based Noise Reduction (BBNR) [45], which removes a sample
if it participates in the misclassification of another sam-
ple and if its removal does not produce the misclassifica-
tion on another correctly classified sample. Other similarity
noise filters, such as CNN [23], perform a first classification
with NN and store the samples that are misclassified. Then,
these samples are taken as the training set. The process
stops when all the unstored samples are correctly classified.
Reduced Nearest Neighbors (RNN) [46] is an enhancement
of CNN that includes one more step, which removes sam-
ples in the training set that do not affect the performance
of k-NN.

Ensemble-based filters build several classifiers from the
training data and then, based on a voting scheme, decide
which samples should be removed. There exist two main
voting schemes: i) consensus (a sample is removed if it is
misclassified by all the classifiers) and, ii) majority (a sample
is removed if it is misclassified by more than a half of
the classifiers). The main representative within this field is
Ensemble Filter (EF) [21]. It divides the training set into
u subsets. Then, a prediction is obtained for each one of
the classifiers C4 .5, NN and LDA. Finally, noisy samples
are removed using a voting scheme. Similarly to EF, Cross-
Validation Commitees Filter (CVCF) [47] divides the training
set into u folds and builds a decision tree with C4 . 5 on each
fold. Using each classifier, a prediction of the whole dataset
is obtained. Finally, a sample is considered as noisy using
one of the two aforementioned voting schemes. Iferative-
Fartitioning Filter (IPF) [30] builds a classifier with C4.5
on each fold to evaluate the whole dataset. In contrast to
CVCF, IPF integrates an iterative process that removes noisy
samples until the number of removed samples is below a
threshold.

Along with the aforementioned filters, there are other
numerous proposals for noise filtering in classification
[48], [49]. Nevertheless, the number of research studies on
noise filtering in regression problems, which is discussed
in the next section, is considerably smaller than that in
classification.
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1Il. DESIGN OF NOISE FILTERS FOR REGRESSION

This section focuses on how noise filtering can be addressed
in regression problems. Section III-A explains the basics
of regression noise filtering. Then, Section III-B details the
output similarity function to build the regression noise fil-
ters from those traditionally used in classification. Finally,
Section III-C describes specific replacements for classifica-
tion techniques to make traditional noise filters appropriate
for regression tasks.

A. BASICS OF REGRESSION NOISE FILTERING

The first issue to be addressed on noise filtering in regres-
sion is defining what this process consists of. Establishing
a parallelism with noise filtering in classification, regression
noise filtering will be in charge of detecting and eliminating
samples with regressand noise in a dataset. However, different
from classification (in which class noise is usually identified
as misclassifications), regressand noise can occur to varying
degrees: the error in the output variable of a sample can
be small or more pronounced. For this reason, it must be
determined which type of noise should be addressed. In order
to do this, it is necessary to define a threshold [22] indicating
the minimum error allowed to consider that a sample with
regressand noise must be treated.

Second, it is important to analyze the design of most of
existing classification noise filters. Regardless the filtering
mechanism, most of them are based on the comparison of
a prediction versus the actual output for each sample to
detect the presence of noise. Based on such comparison, the
samples are identified as clean ones (if the predicted and the
actual outputs are equal) or noisy ones (if they are different).
However, this comparison provides an inequality in most of
the regression predictions due to the continuous nature of the
output variable. In this context, the concept of threshold helps
to determine whether two outputs should be considered equal
(similar enough) or not.

Under the aforementioned premises, there is one main
approach that proposed the adaptation of ENN and CNN from
classification to regression problems [22]. In order to deter-
mine if a sample is noisy with these noise filters, the following
testing (Equation 1) is performed for each sample ¢; in the
dataset once its nearest neighbors ¢y, , . . ., ¢y, are computed:

if o j—mean(@o,y,, - - - 0,m)| > n
a - sd(@o,ys .- Q0,5) = X IS nOisy,
where ¢ ; is the output of the sample ¢;, ¢o 5, - - ., Q0,5 are

the outputs of the k nearest neighbors of ¢; and « is a user
parameter. Thus, there are two factors affecting the decision
on if ¢; is noisy: the o parameter and the dispersion of the
outputs of the nearest neighbors of ¢;. Both compose the
threshold to determine the samples with regressand noise to
filter.

Even though this approach provides good results [22],
it presents the limitation that the threshold could be hard
to interpret. o can take any positive real value, which adds
complexity when determining an appropriate value for it.
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TABLE 1. Parameter setup for the noise filters.

Similarity filters

Filter = Ref. Parameters
[44] Kk = 5; distance: Euclidean
[45] &k = 3; distance: Euclidean
[49] k = 10; distance: Euclidean
[23] &k = 1; distance: Euclidean
[23] &k = 3; distance: Euclidean
[50] k = b; distance: Euclidean
[46] Kk = 1; distance: Euclidean

Ensemble filters
Filter = Ref. Parameters
[47]  Voting: majority; i =10
[43]  Voting: majority; p = 10; models = 3
[21]  Voting: majority; pu =4
[48]  Voting: majority; models = 3
[51]  Voting: majority; models = 4
[30] Voting: majority; u=5; p = 0.01;
s=3;y=0.5
(521 -

In addition, it weights the dispersion of the outputs of the
nearest neighbors of the sample, acting as the final threshold.
Since the dispersion of the neighborhood is unpredictable,
this chained relationship may obscure the consequences of
choosing an « value or another. Finally, the work of [22]
focused on the adaptation of two similarity filters (ENN and
CNN). Section ITI-B proposes a way to simplify the threshold
function, increasing its interpretability and adapting it for
being used with most of the classification noise filters.

B. OUTPUT SIMILARITY FUNCTION FOR REGRESSION
NOISE FILTERS

This research proposes to adapt the classification filters
described in Section II-B, along with other representative
ones, up to a total of 14. They are shown in Table 1 along
with their main parameters, which are the default ones recom-
mended by the authors of the original noise filters. Note that,
even though the CNDC filter [49] has characteristics of both
similarity and ensemble filters, it has been included within
similarity filters in Table 1 for simplicity.

In order to adapt these noise filters, the approach of Kordos
and Blachnik [22] will be applied introducing some modifi-
cations. In order to equalize the importance of each variable
when computing distances among samples in similarity filters
and ease the interpretability of the threshold, all the attribute
values ¢; j (input and output variables) are normalized to the
interval [0, 1]. Then, the testing proposed in Equation 1 to
check if a sample is noisy is replaced by an output similarity
function (Equation 2) that allows comparing two regression
outputs to determine whether they are similar:

@

false,

true, iflof — | <t
similar(g;, 908) = { oth|:;0wise(pO| =
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where ¢ and <pg are two continuous output values and
T € [0, 1] is the noise filtering threshold, which defines the
maximum difference between the outputs to consider them
as similar. Note that this function must be incorporated in a
regression noise filter when its associated classification filter
compares the predicted label against the actual label of a
sample.

Since the output values are normalized to [0, 1], ¢y — <pg |
is always in [0, 1]. This fact allows establishing the domain
of the threshold 7 € [0, 1]. A value of t = 0 implies that
the actual output ¢; = ¢ ; of a sample §; and its prediction
<pg by the regression noise filter must be exactly equal to be
considered as similar and, thus, the corresponding sample §;
is treated as clean. A value of t = 1 means that the actual
output ¢; and the predicted output (pg are always considered
as similar and, therefore, all the samples in the training dataset
are treated as clean and not removed by the noise filter. Other
values of 7 imply that the difference between the actual ¢
and the predicted (pg outputs of the sample §; must be below
the 7 percent of the domain of the output variable ¢ to define
d; as clean, otherwise §; is treated as noisy. Therefore, lower
values of t produce a more aggressive filtering (removing
more noisy samples), whereas higher values of t lead to
a more conservative filtering (maintaining more samples in
the dataset). In this research, all the filters consider a value
v = 0.2, which is that generally providing the best per-
formance results in our experiments —Section VI-E can be
consulted for a deeper analysis on the impact of the threshold
in the performance.

C. REPLACEMENTS OF CLASSIFICATION ALGORITHMS IN
REGRESSION NOISE FILTERS

In order to adapt classification noise filters to regression
problems, modifications in some filters are necessary because
their original design is based on the usage of classification
algorithms. For example, ensemble-based filters use a wide
variety of classifiers [21], [43], which must be replaced
by regression methods. The replacements proposed in this
research have been chosen with the aim of not altering the
nature of the original noise filters excessively. Thus, the main
changes of algorithms to be considered are as follows:

o Regression k-NN instead of classification k-NN. All the
similarity filters (ENN, AENN, GE, BBNR, CNDC, CNN
and RNN) and ensemble filters (DF, EF, FMF and HRRF')
are adapted to use the k-NN version for regression prob-
lems. The main difference with respect to the classifica-
tion version of k-NN is that, instead of considering the
majority class from the nearest neighbors to determine
the label of a sample, the average of the outputs of its
nearest neighbors is considered.

o Regression versions of SVM, REF and Multiple-Layer
Perceptron Neural Network (MLPNN) [53] instead of
classification versions. The noise filters that use SVM
and MLPNN (DF, FMF and HRRF) and the noise filter
that uses RF (DF) are adapted to employ the regression
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TABLE 2. Datasets used in the experimentation.

TABLE 3. Parameter setup for the regression methods.

Datasets #at #sa Datasets #at #sa
9 4177 12 517
7 4052 14 3656

108 372 17 22784
9 20640 16 1049

22 8192 27 14998
9 1030 33 8192
6 7129 10 950
7 9517 16 1049

17 16599 10 1609

23 17515 10 1461

version of such algorithms that is commonly used in the
literature.

e RPART instead of C4 . 5. Those filtering methods based
onC4.5 (EF, CVCF, IPF, IRF and DF) replace it with
the regression method RPART, which is also based on
decision trees.

o Linear Regression (LR) instead of LDA and Naive Bayes
(NB) [54]. LDA (used in EF) and NB (used in DF) are
replaced by LR. LR is a simple yet effective regression
method which helps to complement the rest of regression
paradigms used in these ensemble filters [21], [43].

IV. EXPERIMENTAL FRAMEWORK

This section presents the details of the experimental frame-
work. Section IV-A describes the regression datasets used,
whereas Section IV-B explains the methodology for the anal-
ysis of the results. Then, Section I'V-C presents the computa-
tional efficiency associated to the experiments carried out.

A. REAL-WORLD DATASETS
The experimentation considers 20 regression datasets of dif-
ferent cardinalities taken from the UCI machine learning and
KEEL-dataset repositories.' They are shown in Table 2, along
with the number of attributes (#ar) and samples (#sa) for
each one. Constant attributes and samples with missing values
are removed from these datasets before their usage. Both
the input attributes and the output variable are normalized
to the interval [0, 1]. The experiments are executed under
macOS Big Sur 11.6 using a dual-core machine (Intel Core i7,
3.5 GHz, 16 GB RAM).

In order to induce regressand noise in each dataset,
a scheme based on a well-known approach to inject class
noise in classification problems is used [16]. To introduce a
noise level x % into a regression dataset, x % of the samples are
randomly chosen and their output values are replaced by other
random ones within the corresponding domain. The noise
levels range from x = 5% to x = 30%, by increments of
5%. As a consequence, 120 noisy datasets with regressand
noise are created as follows:

1) In acopy of the original dataset, the desired noise level

x% is injected into the output variable.

1http://archive.ics.uci.edu/ml; http://www.keel.es/
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Method Ref.  Parameters

[24]  complexity = 0.01; samples per node = 20; method: anova
[19]  distance: Euclidean

[25]  kernel: radial basis; tolerance = 0.001; € = 0.1

[26]  hidden neurons = 50; activation: satlins; weights: U(—1,1)
[27]  trees = 150; learning rate = 0.3; depth = 6; min. weight = 1

2) The original dataset and the noisy copy are partitioned
into 5 equivalent folds, that is, each fold contains the
same samples in both datasets.

3) The training partitions are built from the noisy copy,
whereas the test partitions are built with the samples

from the original dataset.
In order to estimate the performance of each regres-

sion method, 5 runs of a 5-fold cross-validation are con-
sidered. This validation scheme is used in other related
works [32], [55] and enables to obtain robust performance
results. The 120 noisy datasets are processed with 14 noise
filters adapted to regression, resulting in a total of 1800
datasets. Each dataset is then trained with one of 5 differ-
ent regression methods: RPART [24], NN [19], SVM [25],
ELM [26] and XGBoost [27]. All the results obtained from
these executions can be found in the webpage associated with
this research.2

B. METHODOLOGY OF ANALYSIS
Both the robustness of the RPART, NN, SVM, ELM and
XGBoost regression methods and the efficacy of the 14 fil-
ters in Table 1 are analyzed based on the regression accuracy
of the models in a thorough experimental study. Table 3 shows
the parameter setup for these regression algorithms. Due to
the large amount of results obtained, just the averaged results
of each method for the 20 datasets, noise level and noise
filter are shown in this paper, but it must be noted that the
conclusions are based on the appropriate statistical tests [28],
which consider all the results.

The analysis of results is divided into 6 different parts, each
one described in a separate section:

1) Analysis of robustness of regression methods to regres-
sand noise (Section V). This section analyzes how
several regression methods behave with different noise
levels in the datasets and compares the results obtained
to related findings found in the field of classification.

2) Comparison of approaches to build regression filters
from classification ones (Section VI-A). This section
compares the main approaches to create regression
noise filters and remove erroneous samples in the
datasets.

3) Advantages of noise filtering against not preprocessing
in regression problems (Section VI-B). This section
analyzes whether the application of noise filtering tech-
niques implies an improvement with respect to the
absence of preprocessing.

2https:// juanmartinsantos.github.io/regressandnoise/
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TABLE 4. Computational costs associated to experiments.

Ensemble filters
Method Complexity

Similarity filters

Method  Complexity

O(n*) O(n - loga n)
O(n3) O(n%)
O(n%) O(n?)
o(n?) O(n?)
O(n?) O(n%)
O(n?) O(n - loga n)
O(n3) O(n - loga n)

4) Synergies of regression methods and noise filters
under regressand noise (Section VI-C). This section
examines which are the best filters to preprocess
noisy data with respect to the regression method
considered.

5) Relationship between the properties of datasets and
regression noise filters (Section VI-D). In this section,
the behavior of the regression noise filters has been ana-
lyzed according to the size of the datasets, considering
independent studies for the number of samples and the
number of attributes.

6) Influence of the noise filtering threshold on the regres-
sion performance (Section VI-E). The motivation of
this section is to identify the most suitable thresholds to
improve the performance of noise filtering techniques
in regression problems.

The performance of the methods is evaluated using the
RMSE metric. The Aligned Friedman test [28] is applied for
multiple comparisons (Sections V, VI-C, VI-D and VI-E).
This test is used to compute the set of ranks that repre-
sent the effectiveness associated with each method and the
p-value (par) of significance of the differences found.
In addition, the adjusted p-value (pri,) with the Finner pro-
cedure is computed. Wilcoxon’s test [28] is applied for pair-
wise comparisons (Sections VI-A and VI-B). The associated
p-values pw; are obtained for these comparisons. This
research considers a difference to be significant if the p-value
obtained is lower than 0.05.

C. COMPUTATIONAL EFFICIENCY OF EXPERIMENTS

Table 4 shows an estimation of the computational cost
for each of the noise filters. The efficiency of sim-
ilarity filters is mainly determined by the times that
distances between samples are computed [56], whereas
the efficiency of ensemble filters is mainly influenced
by the highest cost of the algorithms used within the
ensemble.

The computational cost associated with the whole experi-
ment carried out is determined by the number of noise levels /,
the number of datasets d, the number of folds f, the number
of noise filters p and the number of regression methods 7,
as well as the highest cost among noise filters O(P) and
regression methods O(R). This implies a total cost for the
experimentation of O(l -d -f -p-r-P-R).
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V. ANALYSIS OF ROBUSTNESS OF REGRESSION
METHODS TO REGRESSAND NOISE

This section focuses on the analysis of the results obtained
by different regression techniques with regressand noise
in absence of preprocessing. Table 5 presents the RMSE
performance results for each noise level and regression
method considered. In addition, the number of datasets
in which each technique obtains the best result is shown.
The analysis of results of this table reveals the following
observations:

A. ROBUSTNESS OF REGRESSION METHODS TO NOISE
The behavior of all the regression methods, regardless of their
nature, is affected by regressand noise. SVM and RPART are
the most robust methods, with very similar results in all the
noise levels. They are followed by ELM and XGBoost, with
slightly more affected results. Finally, NN obtains the worst
RMSE values in all the noise levels.

The good performance results of RPART can be explained
by the form of building the model, which is based on decision
trees including a pruning mechanism. This approach is able to
better avoid the overfitting to noise since those noisy samples
that do not follow the general distribution of the dataset
are usually not modelled. The results of SVM are equally
good. Even though noisy samples may affect the optimization
process of SVM and deteriorate its performance, the results in
Table 5 show that noise is not affecting the performance of
SVM in a high degree. This fact may be related to the usage
of its e-insensitive loss function, which allows dealing with
undesired samples, such as noisy samples.

The average performance results of ELM are not as good
as those of RPART and SVM. However, it achieves the best
result on a remarkable number of datasets. This fact implies
that ELM achieves excellent results on some datasets, while
it is more deteriorated in other ones. Note that conventional
ELM algorithms were designed for the noiseless situation.
These techniques are generally better capturing the nuances
hidden in the data, providing excellent performance results
for datasets in which noise is not deteriorating important parts
of the problem domain. Nevertheless, when these nuances are
noisy and impact crucial areas of the domain, the performance
may be impaired. Something similar occurs with XGBoost,
which performs better at low noise levels and deteriorates as
the number of noisy samples increases.

Finally, NN provides the worst results since the inclusion of
some noisy samples negatively affects the prediction of many
others, reducing its performance.

B. PERFORMANCE DETERIORATION AS THE NOISE

LEVEL INCREASES

This analysis helps to complete the understanding of the
robustness of each regression method. The increase of the
noise level impacts the behavior of the methods differently.
XGBoost, which obtains relatively good results, presents the
largest drop in performance from 5% to 30% of noise, with
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TABLE 5. Comparison of robustness to regressand noise of regression methods: rRvSE and number of datasets with the best result (the best results are
remarked in bold).

Metric RMSE

Best (out of 20)

Noise 5% 10% 15% 20% 25% 30% 5% 10% 15% 20% 25% 30%
0.1251 0.1573 0.1785 0.1989 0.2145 0.2269
0.1567 0.2043 0.2404 0.2697 0.2889 0.3046
0.1180 0.1528 0.1762 0.1977 0.2163 0.2298
0.1526 0.1826 0.2011 0.2198 0.2322 0.2550
0.1195 0.1592 0.1863 0.2077 0.2277 0.2392

AW e O W
DN QO W
WAoo W
\SI-REN e OS]
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— 0 LN O N

a deterioration of 100.17%. RPART (whose performance is
deteriorated by a 81.37%) and ELM (with a deterioration of
67.1%) are the least affected methods by increasing the noise
level. It is important to note that NN, which obtains the worst
results, and SV, which obtains the best results, show a very
similar drop in performance (around 94.5%) from the lowest
to highest noise level.

Generally, the higher the performance of a learning method
at the lowest noise level, the greater the margin for this per-
formance to deteriorate as the noise level increases. However,
this is not always fulfilled in the results of Table 5, which
leads to interesting observations. Methods with good results,
such as RPART, are able to maintain the performance through
the different noise levels better than other techniques with
worse performance results, such as NN. This fact reflects a
good initial performance of these methods and a high robust-
ness to increase the noise level in the data.

C. BEST REGRESSION METHOD IN INDIVIDUAL DATASETS
SVM achieves the best performance in 7-8 datasets at 5-10%
of noise. Then, SVM and ELM obtain the best results in 7
datasets at 15% of noise. From that noise level onwards,
ELM is the best in 8-9 datasets in each noise level. These
results show that SVM provides a good prediction accuracy
with noisy regression data and it also highlights in the results
of individual datasets. On the other hand, even though ELM
offers the best performance in some datasets at concrete noise
levels, its average RMSE is not as good as that of SVM. As it
was previously mentioned, this fact indicates that ELM offers
less stable results among the different datasets.

XGBoost obtains good performances in all the noise
levels but, as the noise level increases, the number of datasets
in which it obtains the best result decreases. This fact, along
with its aforementioned performance deterioration, indicates
a certain sensibility of XGBoost to increase the noise level.
It is also important to note that RPART increases the number
of datasets with the best result along with the amount of noise,
which supports the idea of its robustness to high noise levels.
Finally, NN is not the best in any dataset and noise level, as it
was expected for its worse performance results.

D. COMPARISON BETWEEN NOISE ROBUSTNESS OF
REGRESSION AND CLASSIFICATION METHODS

The comparison of the above results for noisy regression
datasets with other ones found in the classification litera-
ture [12], [17], [35] leads to interesting observations.
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C4.5 [18] is known to be a robust method (due to its
pruning mechanism), which usually provides good perfor-
mance results when working with noisy data. In experiments
with regressand noise, RPART (which is based on building
decision trees as C4.5) is one of the methods providing
the best results, as it also integrates pruning strategies that
increase its robustness against noise. On the other hand, NN
is usually considered as a very noise sensitive learner in the
field of classification [16], [19]. This statement is also valid
in our experiments, since NN performs worse than the other
methods.

Difference from the previous cases, SVM offers a dis-
tinct behavior with noisy regression data than that of its
classic well-known behavior with noisy classification data.
In classification, SVM is usually viewed as a noise sensitive
method [16], [17]. The experiments of this research with
regressand noise show that SVM is able to be more noise
tolerant with independence of the noise level maintaining,
even at the highest noise levels, one of the best performances
among all the regression methods. This fact is mainly due to
the different working of SVM dealing with classification and
regression problems. In classification, the decision bound-
ary between classes is determined by a hyperplane. It is
obtained maximizing its separation to the closest samples
of each class (support vectors) [25]. If any of the support
vectors is affected by noise, the position and orientation
of the hyperplane can change, reducing the performance of
SVM. In regression, the hyperplane is obtained adjusting the
data with a specific function. Then, the decision boundaries,
which are placed at a distance ¢ of the hyperplane, are
defined. The decision boundaries carry, in this case, a noise
robustness mechanism, since & can be viewed as the max-
imum error allowed to penalize samples (errors lower than
¢ are not relevant). Thus, if noise affects a sample (within
the decision boundaries) with an error lower than ¢ or if a
sample (outside the decision boundaries) is corrupted and
enters within the decision boundaries, the hyperplane is little
affected. On the other hand, samples that go outside the
decision boundaries are penalized to build the model. These
mechanisms explain the good performance of SVM with noisy
regression data.

Finally, it should be noted that XGBoost and ELM, despite
being the most advanced techniques tested, do not offer the
best results with noisy regression data.

In order to complete the above analysis, Table 6 shows
the ranks obtained by the Aligned Friedman test for all the
regression methods in each noise level. In addition, it shows
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TABLE 6. Comparison of robustness to regressand noise of regression
methods: results of the Aligned Friedman (ranks and p-values p,f) and
Finner test (p-values pg;,). The best results are remarked in bold.

Noise 5% 10% 15% 7 25% 30%
Ranks
46.20 42.30 37.83 36.25 33.10 31.75
79.95 83.60 88.25 88.50 88.50 87.50
28.25 25.88 27.20 29.05 34.00 35.50
55.60 50.43 46.23 44.73 41.10 44.55
42.50 50.30 53.00 53.98 55.80 53.20
2.39E-06 1.74E-07 9.65E-09 1.19E-08 1.23E-08 5.26E-08
PFin
6.66E-02 7.34E-02 247E-01 4.33E-01 -
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
- - - - 9.22E-01 6.83E-01
5.74E-03 1.48E-02 5.05E-02 1.15E-01 4.75E-01 2.11E-01
1.20E-01 1.48E-02 9.82E-03 1.31E-02 2.65E-02 3.84E-01

the p-values corresponding to the Aligned Friedman (par)
and Finner (prin) tests. The following remarks can be made
after the analysis of Table 6:

o Statistical ranking of the regression methods with noisy
data. SVM obtains the best ranks for the noise levels
ranging from 5% to 20%. For the highest noise levels
(25% and 30%) the best method is RPART. ELM and
XGBoost are placed in the positions 3-4 for all the
noise levels. The worst position is obtained by NN with
independence of the noise level. The low p-values par
indicate that there are significant differences in all the
comparisons performed.

o Statistical differences among the regression methods.
According to the Aligned Friedman test, the control
method is either SVM or RPART with independence
of the noise level. They are always statistically better
against NN, which obtains the highest RMSE values in
Table 5. Apart from these differences, the Finner test
also reveals that SVM statistically improves the per-
formance of ELM at 5-15% of noise and XGBoost
at 10-20%. Similar results are obtained for RPART at
25% of noise, achieving significant differences against
XGBoost.

These statistical results confirm the conclusions derived
from the analysis of Table 5. SVM and RPART are positioned
as the best alternatives to work with noisy regression data,
whereas NN is clearly the most noise sensitive method and its
usage is not recommended with regression datasets suffering
from regressand noise.

V1. EFFICACY OF REGRESSION-ADAPTED NOISE FILTERS
WITH REGRESSAND NOISE

This section analyzes the results obtained once the datasets
are preprocessed with noise filtering methods adapted to
regression tasks. First, Section VI-A compares the original
approach to create regression noise filters (Section III-A)
to the proposal of this research. Section VI-B focuses
on analyzing the advantages of applying regression noise
filtering against not preprocessing. Section VI-C studies
the synergy of noise filters with each regression method,
whereas Section VI-D evaluates the relationship between
regression-adapted noise filters and the size properties of the
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datasets. Finally, Section VI-E examines the influence of the
noise filtering threshold in the regression performance.

A. COMPARISON OF APPROACHES TO BUILD
REGRESSION FILTERS FROM CLASSIFICATION ONES

The RMSE results and Wilcoxon’s test p-values for all the
regression methods considering the noise filters developed
with the modified approach of this research (denoted as MOD)
and those with the original approach of [22] (denoted as
ORI) are shown in the Table 7. The ENN and CNN filters
are considered in this comparison since they are the methods
originally adapted in [22]. From the analysis of results in
Table 7, the following remarks can be made:

1) COMPARISON OF APPROACHES TO CREATE
REGRESSION NOISE FILTERS

For all the regression methods using both ENN and CNN, MOD
is the best in all the noise levels. Its greatest advantages with
respect to ORI are generally in the medium-high noise levels
(20-30%). From these results, it is important to highlight
the good behavior of NN. This fact is particularly interest-
ing, since NN is the most noise sensitive regression method
employed and it is able to better detect the efficacy of noise
filtering [11].

MOD is able to better maintain the initial performance of all
the regression methods along the different noise levels. For
example, the performance of NN using ENN is deteriorated
a 51.91% from 5% to 30% with MOD, whereas this perfor-
mance is reduced a 126.29% with ORI. A similar situation
occurs considering CNN. Thus, SVM s affected a 13.24% with
MOD, whereas the usage of ORI implies a deterioration of
69.90%. Another interesting case is that of XGBoost, which
is affected a 6.37% between the extreme levels with MOD and
a 55.33% with ORI.

2) STATISTICAL SIGNIFICANCE OF THE

CONCLUSIONS REACHED

The p-values pw; obtained confirm the above results. For
ENN, Wilcoxon’s test shows statistical differences in favor
of MOD in all the noise levels, except in 5% for RPART and
5-10% for ELM, in which no statistical differences are found
among the methods. For CNN, Wilcoxon’s test confirms MOD
as the best approach in all the noise levels and regression
methods. These results show that implementation of the simi-
lar function used in MOD to consider a sample as noisy (Equa-
tion 2) offers several advantages over the original function
used in ORI (Equation 1). First, as discussed in Section III.B,
the similarity function in MOD is more interpretable and easier
to employ for the user. On the other hand, as seen in the results
in Table 7, it also offers better prediction precision results.
This fact indicates that the margin around the regressand
value of a sample to be considered safe (that is, the sam-
ple does not contain regressand noise) must be established
according to the size of the domain, as it is done in MOD. This
implies a more stable (the same for all samples) and precise
way of determining regressand noise in the samples than if a
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TABLE 7. Comparison of the approach of [22] to create regression noise filters (ORI) with that incorporating some modifications to improve its
interpretability (MoD) applying the ENN and cNN noise filters (the best results are remarked in bold).

Metric RMSE

Noise 5% ) 15% 20% 25% 30%

Approach

RPART

5% 15% 20% 25% 30%
ENN

7.79E-01

4.00E-02

NN gjgggg gj?ggg gj}g?g gj}gg géggg g;ggg LOSE-04 191E-06 191E-06 1.91E-06 1.91E-06 1.91E-06
svM T L | 191E06  134E-05 7.08E-04 322E-04 395E-04 L6SE-04
ELM oL s A ok olas DI 1 G4E01 104E01 LOTE02  3SIE-06  T.O8E-04  3SIE-06
XGBoost gjggié gjggfg 3?833? gj‘mg gf?g(z)g gj‘l’ggg 422E-03 9.54E-06 3.62E-05 572E-06 572E-06 3.81E-06

Approach

T o DM | 483E-04  19IE-06 13E-05 3SIE-06 191E-06  134E-04
Oy a6 022 0201 D200 | 191E06  3SIE06 134E-04 L9IE-06 3SIE-06  2.67E-05
gjgggg gf?gg gj?gzg gj‘]’gzg 3??2?2 3??223 586E-04 191E-06 191E-06 191E-06 191E-06 8.20E-05
ELM T AT T iy LS DD 381E06  3SIE06  191E-06  L9IE-06  191E-06  L9IE-06
XGBoost T N | S86E-04 191E-06 191E-06 19IE-06 19IE-06 19IE-05

margin depending on the output values in the neighborhood
of each sample is considered, as it is performed in ORT.

Due to the good results obtained by MOD in these compar-
isons, the next sections focus on analyzing the characteristics
and performance of the regression filters created using it.

B. ADVANTAGES OF NOISE FILTERING AGAINST NOT
PREPROCESSING IN REGRESSION PROBLEMS

Table 8 shows the RMSE results of RPART, NN and SVM in
datasets with different regressand noise levels without prepro-
cessing (None) and once they are preprocessed with the 14
noise filters of Table 1, which are adapted for regression
problems following the procedure described in Sections I1I-B
and III-C. In addition, the p-values (pwj;;) corresponding to
Wilcoxon’s test after comparing each noise filter against
None are shown for each noise level. The results of ELM and
XGBoost can be found in the webpage associated with this
research and provide similar conclusions to those presented
here. The analysis of this table of results leads to the following
observations:

1) SUITABILITY OF USING NOISE FILTERS WITH NOISY
REGRESSION DATA

All the regression methods improve their performance using
noise filters against not preprocessing at all the noise levels
-with the exceptions of RPART and NN with the CNN and RNN
similarity-based filters at the lowest noise level. These results
show the high potential of all the filtering methods adapted to
regression data to overcome the problems produced by errors
in the output variable.

2) CAPABILITY TO MAINTAIN THE PERFORMANCE
REGARDLESS THE NOISE LEVEL

One of the most important observations from the results
in Table 8 is that noise filters are able to better maintain
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the initial performance of the methods as the noise level
increases. For RPART, most of the filters are able to closely
maintain the performance of the lowest noise level until
reaching the highest noise level. For NN, even though it is con-
sidered one of the algorithms most sensitive to noise, some
noise filters are also able to maintain the model performance
regardless of the injected noise level. For example, IPF and
AENN obtain close RMSE values (around 0.09 and 0.1 for 5%
and 30% of noise, respectively). Finally, SVM is the method
showing the most stable prediction accuracy for all the filters
at all the noise levels. These results show the capacity to
detect noisy samples of the proposed approach, since noise
filters are able to maintain the performance at the different
noise levels.

3) ON THE GOOD PERFORMANCE OF svM WITH
REGRESSION FILTERS

Using SVM, CNDC obtains the lowest RMSE (0.0716) at 5%
of noise, whereas EF presents the best performance at the
highest noise level with an RMSE of 0.0758. The maximum
RMSE value is 0.0958 for CNN at 30% of noise. These low
and close RMSE values suggest the great performance of all
the adapted regression noise filters with SVM. Thus, SVM is
the method, among those tested in this experimentation, most
robust against noise and that benefiting the most from the
usage of regression noise filters.

4) STATISTICAL SIGNIFICANCE OF THE

CONCLUSIONS REACHED

For RPART, all the noise filters are statistically better than
None (except CNN at 5% and RNN for 5-10% of noise).
For NN, noise filters show significant differences in most
of the cases as the low p-values pyy reflect. There are few
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TABLE 8. RMSE results for RPART, NN and svM applying regression noise filters and without preprocessing (the best results are remarked

in bold).

Metric
Noise

RMSE

5% 10% 15% 20% 25%

30%

0.1251 0.1573 0.1785 0.1989 0.2145 0.2269
0.0888 0.0912 0.0914 0.0921 0.0959 0.0942
0.0859 0.0900 0.0944 0.1006 0.1072 0.1151
0.0860 0.0907 0.0985 0.1048 0.1117 0.1202
0.1273 0.1384 0.1520 0.1595 0.1695 0.1769
0.0856 0.0868 0.0877 0.0892 0.0910 0.0944
0.0885 0.0967 0.1064 0.1162 0.1251 0.1356
0.1276 0.1516 0.1636 0.1708 0.1780 0.1812
0.0864 0.0867 0.0882 0.0888 0.0908 0.0954
0.0852 0.0851 0.0853 0.0865 0.0865 0.0884
0.0849 0.0857 0.0860 0.0887 0.0925 0.0945
0.0849 0.0850 0.0862 0.0860 0.0869 0.0881
0.0888 0.0979 0.1068 0.1171 0.1306 0.1428
0.0900 0.0909 0.0898 0.0913 0.0910 0.0927
0.0879 0.0881 0.0889 0.0892 0.0906 0.0922

0.1567 0.2043 0.2404 0.2697 0.2889 0.3046
0.0896 0.0933 0.0947 0.0975 0.1045 0.1046
0.1031 0.1222 0.1409 0.1544 0.1767 0.1893
0.1200 0.1468 0.1722 0.1905 0.2048 0.2175
0.1591 0.1950 0.2260 0.2472 0.2591 0.2705
0.0888 0.0950 0.1037 0.1122 0.1245 0.1349
0.1288 0.1597 0.1851 0.2097 0.2265 0.2402
0.1636 0.2038 0.2343 0.2553 0.2669 0.2720
0.0884 0.0921 0.0972 0.1019 0.1100 0.1180
0.0856 0.0889 0.0928 0.0975 0.1017 0.1095
0.0876 0.0969 0.1046 0.1156 0.1279 0.1379
0.0869 0.0902 0.0936 0.0979 0.1039 0.1093
0.1291 0.1604 0.1881 0.2110 0.2270 0.2411
0.0913 0.0949 0.0964 0.0992 0.1026 0.1063
0.0885 0.0919 0.0943 0.0977 0.1015 0.1055

0.1180 0.1528 0.1762 0.1977 0.2163 0.2298
0.0774 0.0783 0.0790 0.0802 0.0841 0.0827
0.0780 0.0777 0.0778 0.0789 0.0788 0.0806
0.0716 0.0722 0.0728 0.0744 0.0750 0.0770
0.0846 0.0836 0.0879 0.0872 0.0898 0.0958
0.0739 0.0748 0.0755 0.0771 0.0777 0.0795
0.0719 0.0728 0.0741 0.0762 0.0776 0.0805
0.0831 0.0869 0.0911 0.0909 0.0939 0.0953
0.0739 0.0746 0.0750 0.0762 0.0768 0.0801
0.0724 0.0733 0.0736 0.0749 0.0749 0.0766
0.0722 0.0728 0.0728 0.0741 0.0743 0.0758
0.0732 0.0743 0.0748 0.0762 0.0759 0.0775
0.0729 0.0744 0.0754 0.0780 0.0818 0.0873
0.0772 0.0780 0.0781 0.0786 0.0792 0.0797
0.0749 0.0756 0.0761 0.0776 0.0777 0.0809

5%

3.81E-06
1.91E-06
1.91E-06
6.41E-01
3.81E-06
1.91E-06
1.00E+00
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
2.67E-05
5.72E-06

3.81E-06
3.81E-06
1.91E-06
1.00E+00
1.91E-06
1.91E-06
1.00E+00
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06

1.91E-05
1.91E-06
1.91E-06
1.34E-04
1.91E-06
1.91E-06
3.62E-05
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
3.81E-06
1.91E-06

10%

3.81E-06
1.91E-06
1.91E-06
7.08E-04
1.91E-06
1.91E-06
1.89E-01
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06

1.91E-06
1.91E-06
1.91E-06
2.96E-02
1.91E-06
1.91E-06
8.67E-01
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06

1.91E-06
1.91E-06
1.91E-06
3.81E-06
1.91E-06
1.91E-06
3.81E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06

Pwil

15%

1.91E-06
1.91E-06
1.91E-06
7.08E-04
1.91E-06
1.91E-06
1.36E-02
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06

1.91E-06
1.91E-06
1.91E-06
1.05E-04
1.91E-06
1.91E-06
1.98E-01
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06

1.91E-06
1.91E-06
1.91E-06
5.72E-06
1.91E-06
1.91E-06
5.72E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06

20%

1.91E-06
1.91E-06
1.91E-06
3.81E-06
1.91E-06
1.91E-06
1.34E-04
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06

1.91E-06
1.91E-06
1.91E-06
3.81E-06
1.91E-06
1.91E-06
1.21E-02
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06

1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06

25%

3.81E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
3.81E-06
1.91E-06
1.91E-06

1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
5.72E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06

1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06

30%

1.91E-06
1.91E-06
1.91E-06
9.54E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
3.81E-06
1.91E-06
1.91E-06

1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06

1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06
1.91E-06

exceptions, such as CNN and RNN, in which significant dif-
ferences are not observed up to 5% and 15% of noise, respec-
tively. For SVM, Wilcoxon’s test shows significant differences
in favor of the noise filters with very low p-values in all the
comparisons performed. These results allow concluding that
the elimination of samples with regressand noise, in a similar
way as occurs in the classification when eliminating samples
with class noise, is beneficial for the creation of models in
terms of their performance.
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C. SYNERGIES OF REGRESSION METHODS
AND NOISE FILTERS UNDER
REGRESSAND NOISE

The left side of Table 9 shows the results of the Aligned
Friedman test (ranks) and the p-values of the Finner test (pgi,)
in the form of ranks/pr,, considering the 14 noise filters
for RPART, NN and SVM at all the noise levels. The right
side of Table 9 shows the number of datasets in which each
noise filter achieves the best result. The results of ELM and
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TABLE 9. Comparison of noise filters with each regression method: results of Aligned Friedman (Ranks), Finner (pg;,) and number of datasets in which

each method obtains the best results (the best results are remarked in bold).

Metric

Noise 15% 20%

25% 5%

Best (out of 20)

10% 15% 20% 25% 30%

RPART

132/3.43E-01
113/6.39E-01
118/5.96E-01
258/5.45E-09
110/7.07E-01
147/2.18E-01
257/5.45E-09
116/6.04E-01
102/8.90E-01
101/9.04E-01
98
144/2.18E-01
140/2.37E-01
131/3.43E-01

122/2.73E-01
120/2.86E-01
139/9.65E-02
256/2.07E-10
99/6.72E-01
178/1.12E-03
260/1.27E-10
100/6.72E-01
86
90/8.94E-01
86/9.93E-01
189/2.27E-04
131/1.56E-01
111/4.33E-01

110/3.46E-01
130/8.30E-02
166/1.45E-03
255/2.62E-11
93/6.04E-01
200/5.67E-06
260/1.60E-11
95/6.04E-01
78
82/8.63E-01
83/8.63E-01
205/2.62E-06
107/3.79E-01
102/4.43E-01

107/3.89E-01
143/1.94E-02
174/3.65E-04
253/3.63E-11
88/7.13E-01
208/9.99E-07
256/2.46E-11
89/7.10E-01
79/9.25E-01
87/7.13E-01
76
212/4.50E-07
102/4.52E-01
95/5.98E-01

99/5.21E-01
154/3.81E-03
176/1.81E-04
249/5.00E-11
88/6.38E-01
210/3.43E-07
253/3.56E-11
90/6.38E-01
74
92/6.38E-01
75/9.60E-01
223/2.88E-08
91/6.38E-01
93/6.38E-01

95/5.55E-01
163/6.52E-04
180/4.90E-05
248/4.01E-11
90/5.55E-01
212/1.20E-07
249/4.01E-11
95/5.55E-01
72/9.64E-01
92/5.55E-01
71
223/1.26E-08
89/5.55E-01
88/5.55E-01

0.00E+00

88/6.94E-01
153/3.72E-03
193/6.35E-06
249/4.23E-11
89/6.94E-01
216/6.43E-08
251/4.23E-11
89/6.94E-01
72
84/6.94E-01
80/7.61E-01
219/4.61E-08
98/5.09E-01
87/6.94E-01

0.00E+00

78/7.50E-01
165/3.73E-04
197/1.34E-06
249/1.15E-11
92/5.32E-01
218/1.80E-08
254/5.57E-12
84/6.54E-01
69
100/3.83E-01
73/8.66E-01
219/1.80E-08
89/5.52E-01
81/7.06E-01

0.00E+00

75/8.64E-01
173/1.07E-04
199/9.97E-07
250/1.18E-11
101/3.36E-01
215/4.37E-08
256/4.02E-12
82/7.34E-01
69
102/3.36E-01
73/8.93E-01
218/2.36E-08
80/7.52E-01
75/8.64E-01

0.00E+00

72/9.44E-01
175/8.10E-05
196/1.96E-06
249/1.51E-11
107/2.13E-01
217/2.20E-08
254/6.90E-12
80/7.99E-01
69
114/1.41E-01
70/9.59E-01
220/1.65E-08
74/9.08E-01
71/9.49E-01

0.00E+00

70/8.79E-01
176/2.43E-05
198/3.88E-07
245/8.77E-12
114/7.93E-02
220/2.96E-09
251/3.14E-12
82/6.09E-01
63
123/3.51E-02
68/8.85E-01
221/2.66E-09
70/8.79E-01
67/8.87E-01

0.00E+00

62
179/1.06E-05
201/1.45E-07
245/6.34E-12
117/4.92E-02
222/1.29E-09
247/6.34E-12

83/5.32E-01
66/9.04E-01
127/1.96E-02
67/8.99E-01
223/1.29E-09
66/9.04E-01
63/9.56E-01

N— OO0 I~ OO —~O OO ®

— WO OO0 O OO N\

pOoOOCO—~Obh—oCcOCOOCOs

A~ O—OCbhooocooOoOD

NO O~ O ROODODODDODOO®

0.00E+00

162/7.44E-03
194/8.75E-05
85
225/5.68E-07
130/1.29E-01
88/8.99-01
217/1.62E-06
132/1.20E-01
100/6.31E-01
97/6.60E-01
114/3.40E-01
115/3.40E-01
164/6.9SE-03
143/4.91E-02

0.00E+00

169/2.71E-03
186/1.98E-04
82
222/2.82E-07
127/1.21E-01
96/6.43E-01
239/9.53E-09
126/1.21E-01
91/7.55E-01
89/7.78E-01
116/2.22E-01
130/1.11E-01
162/4.27E-03
133/9.46E-02

0.00E+00

155/1.01E-02
180/3.38E-04
90/7.18E-01
229/3.19E-08
125/1.15E-01
111/2.43E-01
244/1.81E-09
122/1.33E-01
89/7.18E-01
79
115/2.04E-01
143/2.64E-02
151/1.28E-02
132/6.94E-02

0.00E+00

163/1.96E-03
170/9.47E-04
90/6.15E-01
229/1.51E-08
131/5.63E-02
122/1.01E-01
245/4.53E-10
116/1.43E-01
82/8.19E-01
76
109/2.25E-01
161/2.36E-03
144/1.72E-02
131/5.63E-02

0.00E+00

156/2.56E-03
158/2.27E-03
97/3.67E-01
236/8.13E-10
129/3.90E-02
134/2.70E-02
248/6.50E-11
114/1.28E-01
76/8.50E-01
71
95/3.74E-01
185/4.07E-05
142/1.21E-02
125/5.28E-02

0.00E+00

143/1.52E-02
151/7.76E-03
103/2.78E-01
239/5.63E-10
125/6.56E-02
143/1.52E-02
245/2.54E-10
119/9.39E-02
81/7.49E-01
73
97/3.78E-01
195/7.82E-06
130/4.93E-02
125/6.56E-02

O— O = hANO—~=N—=~=WuINO

O~ OOANN— O, O ~O

— OO~ O~ OO WnNO—

lwvoocor—~coocococols

WO = WWNNO—~OOoO W —O

N— O = UnONOOOO U

—WO == =000 O k=W

1.09E-14

5.55E-16

5.55E-16

6.66E-16

0.00E+00

0.00E+00

XGBoost are available on the website associated with this
research.

A first view of Table 9 reveals that regression methods
change their behavior with respect to the noise filter used
since the ranks of the Friedman Aligned test and the p-values
of Finner vary from one regression method to another. This
fact suggests that there are different synergies between the
type of regression method and noise filter employed. In the
analysis below, note that the Aligned Friedman test always
provides very low p-values showing significant differences
among the noise filters and thus, the Finner post-hoc pro-
cedure can be safely applied in all the cases. Analyz-
ing the results of Table 9, the following points must be
remarked:
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1) SYNERGIES BETWEEN RPART AND REGRESSION NOISE
FILTERS
o Principal noise filters. The results obtained recommend

the usage of the FMF and DF ensemble-filters with
RPART, since both filters alternate good results at differ-
ent noise levels. The best ranks are obtained by FMF at
5%, 20% and 30% of noise and by DF for the rest of noise
levels. The Finner test reveals that FMF is statistically
better than RNN and CNN at 5% of noise. DF presents
significant differences with RNN, CNN, GE and HRRF at
10% of noise, whereas CNDC is included at 15%. Finally,
FMF and DF present statistical differences with BBNR,
CNDC, CNN, GE, RNN and HRRF for the rest of noise
levels.
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o Inferior noise filters. The less recommendable noise
filters for RPART are CNN and RNN (both similarity-
based). They obtain the worst ranks in all the noise
levels. In fact, RNN presents the highest ranks in all the
noise levels except at 5%, in which CNN is the worst
method.

2) SYNERGIES BETWEEN NN AND REGRESSION NOISE
FILTERS

e Principal noise filters. In this case, DF is the most rec-
ommended to use with NN when the noise level is low-
medium, whereas AENN is recommendable when the
noise level is high. DF obtains the lowest ranks in all the
noise levels except at 30%, in which the best method is
AENN. The Finner test shows that DF presents statistical
differences against six other filters (BBNR, CNDC, CNN,
GE, RNN and HRRF) at noise levels 5-20%. On the other
hand, AENN shows significant differences against all the
aforementioned filters plus ENN at 30% of noise.

o Inferior noise filters. In the case of NN, the amount
of noise filters to avoid is larger than that in the case
of RPART, being less advisable to use similarity-based
filters. A large amount of noise filters are statistically
worse than the best filters. This is the case of BBNR,
CNDC, CNN, GE, RNN and HRRF.

3) SYNERGIES BETWEEN svM AND REGRESSION NOISE
FILTERS

e Principal noise filters. According to the Aligned Fried-
man test, CNDC is one of the best methods with low
amounts of noise, whereas EF is the general recommen-
dation when working with noisy regression data. The
Finner test shows that both methods obtain statistical
differences against a remarkable number of filters.

o Inferior noise filters. There are some noise filters that,
although providing good results, are not as the same
level as the best noise filters for SVM. This is the case of
the AENN, BBNR, CNN and RNN similarity-filters, which
are less recommended for use with SVM.

As can be seen from the previous analysis, most of the
filters that obtain better synergies with each of the regression
methods are based on ensembles, with the exception of AENN
with NN when the noise level is high. This fact shows that
the combination of regression models can improve noise
detection in regression datasets in a similar way as classi-
fier ensembles improve class noise detection in classification
problems. On the other hand, similarity filters, although they
tend to have a lower computational cost, they also tend to
have less synergy with regression algorithms due to their less
elaborate mechanisms for detecting noise.

Regarding the best filters in individual datasets, those with
lower ranks for RPART are not always the best in the largest
number of datasets. This fact may be due to the variabil-
ity in the nature of the datasets, which suggests that some
filters process certain datasets better than others but they
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obtain similar results in average performance (as Table 8
shows). This observation is confirmed by the Finner test,
which does not show statistical differences between these
filters. Therefore, if noise filters are used with RPART in a
large number of datasets, the most recommended ones are
FMF and DF. However, if only a few datasets are considered,
it is recommendable to test all the available noise filters and
choose that offering the best results. The results of NN are
similar to those obtained by RPART, where the filter with
the lowest ranks does not always obtain the best performance
in the largest number of datasets. In this case, AENN is the
best one in 8-10 datasets for all the noise levels. Finally, for
SVM, CNDC and EF are the filters with the best performance
in the largest number of datasets in almost all the noise levels.
Difference from the cases of RPART and NN, the best filters
using SVM are also the best ones in the largest number of
datasets.

D. RELATIONSHIP BETWEEN THE PROPERTIES OF
DATASETS AND REGRESSION NOISE FILTERS

This research considers two main properties of the datasets
with respect to their size: the number of samples and attributes
(see Table 2). These characteristics allow delving into the
relationship between the size of the datasets and the behav-
ior of the regression noise filters implemented. This section
focuses on such analysis, considering two different studies:
one on the number of samples in each dataset and another on
the number of attributes.

In each study, the results of the regression algorithms
(RPART, NN, SVM, ELM and XGBoost) with each one of the
regression filters are analyzed. In order to check the effective-
ness of the regression noise filters according to the number of
samples, the datasets are divided into two equal-sized groups:
small size datasets (which contain less than 4100 samples)
and large size datasets (which contain more than 4100 sam-
ples). On the other hand, to study the behavior of the regres-
sion noise filters with respect to the number of attributes,
the datasets are also divided into two groups of equal size:
low dimensionality datasets (which contain less than 12
attributes) and high dimensionality datasets (which contain
more than 12 attributes). Table 10 shows the results obtained
by each filter in each of the aforementioned groups of
datasets, which are compared using the Aligned Friedman
and Finner tests in the form of ranks/pri,, in a similar way
to Table 9.

The results obtained show that the DF noise filter is usually
that, among those adapted to regression in this research,
providing the best results (although it is sometimes surpassed
by FMF). This fact occurs regardless of the properties of
the datasets considered (number of samples and attributes).
However, it should be noted that, in general, DF does not
obtain statistical differences with respect to the AENN and
ENN similarity filters, nor with most of ensemble filters
(with the exception of HRRF). This indicates that any of
them could be recommended as they obtain results that are
competitive with each other. Thus, these findings suggest
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FIGURE 1. RMSE results of RPART using the noise

that most of ensemble-based filters are usually better adapted
to any type of data, with independence of the number of
samples and attributes: employing complementary models
can improve the flexibility of the system, exploiting the
strengths of each method and, finally, improving noise detec-
tion. On the contrary, these methods tend to have a higher
computational cost and a greater number of parameters to
configure.

It is important to note that these results (which are focused
on the performance of noise filters with respect to the
size of the datasets) are more stable than those shown in
Section VI-C (in which the best regression noise filter usually
depends on the regression algorithm used and the noise level
in the data). Thus, the analysis of results in Table 10 shows
that the size of the dataset (number of samples and attributes)
does not appear to influence the effectiveness of regression
noise filters, that is, noise filters maintain their better or worse
results regardless of whether they deal with larger or smaller
datasets.
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filters ENN (a) and EF (b) with different thresholds z.

E. INFLUENCE OF THE NOISE FILTERING THRESHOLD IN
THE REGRESSION PERFORMANCE

The results of RPART with the ENN and EF noise filters
using different thresholds t (from 0.1 to 0.9, by increments
of 0.1) are show in Figure 1. ENN and EF are considered
in this section because they are the most representative
noise filters within their corresponding groups (similarity
and ensemble filters, respectively). Additionally, Table 11
shows the results of the Aligned Friedman test (ranks and
p-values par) and the Finner test (p-values prj,) in the form
ranks/pri, after comparing different thresholds with the noise
filters.

1) RELATIONSHIP BETWEEN THE FILTERING THRESHOLD
AND THE NOISE LEVEL

The results in Figure la show that the performance of ENN
for each noise level changes with the different threshold
values. As the noise level increases, the lower threshold val-
ues achieve the best results. This fact is due to more noisy
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TABLE 10. Results of Aligned Friedman (Ranks) and Finner (pg;,) tests on the relationship between the properties of the datasets (number of samples
and attributes) and the behavior of the noise filters (the best results are remarked in bold).

samples are need to be removed, implying that lower values
of t usually achieve better performance results with a more

VOLUME 9, 2021

Noise 5%

Filter
302/8.80E-02
351/3.09E-03
363/1.39E-03
638/0.00E+00
270/3.30E-01
445/1.19E-07
622/0.00E+00
229/8.84E-01
222
226/9.34E-01
235/8.17E-01
457/3.11E-08
300/8.80E-02
247/6.38E-01

Noise filters & number of samples

10%

286/6.68E-02
390/6.61E-06
393/5.58E-06
624/0.00E+00
246/3.57E-01
488/4.35E-12
638/0.00E+00
211/8.03E-01
201
225/6.48E-01
213/7.98E-01
508/1.29E-13
267/1.60E-01
216/7.81E-01

15%

20%

Small size datasets

253/2.87E-01
420/1.09E-07
425/6.72E-08
621/0.00E+00
259/2.46E-01
496/8.04E-13
635/0.00E+00
213/7.80E-01
200
216/7.48E-01
219/7.35E-01
515/2.89E-14
228/6.13E-01
207/8.63E-01

245/3.72E-01
423/6.03E-08
427/4.30E-08
616/0.00E+00
257/2.54E-01
520/5.77E-15
630/0.00E+00
209/8.49E-01
199/9.90E-01
230/5.55E-01
198
531/9.99E-16
219/7.07E-01
204/9.09E-01

25%

251/1.44E-01
439/6.26E-10
419/1.05E-08
604/0.00E+00
267/6.87E-02
517/6.66E-16
614/0.00E+00
215/5.13E-01
183
248/1.51E-01
195/7.63E-01
553/0.00E+00
206/6.34E-01
197/7.50E-01

30%

230/3.06E-01
460/1.31E-11
426/2.86E-09
609/0.00E+00
272/4.55E-02
523/0.00E+00
608/0.00E+00
217/4.60E-01
181
246/1.67E-01
194/7.81E-01
559/0.00E+00
195/7.81E-01
186/9.12E-01

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Large size datasets

274/2.82E-01
331/1.84E-02
383/2.43E-04
602/0.00E+00
240/7.56E-01
411/1.31E-05
610/0.00E+00
306/6.23E-02
225
236/8.12E-01
234/8.12E-01
420/5.76E-06
314/4.33E-02
322/2.86E-02

260/3.27E-01
347/2.51E-03
412/2.78E-06
596/0.00E+00
236/6.69E-01
447/3.11E-08
613/0.00E+00
280/1.52E-01
215
224/8.52E-01
222/8.59E-01
467/2.02E-09
290/1.05E-01
297/1.77E-02

253/3.64E-01
336/3.33E-03
450/5.30E-09
598/0.00E+00
228/6.84E-01
494/5.34E-12
614/0.00E+00
252/3.64E-01
208
216/8.64E-01
222/7.65E-01
496/4.78E-12
267/2.25E-01
274/1.87E-01

239/3.96E-01
359/1.71E-04
468/7.95E-11
595/0.00+00
225/5.87E-01
510/5.05E-14
604/0.00E+00
247/3.28E-01
199
223/5.91E-01
206/8.67E-01
521/6.77E-15
255/2.67E-01
257/2.67E-01

227/4.56E01
377/9.79E-06
481/2.15E-12
596/0.00E+00
219/5.14E-01
525/6.66E-16
609/0.00E+00
240/3.47E-01
191

221/5.12E-01
196/9.10E-01
534/0.00E+00
238/3.47E-01
254/2.12E-01

219/5.44E-01
390/1.67E-06
485/8.37E-13
594/0.00E+00
218/5.44E-01
526/0.00E+00
604/0.00E+00
246/2.56E-01
190

225/4.72E-01
192/9.63E-01
538/0.00E+00
228/4.66E-01
251/2.32E-01

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

299/1.33E-01
332/2.26E-02
372/1.03E-03
626/0.00E+00
269/3.90E-01
425/4.18E-06
608/0.00E+00
249/6.81E-01
229
235/8.79E-01
243/7.62E-01
431/2.61E-06
308/9.33E-02
282/2.59E-01

Noise filters & number of attributes
Low dimensionality datasets

283/1.35E-01
379/7.59E-05
400/8.30E-06
614/0.00E+00
247/4.57TE-01
457/4.15E-09
625/0.00+00
239/5.46E-01
211
221/8.28E-01
220/8.28E-01
479/1.45E-10
282/1.35E-01
250/4.52E-01

246/4.92E-01
386/2.22E-05
437/3.99E-08
612/0.00E+00
253/4.28E-01
477/9.05E-11
623/0.00E+00
237/5.28E-01
208
218/7.99E-01
230/6.14E-01
497/4.06E-12
242/5.28E-01
240/5.28E-01

250/4.11E-01
382/2.08E-05
448/3.79E-09
609/0.00E+00
241/4.99E-01
502/4.70E-13
617/0.00E+00
235/5.21E-01
206/9.50E-01
219/7.21E-01
203
518/3.28E-14
235/5.21E-01
240/4.99E-01

259/1.56E-01
409/1.37E-07
442/1.28E-09
591/0.00E+00
244/2.77E-01
505/2.39E-14
600/0.00E+00
235/3.70E-01
190
227/4.16E-01
205/7.09E-01
549/0.00E+00
218/5.28E-01
232/3.70E-01

244/2.48E-01
435/1.34E-09
445/3.28E-10
601/0.00E+00
241/2.49E-01
508/4.33E-15
598/0.00E+00
228/3.52E-01
185
230/3.52E-01
204/6.27E-01
554/0.00E+00
215/4.77E-01
218/4.67E-01

0.00E+00

290/1.25E-01
353/1.92E-03
374/3.10E-04
617/0.00E+00
245/5.74E-01
433/3.80E-07
623/0.00E+00
272/2.33E-01
218
224/8.83E-01
228/8.41E-01
447/7.13E-08
306/5.65E-02
277/2.10E-01

0.00E+00

271/1.74E-01
366/1.57E-04
406/1.96E-06
610/0.00E+00
235/5.27E-01
478/5.01E-11
628/0.00E+00
241/4.66E-01
206
225/6.63E-01
216/8.08E-01
501/1.33E-12
273/1.74E-01
251/3.53E-01

0.00E+00

258/2.63E-01
387/8.84E-06
438/1.04E-08
609/0.00E+00
233/5.48E-01
512/4.41E-14
625/0.00E+00
220/6.85E-01
200
214/7.58E-01
210/8.00E-01
522/8.66E-15
248/3.62E-01
231/5.48E-01

0.00E+00

239/4.36E-01
406/3.42E-07
446/1.26E-09
603/0.00E+00
238/4.36E-01
527/6.66E-16
620/0.00E+00
215/6.38E-01
194
231/4.44E-01
202/8.54E-01
536/0.00E+00
234/4.39E-01
217/6.31E-01

0.00E+00

225/4.49E-01
421/1.36E-08
454/8.23E-11
605/0.00E+00
241/2.94E-01
533/0.00E+00
621/0.00E+00
214/5.53E-01
186

241/2.94E-01
189/9.35E-01
543/0.00E+00
223/4.49E-01
211/5.66E-01

0.00E+00

212/6.07E-01
430/3.39E-09
461/2.43E-11
602/0.00E+00
251/1.85E-01
535/0.00E+00
614/0.00E+00
225/4.41E-01
187/9.72E-01
244/2.36E-01
186

546/0.00E+00
206/6.47E-01
208/6.47E-01

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

aggressive filtering. EF (Figure 1b) presents similar results
regarding the efficiency of the threshold when varying the
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TABLE 11. Results of the Aligned Friedman (Ranks and p,r) and Finner tests (pg;,) after comparing the noise filters Exx and £F with different thresholds

(the best results are remarked in bold).

Metric

Noise
T

5%

10%

Ranks/pr;,

15%

ENN

20%

25%

30%

94/1.62E-01 66/4.28E-01  66/4.46E-01  56/6.36E-01  47/8.92E-01 43
76/6.32E-01 58/6.82E-01  52/9.55E-01 46 44 44/9.59E-01
71/7.13E-01 50 51 47/9.60E-01  47/8.92E-01 47/8.35E-01
75/6.32E-01 57/6.88E-01 53/9.47E-01 57/6.36E-01  55/6.05E-01  54/6.03E-01

65 76/1.89E-01  70/3.84E-01 71/2.06E-01 80/4.57E-02 77/6.69E-01
89/2.36E-01 108/9.35E-04 105/2.15E-03 112/1.52E-04 114/4.50E-05 119/0.00E+00
100/9.52E-02 124/2.40E-05 130/5.00E-06 134/0.00E+00 135/0.00E+00 135/0.00E+00
120/3.56E-03 134/1.00E-06 141/0.00E+00 144/0.00E+00 144/0.00E+00 146/0.00E+00
125/2.55E-03 141/0.00E+00 147/0.00E+00 148/0.00E+00 149/0.00E+00 149/0.00E+00

1.64E-03 6.40E-11 8.10E-11 6.10E-11 6.70E-11 5.90E-11
T EF

69 53/8.09E-01  45/7.96E-01  40/9.52E-01 35 33
69/9.91E-01 48 40 39 35/9.81E-01  37/8.08E-01
69/9.95E-01 50/9.36E-01 43/8.39E-01 43/8.52E-01 41/7.75E-01  41/6.82E-01
74/8.92E-01 65/4.01E-01 55/4.72E-01 58/3.12E-01  58/2.00E-01  57/1.89E-01
69/9.92E-01 75/1.70E-01 81/2.06E-02 78/2.77E-02 86/3.19E-03 88/1.34E-03
92/3.03E-01 104/1.35E-03 118/4.00E-06 119/2.00E-06 124/0.00E+00 126/0.00E+00

115/1.23E-02

133/1.00E-06 137/0.00E+00 140/0.00E+00 140/0.00E+00 140/0.00E+00

127/1.51E-03 141/0.00E+00 146/0.00E+00 147/0.00E+00 148/0.00E+00 146/0.00E+00
130/1.47E-03 145/0.00E+00 149/0.00E+00 149/0.00E+00 148/0.00E+00 146/0.00E+00

6.71E-06 6.80E-11

8.70E-11

6.50E-11 9.40E-11 8.00E-11

noise level, that is, lower threshold values obtain better results
when the noise level increases.

2) VARIABILITY OF RESULTS DEPENDING ON THE

FILTERING THRESHOLD

The best threshold for ENN at 5% of noise is 0.5. However,
the performance does not show large variations among the
different threshold values at 5% of noise, with only a 3.55% of
deterioration. For 30% of noise, the performance between the
best threshold (0.1) and the worst threshold (0.9) represents
a 43.45% of loss of performance. For EF the best threshold
is 0.2 up to 15% of noise and 0.1 in the highest noise levels.
The performance variation at each noise level with respect
to the threshold presents a similar behavior in both filters.
The performance variation of EF at 5% is 3.53%, whereas at
30% of noise the performance is variated a 48.18%. This fact
indicates that the threshold works in a similar way regardless
of the filter. The influence of the threshold is not so high when
working with low noise levels, whereas the filters improve
their performance when increasing the noise level if the right
threshold is chosen.

3) STATISTICAL SIGNIFICANCE OF THE

CONCLUSIONS REACHED

The ranks obtained by the Aligned Friedman test support the
aforementioned conclusions. Table 11 shows that the best
thresholds for ENN change with respect to the noise level.
For 5% of noise level, the Finner test shows significant
differences only with the thresholds 0.8 and 0.9, whereas
it shows significant differences with thresholds higher than
0.5 for the rest of noise levels. EF presents a similar behavior
than that of ENN. These results are complemented with the
Finner test, which shows statistical differences for all the
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thresholds higher than 0.4 in most of the comparisons. These
facts validate the good working of low threshold values for
both filters in the experiments performed.

VII. CONCLUSION AND FUTURE WORK

The results obtained in this research have shown that the
presence of regressand noise in the data negatively affects
the performance of the different types of regression methods.
However, the impact of noise on the models created with each
algorithm is very different. Thus, NN is the most sensitive
method to regressand noise, since the inclusion of a single
noisy sample alters its predictions, whereas RPART provides
more robust results due to its pruning mechanisms. These
conclusions are similar to those obtained in the field of classi-
fication when dealing with class noise, which can be consid-
ered equivalent to regressand noise in regression. The most
notable difference from the well-known robustness results in
classification occurs with SVM. In classification, it is often
considered a noise-sensitive algorithm, as noisy samples eas-
ily alter the decision hyperplane. However, regression-SVM
can be seen as a robust algorithm against regressand noise
since, in this case, its e-insensitive loss function allows deal-
ing with noisy samples to reduce their impact when obtaining
the hyperplane. This fact indicates that, contrary to classifi-
cation, the usage of SVM and other methods based on it can
be interesting with in this scenario.

On the other hand, a new way of adapting the noise filters
used in classification to regression problems has been pro-
posed. This adaptation has shown to improve other previous
classification filtering adaptation proposals. The application
of noise filters adapted to regression has also shown to be use-
ful with respect to not applying any data preprocessing, so the
usage of these techniques, despite not being very widespread,
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should be considered when addressing noisy regression prob-
lems. Depending on the regression algorithm used, it is advis-
able to use some noise filters adapted to regression or others.
Thus, for RPART, the filters from which a better performance
can be expected are DF and FMF, whereas CNN and RNN are
less recommended. For NN it is also recommended to use
DF when the noise level is low-medium and AENN when the
noise level is high. The most recommended filter for SVM is
CNDC with low noise levels, while EF is the recommendation
when working with higher noise levels. In general, a worse
performance can be expected from similarity-based filters
with any of the regression methods considered regardless
of the noise level. An additional study has shown that the
size of the dataset (number of samples and attributes) does
not appear to influence the effectiveness of regression noise
filters, that is, noise filters maintain their better or worse
results regardless of whether they deal with larger or smaller
datasets. The analysis of these results has shown that the
DF filter and others based on ensembles provided the most
robust results and are, therefore, recommended in general
terms when dealing with noisy regression data. Note that
ensemble filters generally provide a better noise detection at
the cost of increasing their overall computational complexity
in most of the cases. Finally, the effect of different values
of the threshold parameter in the noise filters has been also
studied, showing the importance of performing an aggressive
filtering (that is, using lower values in the threshold) when
the noise level increases.

Note that, despite the good performance of the regression
noise filters designed, they require setting the threshold .
In addition, this research has considered regressand noise to
study the behavior of both regression techniques and noise
filters. In future works we aim to find an automatic way to
set the optimal threshold in each dataset. We also plan to
analyze the influence of attribute noise on the performance
of different regression methods, as well as studying different
alternatives to improve the performance of the methods with
this type of data. Finally, since a direct relationship between
the size of the dataset and the performance of the regression-
adapted noise filters has not been observed, it is necessary
to study other properties of the data, in a similar way as it
has been performed in classification using data-complexity
measures [11] or using the known as quality indices [57],
which allow measuring certain properties of the data with
independence of the type of output variable.
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