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ABSTRACT Enhancing the monitoring capabilities of wastewater treatment plant (WWTP) key features
can accomplish accurate prediction to help WWTPs develop a plan, which is of great significance to control
regional water environmental pollution. Chemical oxygen demand (COD) is one of the key features of
wastewater treatment. Traditional monitoring methods are time consuming and have high costs making it
difficult to meet the needs of rapid monitoring in practical applications. To address this issue, a method
for optimizing a long short term memory (LSTM) neural network model based on adaptive hybrid
mutation particle swarm optimization (AHMPSO) and an attention mechanism (AM) is proposed. As the
hyperparameters of the LSTM are difficult to select, AHMPSO is used to optimize the LSTM. A nonlinear
variable inertia weight with random factors is introduced to balance the global search ability and the
local search ability and to improve the convergence speed of the PSO algorithm. In addition, the hybrid
mutation strategy is added in the search process to reduce the risk of particles falling into local optimal
solutions. Finally, an AM is added to the LSTM model to mine local water quality features to improve
the effluent COD prediction accuracy. Compared with other models (LSTM, LSTM-AM, and PSO-LSTM-
AM), the RMSE(the root mean square error) of the optimized model decreased by 7.803%-19.499%, the
MAE(the mean absolute error) of the optimized model decreased by 9.669%-27.551%, the MAPE(the
mean absolute error) of the optimized model decreased by 8.993%-25.996%, and the R2 (the coefficient of
determination) value of the optimized model increased by 3.313%-11.229%. The experimental results show
that the optimized model has better performance and achieves a more accurate prediction of the effluent
COD.

INDEX TERMS Attention mechanism, deep learning, particle swarm optimization, prediction, wastewater
treatment process.

I. INTRODUCTION
With the increasing capacity of wastewater treatment, the
problem of water pollution prevention and control has shifted
from simply improving the quality of the water environment
to an organic combination of water quality improvement,
water resource protection and water ecological protection.
The most effective approach to strengthen the protection
of water resources and prevent further deterioration and
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pollution of water resources is to enhance the monitoring
capacity of wastewater treatment’s key features.

Due to the characteristics of uncertainty, nonlinearity, and
time lag in wastewater treatment, the structure of the mech-
anism is difficult to describe with traditional mathematical
models [1]. In addition, in the wastewater treatment process,
there are many important key features that are not easy to
directly measure, such as effluent COD [2], which especially
hinders the effective monitoring and control of wastewater
treatment quality. Although an accurate concentration can be
obtained through traditional detection methods, such as the
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dichromate and the determination of the permanganate index
methods, it is inevitable that there may be a significant time
delay that ranges from minutes to hours. This delay is too
late for advanced wastewater treatment systems that require
more precise and timely control [3]. Otherwise, traditional
detection methods may cause secondary pollution [4].
Hence, to address the above problems, it is necessary to
design a fast and accurate monitoring method that can
estimate hard-to-measure key features from other existing
key features (instrumental key features). These methods are
of great significance for improving the monitoring ability of
wastewater treatment features.

In the past, scholars used mechanism models, such as
Activated SludgeModel No. 1 (ASM1) and Activated Sludge
Model No. 2 (ASM2), to simply describe the complexity of
wastewater treatment [5]. Then, to objectively evaluate the
performance of the wastewater treatment control strategy,
scholars and related organizations have jointly developed
the activated sludge water treatment benchmark simulation
model (BSM1), which can monitor the key features of
wastewater [6]. While it may provide better experimental
results, users need to know the expertise of the various
systems in advance [7]. In addition, thesemodels are designed
according to specific circumstances. If these models need
to be applied in other circumstances, many modifications
and tests are required, which limits the generalization of
the models [8],[9]. Unlike mechanism models, data-driven
models can be made by da ta and algorithms, which means
that data-driven models do not need to fully understand
the mechanism of the process [10]. Furthermore, WWTPs
monitor, store and accumulate a large amount of data in daily
production, which makes data-driven models more practical
in applications [11].

A neural network is a data-driven model that imitates
the structure of biological neurons [12]. Based on its
powerful fitting ability and adaptability, neural networks
have been gradually introduced into the field of wastewater
treatment for data-driven modeling [13]. Matheri et al.
constructed an ANN model to predict the concentration
of COD and trace metals in WWTPs with the goal of
revealing the relationship between the two parameters. The
results prove that neural networks can be used to build a
simulation model of WWTPs [14]. Bakr et al. established an
ANN model optimized based on the Levenberg-Marquardt
algorithm to simulate the performance of auto-aerated
immobilized biomass (AIB) reactor packed with sponge
media, experiment showed that the R2 (the coefficient of
determination) value of the model was satisfactorily fit in
training, verification and testing and that themodel can reflect
reality [15]. In [16], Facchini et al. developed a decision
model supported by anANNmodel to determine an economic
sludge management strategy and experimentally showed that
the model can identify appropriate sludge treatment options
based on multiple characteristics, thus supporting decision-
making. Bekkari et al. used the ANN model to predict
the effluent COD of the Touggourt WWTP, and the results

indicated that the ANN modeling approach can provide an
effective tool for simulating, controlling and predicting the
performance of WWTPs [17]. Nourani et al. used a variety
of artificial intelligence models (SVM, FFNN, ANFIS, and
MLR) to predict the performance of the Nicosia WWTP,
and the results of those experiments illustrated that the
AI models could satisfactorily predict the Nicosia WWTP
effluent COD [18].

However, the above research ignores the time series
characteristics of wastewater data [19], [20] and lacks
effective treatment of the sequence dependence between
input variables, which limits the model’s ability to treat
time series forecasting tasks. Moreover, with the increase
in neural network layers, gradient vanishment and explosion
conditions will arise [21]. The LSTM neural network was
proposed as a way to address gradient vanishment and
explosion by implementing gating [22]. It is an improved
neural network based on a recurrent neural network (RNN)
that can balance the temporal and nonlinear relationship of
wastewater data [23].

At present, the LSTM neural network has been success-
fully used in speech recognition, natural language processing
and other applications [24]–[27]. Based on the performance
of the LSTM neural network in these fields, many scholars
have tried to introduce the LSTM neural network into the
field of wastewater treatment. Zhiwei et al. built the LSTM
model to simulate the wastewater treatment process [28].
Yaqub et al. used an LSTM neural network to predict the
nutrient removal efficiency of WWTPs [29]. Cheng et al.
designed six kinds of neural networks based on the LSTM
method and gated recurrent units (GRUs) to compare the
prediction effects of WWTP features [30]. Pisa et al.
verified the effectiveness of an LSTM-based internal model
controller (IMC) applied to WWTPs [31]. Although the
LSTM neural network can extract valid features from data,
it lacks the ability to learn locally important features [32].
Recent studies suggest that LSTM neural networks based
on attentional mechanism can be used for time-series task
prediction [33]. He et al. showed that adding a self-attention
mechanism to an LSTM neural network can not only capture
local information but can also solve the long-term dependen-
cies well [34]. Zang et al. compared the LSTM model based
on an attention mechanism with a variety of neural network
models and proved the effectiveness of the LSTM model in
a time series prediction task [35]. The experimental results
showed that adding an attention mechanism to the LSTM
model can improve the practicability and accuracy [36].
Therefore, the introduction of an attention mechanism into an
LSTM neural network can improve the ability of the neural
network to mine locally important features from wastewater
data can effectively improve the prediction accuracy and the
stability of the model.

Although LSTM neural network has many advantages,
it is difficult to select hyperparameters, similar to traditional
neural networks [37]. Some scholars have attempted to use
the particle swarm optimization (PSO) algorithm to optimize
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the LSTM hyperparameters. In [38], the PSO algorithm was
applied to optimize the LSTMhyperparameters, whichmakes
up for the cumbersome and time-consuming shortcoming
of manual selection. Zhang et al. found that the prediction
accuracy of the LSTM neural network optimized by PSOwas
improved [39]. Song et al. showed that the performance of
the LSTM neural network using PSO was better than that of
other methods [40]. However, the standard PSO algorithm
has the problem of slow convergence speed and easily falls
into a local optimum [41]. In response to the above problem,
an adaptive hybrid mutation particle swarm optimization
algorithm (AHMPSO) is proposed in this research.

In view of the above problems, the main contributions of
this research are as follows:

1) To improve the monitoring ability of WWTP features
and to provide a new type of wastewater treatment
indicator monitoring tool; a data-driven neural network
model is proposed in this paper.

2) To improve the prediction accuracy of the model for
the WWTP key features, an attention mechanism is
introduced to improve the ability of the LSTM model
to learn the importance of local wastewater features.
In addition, to compensate for the cumbersome short-
comings of manually selecting hyperparameters and to
more reasonably determine the model hyperparame-
ters, the AHMPSO algorithm is used to optimize the
number of neurons in the hidden layer and the learning
rate of the LSTM-AM model.

3) To verify the prediction effect of the AHMPSO-LSTM-
AM model, taking the effluent COD of WWTPs
as an example, a comparative analysis of all the
models proposed in this paper was carried out, and the
efficiency and stability of the proposed hybrid model
on a real dataset were evaluated.

The outline of this paper is as follows: Section II presents
a model (AHMPSO-LSTM-AM) that uses the AHMPSO
algorithm to optimize the LSTM-AM neural network for
effluent COD prediction of WWTPs. Section III introduces
related datasets and then compares and discusses the
prediction effect of the model. Section IV summarizes the
paper.

II. LSTM-AM EFFLUENT COD PREDICTION MODEL BASED
ON AHMPSO OPTIMIZATION
The LSTM-AM effluent COD prediction model (AHMPSO-
LSTM-AM) based on the AHMPSO optimization is com-
posed of three parts: data preprocessing, the LSTM-AM unit
and the AHMPSO unit. The details are as follows:

1) Data preprocessing: Given the missing wastewater
data, the Lagrange interpolation method is used. The
data with different orders of magnitude is normalized,
and the training set, verification set, and test set are
selected.

2) LSTM-AM unit: The LSTM-AMmodel is constructed,
the key features of the treated wastewater data are input
to the model, and the model output is processed by

the fully connected layer to obtain the effluent COD
prediction results.

3) AHMPSO unit: The number of hidden layer neural
units and the learning rate of the LSTM-AM are
optimized, and the optimal hyperparameters obtained
are assigned to the LSTM-AM model.

The overall architecture of the AHMPSO-LSTM-AM
model is shown in Fig. 1.

A. LSTM MODEL BASED ON ATTENTION MECHANISM
1) LSTM
The LSTM is an improved neural network based on RNN
that can effectively address the problems of vanishing and
exploding gradients seen in traditional neural networks.
Through the additional memory unit, the long-term timing
information is stored to capture the long-term dependencies
in the data. Based on this feature, LSTM neural network
is frequently used to deal with time series tasks. Because
wastewater data have distinct time series features, LSTM
neural network can be used to mine the time series variation
rules existing in wastewater data.

As shown in Fig. 2, the memory unit of the LSTM neural
network maintains three gates at each time step, including the
forget gate, input gate and output gate. Due to the gating, the
LSTM neural network can realize filtering and information
storage functions [42].

The forget gate combines the hidden layer state ht−1 of
the previous time step with the input wastewater instrumental
key feature x t of the current time step. Through the
sigmoid activation function, all the input features are scaled
within the interval [0,1], and the scaling value is used to
control the forgetting degree of the cell state C t−1 of the
previous time step. The formula of the forget gate is as
follows:

Ft = sigmoid
(∑J

j=1
WFx
j x tj +

∑L

l=1
WFh
l ht−1l + bF

)
(1)

In this formula, J and L are the dimensions of the input
feature vector x t and the hidden layer state ht−1, respectively,
and W and b are the weight matrices and bias in each gated,
respectively.

The input gate combines ht−1 and x t to generate new
candidate values C̃t via the tanh activation function. Then,
similar to the forgetting gate, the scaled value is utilized to
control the degree to which the candidate values are updated.
The formula for the input gate is as follows:

C̃t = tanh
(∑J

j=1
W C̃x
j x tj +

∑L

l=1
W C̃h
l ht−1l + bC̃

)
(2)

It = sigmoid
(∑J

j=1
W Ix
j x

t
j +

∑L

l=1
W Ih
l h

t−1
l + bI

)
(3)

After that, the current cell state Ct is updated by the
following equation:

Ct = Ft ∗ Ct−1 + It ∗ C̃t (4)
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FIGURE 1. Overall architecture diagram of the AHMPSO-LSTM-ATT model. AHMPSO unit is used to obtain the optimal hyperparameters; Data
preprocessing is used to process the key features of the input wastewater data; LSTM-AM unit is trained through input data to implement the
prediction of effluent COD.

FIGURE 2. Structure diagram of LSTM unit.

The output gate determines what part of the information
is exported for the current cell state Ct . The formula of the
output gate is as follows:

Ot = sigmoid
(∑J

j=1
WOx
j x tj +

∑L

l=1
WOh
l ht−1l + bO

)
(5)

ht = Ot ∗ tanh (Ct) (6)

FIGURE 3. The structure of attention module.

2) ATTENTION MECHANISM
The essence of the attention mechanism is to imitate
human visual mechanisms. For example, when people
observe something, they tend to pay more attention to some
information that can assist judgment and ignore irrelevant
information [43]. The attention mechanism can be simply
understood as a weighted summation that can allocate
corresponding weights according to the importance of the
input wastewater instrumental key feature. In this way, the
ability of the LSTMneural network to learn the importance of
local wastewater data features can be improved to achieve the
purpose of more accurate WWTP effluent COD prediction.
The structure of the attention mechanism is shown in Fig. 3.

VOLUME 9, 2021 146085



X. Liu et al.: Using LSTM Neural Network Based on Improved PSO and Attention Mechanism

FIGURE 4. The structure of LSTM-AM model.

The calculation formula is as follows [44]:

αm = sigmoid
(∑L

l=1
W αh
l hml + bα

)
(7)

βm =
eαm∑T
q=1 e

αq
(8)

γ =
∑T

m=1
βmhm (9)

where T is the total time step; hm is the output feature vector
of the LSTM; αm is the result of the first weighted calculation
through the full connection layer;W αh

p and bα are the weight
matrix and bias of the full connection layer, respectively;
βm is the final weight assigned to the corresponding hm

calculated by a softmax activation function; and vector γ is
the key feature of extraction.

3) ARCHITECTURE OF THE LSTM-AM MODEL
The architecture of the LSTM-AM model is shown in
Fig. 4. where the input vectors x1, x2, . . . . . . ,x t are the
wastewater instrumental key feature vectors before the time
step to be forecasted. The LSTM model disposes of the
input vectors in time steps and obtains several hidden layer
states h1, h2, . . . . . . ,ht . The attention mechanism calculates
the attention weights βm by using a neural network with
a softmax activation function. Then, the attention weights
βm are assigned to the corresponding hidden state hm.
Finally, the key feature γ is extracted by summation. The
forecast result of the effluent COD in the next time step is
obtained by inputting key feature γ into the fully connected
layer.

B. ADAPTIVE HYBRID MUTATION PARTICLE SWARM
OPTIMIZATION (AHMPSO)
In the process of constructing the LSTM-AM model, due
to the different number of neurons and learning rate in the
LSTM hidden layer, the prediction accuracy of the WWTP
effluent COD is not the same. However, many experiments
are needed to manually select the two hyperparameters.
Therefore, to compensate for the cumbersome and time-
consuming shortcomings of manual selection and to improve
the prediction accuracy of the model, we designed an
AHMPSO algorithm to optimize the two hyperparameters of
the LSTM-AM model.

1) PRINCIPLE OF PSO ALGORITHM
The PSO algorithm is a swarm intelligence algorithm derived
from research on the social behavior of birds. In the
algorithm, a solution in the search space is called a particle,
and all particles are described by three indices: position,
velocity and fitness value determined by the objective
function. The position is the solution of the search space,
the velocity determines the direction and distance of the
particle, and the fitness value determines the quality of the
particle [45].

The velocity and position update formulas of the PSO
algorithm are as follows:

vk+1i,d = ωv
k
i,d + c1r1

(
pbestki,d − x

k
i,d

)
+c2r2

(
gbestkd − x

k
i,d

)
xk+1i,d = xki,d + v

k+1
i,d

(10)
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FIGURE 5. Changing curve of nonlinear inertia weight.

where vki,d is the velocity component of particle i in the d th
dimension at the kth iteration; ω is the inertia weight; c1
and c2 are the learning factors for particles and populations,
respectively; r1 and r2 are two independent random numbers
with uniform distribution on the interval [0,1]; xki,d is the
position component of particle i in the d th dimension at
the kth iteration; pbestki,d is the individual optimal value
component of particle i in the d th dimension at the kth
iteration; and gbestkd is the component of the optimal
population value in the d th dimension at the kth iteration.

2) PRINCIPLE OF THE AHMPSO ALGORITHM
The inertial weight ω can measure the ability of particles
to maintain the motion state at the previous moment,
which can be used to balance the global search ability
and local search ability of the algorithm. In the standard
PSO algorithm, ω is a fixed value, which will reduce the
global search ability and convergence speed of the algorithm,
making it easy for the algorithm to fall into local optima
and premature convergence. Hence, this paper introduces a
nonlinear variation inertia weight with a random factor to
solve the above problems[46]. The optimized inertia weight
is shown in Eq. (11):

ω (k) = ωfixe
−

(
k

kmax

)ε
(11)

where ωfix is a fixed constant that limits the maximum value
of the inertia weight; kmax is the maximum iteration number
of the PSO algorithm; and ε is a random number uniformly
distributed within the interval [0,1].

As shown in Fig. 5, as the number of iterations k
increases, ω(k) shows a decreasing trend overall and exhibits
randomness among particles. That is, the inertia weight of
the descendant particles is not necessarily less than the inertia
weight of the previous generation particles. This can improve
the randomness and diversity of particles and enhance the
effect of inertia weight balance algorithm searchability.
In addition, ω(k) is close to ωmax in the early search stage,

FIGURE 6. Cauchy distribution and Normal distribution.

which makes the algorithm have a strong global search
ability. In the later search stage, ω(k) decreases with the
increase in the iteration time, which makes the algorithm
have good local search ability. Thus, the joint optimization
of global search and local search can be achieved through the
adaptive change of the inertia weight.

The improvement of the algorithm effect is limited only
by the method of optimizing the inertia weight, which further
reduces the risk of the algorithm falling into a local optimum
and, at the same time, further balances the global and
local search capabilities of the algorithm. According to the
mutation principle of the genetic algorithm, we proposed
an adaptive hybrid mutation method. The mutation method
is divided into two stages: (1) particle mutation and (2)
population optimal value mutation.

At the kth iteration, if the current particle i satisfies the
condition that its fitness value f ki is greater than its individual
optimal fitness value f kpi and the random number r3 which
is uniformly distributed within the interval [0,1] is greater
than 0.9, the algorithm enters the particle mutation stage.
In the early particle mutation process, the algorithm uses the
adaptive mutation method based on the Cauchy distribution.
In the later particle mutation process, an adaptive mutation
method based on the Normal distribution is adopted [47]. The
formulas for the two mutation methods are as follows:

xk∗i,d =
∣∣∣xki,d + Cauchy ∗ (pbestki,d − xki,d)∣∣∣ ,

k
kmax

≤
1
2
and r3 > 0.9 (12)

xk∗i,d = xki,d ∗
[
1+

2
5
−

1
5
tan

(
π

4
k

kmax

)
∗ Normal

]
,

k
kmax

>
1
2
and r3 > 0.9 (13)

where xk∗i,d is the position of the particle after mutation;
Cauchy is a random number satisfying the standard Cauchy
distribution; and Normal is a random number that conforms
to the standard Normal distribution.
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As shown in Fig. 6, comparedwith the Normal distribution,
the Cauchy distribution has a larger range of values on the
x-axis. That is, the mutation method based on the Cauchy
distribution can help the algorithm expand the search range
of particles and obtain more feasible solutions with better
fitness values. Therefore, the mutation method based on the
Cauchy distribution is more suitable for improving the global
searchability in the early stage of the algorithm. The Normal
distribution has a larger range of values on the y-axis. In other
words, the mutation method based on a Normal distribution
can improve the convergence accuracy of the algorithm and
carry out a local search with a small change near the optimal
solution. Thus, the mutation method based on the Normal
distribution is more suitable for local searchability in the later
stage of the developed algorithm.

In the PSO algorithm, the function of the population
optimal value gbestkd is to guide the particles to iterate toward
the optimal solution of the problem. As the particles are
updated, new population optimal values will continue to
be generated, making the algorithm gradually approach the
optimal solution of the problem. If the algorithm is trapped at
a local optimum, it may be difficult to jump out of the local
optimumwithin a certain number of iterations. Consequently,
in the mutation stage of the population optimal value, the
adaptive mutation method based on the elite substitution
strategy is used to mutate the population optimal value to help
the algorithm jump out of the local optimal value[48]. The
formula of the mutation method is as follows:

gbestkd
∗
= gbestkd ∗

[
µ+ tan

(
e−coh

)]
(14)

where gbestkd
∗
is the optimal value of the population after

mutation and µ is the scaling factor, which is uniformly
distributed in the interval [0,1], tan

(
e−coh

)
is the perturbation

function, and coh(d) can measure the cohesion of particles.
The formula is as follows:

coh(d) =
1
I

∑I

i=1

∣∣∣∣∣x
k
i,d − x̄

k
d

x̄kd

∣∣∣∣∣ (15)

In the formula, I is the number of particles; x̄kd is the
average value of the particles in the d th dimension at the
kth iteration. A smaller coh(d) results in a greater degree
of particle agglomeration, and more particles agglomerate,
which requires a greater amount of disturbance. A larger
coh(d) results in smaller degree of particle agglomeration,
more dispersed particles, and a smaller amount of disturbance
is required. Before updating the optimal value of the
population in each iteration, the algorithm enters the optimal
population value mutation stage.

The analysis of Eq. (14) shows that the population optimal
value variation method first scales gbestkd by the scaling
factor µ and then dynamically adjusts the various sizes of the
population optimal value through the perturbation function.
If the fitness value of gbestkd

∗
is better than the fitness value

of gbestkd , then the optimal value of the population is updated,

gbestkd is replaced with gbestkd
∗
, and gbestkd

∗
participates in

the subsequent algorithm calculations.
In essence, the population optimal value mutation stage is

a supplement to the particle mutation stage. In the early stage
of the algorithm iteration, the particle mutation method based
on the Cauchy distribution can produce larger mutations,
and in conjunction with the larger inertia weight in the
early stage, the diversity and randomness of the particles
can be improved, and the search space of the algorithm
can be expanded. Due to the sufficient population search of
the algorithm and small particle cohesion, the perturbation
function will generate a small perturbation. By reducing
the variation value to avoid the oscillation of the optimal
population value, the algorithm can smoothly converge at
a faster rate. In later algorithm iteration stage, the particle
mutation method based on the Normal distribution can
produce smaller mutations, and in conjunction with the
smaller inertia weight in the later stage, this particle mutation
method can improve the local search ability of particles. Now,
the particle cohesion is high, and the perturbation function
will generate a large perturbation. By increasing the variation
value, the risk of the population optimal value falling into a
local optimal value is reduced so that the algorithm can jump
out of the local optimal value with a certain probability.

C. OPTIMIZATION OF THE LSTM-AM MODEL
USING AHMPSO
In this paper, two hyperparameters, the number of neurons in
the hidden layer of LSTM and the learning rate, which can
have a significant impact on the performance of the LSTM-
AM model, were selected for optimization.

The process of AHMPSO to optimize the parameters of the
LSTM-AM model is as follows:

Step 1: Preprocess the acquired dataset of WWTP key
features.

Step 2: Set the hyperparameters of the AHMPSO algo-
rithm, including the number of particles, the number of
iterations, the initial inertia weight, the learning factor, and
the limits of the particle speed and position.

Step 3: Determine the fitness function of the algorithm. The
formula is as follows:

f =

√
1
P

∑P

p=1

(
yp − ŷp

)2 (16)

where P is the number of samples in the verification set; yp
is the true value of the verification sample; ŷp is the predicted
value.

Step 4: The number of neurons in the hidden layer of
the LSTM-AM model and the learning rate are used as the
optimization features of the AHMPSO algorithm. Determine
the optimization range of the feature to be optimized,
initialize the population randomly, and determine the initial
population optimal value and the individual optimal value.

Step 5: The position and velocity of particles are updated
according to Eq. (10) and Eq. (11), and the LSTM-AM
model is constructed according to the corresponding
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FIGURE 7. The Schematic of wastewater treatment process.

hyperparameters of each particle. The fitness value of each
particle is calculated according to Eq. (16).

Step 6: Determine whether to enter the mutation stage.
If the algorithm enters the particle mutation stage, the
corresponding particle mutation method will be executed
according to Eq. (12) and Eq. (13) depending on the
corresponding conditions. If the algorithm enters the stage
of population optimal value variation, then the population
optimal value variation method based on the elite substitution
strategy is implemented according to Eq. (14) and Eq. (15).

Step 7: In light of the fitness value of the particles, the
optimal value of the population and the optimal value of the
individual are determined.

Step 8: Determine whether the algorithm meets the con-
ditions for terminating iteration. If the number of iterations
reaches the maximum, the optimal hyperparameter of the
model is returned; otherwise, Step 5 is repeated to continue
execution until the algorithmmeets the termination condition.

Step 9: Use the optimal hyperparameters to construct and
train the LSTM-AM model and output the predicted effluent
COD value.

III. EXPERIMENT AND ANALYSIS
A. DATA PREPARATION AND PREPROCESSING
The data used in this research are derived from the operation
report of a WWTP in Rizhao City, Shandong Province,
China. The treatment plant adopts the activated sludge
method to treat urban wastewater, and the annual effluent
index reaches the standard, which can stably meet level A
of China’s ‘‘Urban Water Pollution Discharge Standard’’
(GB18918). The specific process is shown in Fig. 7. First,
the larger suspended solids and inorganic particles in the
wastewater were removed through a screen and grit chamber.
Second, the wastewater circulated in the oxidation ditch and
secondary sedimentation tank to remove the pollutants and
separate the sludge from the treated wastewater. The sludge
is returned to the oxidation ditch under the action of the return
pump. Finally, the treated wastewater is discharged or reused
after disinfection, and the fully reacted remaining sludge is
dewatered for disposal or utilization.

This paper selects the operation report of the treatment
plant from January 1, 2019, to January 31, 2020, with a total
of 396 data points. Taking the first 255 data points in 2019
as the training set, the remaining 110 data points as the

validation set, and a total of 31 data points in January 2020
as the test set. The influent COD, influent total phosphorus
(TP), influent NH3N , influent total nitrogen (TN), influent
suspended solids (SS), and effluent temperature (TE) were
selected as auxiliary variables of the AHMPSO-LSTM-AM
model to predict the WWTP effluent COD. Part of the data is
shown in Table 1.

Due to the difference in the order of magnitude of
wastewater data, the LSTM model has a high sensitivity to
the data scale. To avoid problems, such as slowing down
the convergence speed of the model due to the influence of
large data changes, the wastewater data need to be normalized
according to Eq. (17).

x t∗ =
x t − x tmin
x tmax − x

t
min

(17)

where x t∗ is the normalized wastewater data value; x t is any
value in the wastewater dataset; and x tmax and x tmin are the
maximum and minimum values in the wastewater dataset,
respectively.

B. ENVIRONMENT CONFIGURATION
All experiments in this article are performed on a computer
with an Intel(R) Core(TM)i7-9750H with a 2.60 GHz and a
GTX1660Ti GPU. All models are built on the Keras 2.2.4
framework using Juypter Notebook based on Python 3.6 to
edit the code.

C. SETTING THE MODEL PARAMETER
The parameters of the PSO algorithm and the AHMPSO
algorithm are shown in Table 2. The number of hidden
layer neurons and the learning rate in the LSTM-AM model
are selected as the optimized objects. The range of hidden
layer neurons is [10,200], and the range of learning rates
is [0.001,0.01]. To reduce the influence of other parameter
changes on the experimental results, except for changing
the (nonlinear) inertia weight, the rest of the parameter
settings are identical.

The fitness curves of the PSO and AHMPSO algorithms
are shown in Fig. 8. First, compared to the PSO algorithm,
the AHMPSO algorithm falls into the local optimal value
fewer times. Second, the convergence speed and accuracy of
the AHMPSO algorithm are better than those of the PSO
algorithm. The reason is that the nonlinear inertia weight

VOLUME 9, 2021 146089



X. Liu et al.: Using LSTM Neural Network Based on Improved PSO and Attention Mechanism

TABLE 1. Partial sample data.

FIGURE 8. Fitness curve.

TABLE 2. The parameter setting of PSO and AHMPSO.

with the random factor can enhance the randomness and
diversity of the particles. At the same time, the adaptive
mutation method based on the Cauchy distribution adopted
in the early iteration can expand the algorithm search range
so that the algorithm can jump out of the local optimum in
time and improve the convergence speed of the algorithm.
In the later algorithm iteration stage, thanks to the adaptive
mutation method based on Normal distribution, the local
search ability of the algorithm has been strengthened, and
the convergence accuracy of the algorithm is improved.
In addition, as a supplement to the particle mutation methods,
the population optimal value mutation method can generate
different disturbances through particle cohesion, balance the
global and local search capabilities of the algorithm, and
guide the particles to iterate toward the optimal solution of
the problem.

In summary, the AHMPSO algorithm is better than the
PSO algorithm in terms of convergence accuracy, speed,
and global optimization. The optimal model hyperparameters

TABLE 3. Hyperparameter settings for each model.

obtained by the AHMPSO algorithm are as follows: the
number of hidden layer neurons is 114, and the learning rate
is 0.0066. However, algorithm performance improvement
comes at a price. For the case of using the wastewater
dataset collected in this paper, the average training time of
the AHMPSO algorithm is approximately 3 hours, and the
average training time of the PSO algorithm is approximately
2.5 hours. The reason is that the AHMPSO algorithm
introduces a hybrid mutation strategy, which increases the
calculation time of the algorithm, making its training time
slightly higher than that of the standard PSO algorithm. The
training speed of AHMPSO-LSTM-AM needs to be further
optimized.

The hyperparameter settings of the four models proposed
in this paper, including LSTM, LSTM-AM, PSO-LSTM-
AM, and AHMPSO-LSTM-AM, are shown in Table 3. The
Adam optimizer[49] was used to train all the models by
minimizing the root mean square error (RMSE), the batch
size was set to 50, the time-step was set to 3, and the
epoch was set to 100. The probability of model overfitting
is reduced by adding a dropout layer. In the selection of the
number of hidden layer neurons and the learning rate, unlike
the PSO-LSTM-AM model and the AHMPSO-LSTM-AM
model to obtain the optimal parameters through optimization,
the parameters of the LSTM model and the LSTM-AM
model are randomly selected and are the same. The aim is
to make a comparison and to verify the performance of those
models.

146090 VOLUME 9, 2021



X. Liu et al.: Using LSTM Neural Network Based on Improved PSO and Attention Mechanism

TABLE 4. Performance indicators of all proposed model.

D. EVALUATION CRITERION
In this paper, the root mean square error (RMSE), the
mean absolute error (MAE), the mean absolute percentage
error (MAPE), and the coefficient of determination (R2)
are selected as evaluation metrics to measure the prediction
efficacy of the model.

Smaller values of the above metrics indicate a better model
prediction effect. The relevant formulae are as follows:

RMSE =

√
1
N

∑N

n=1

(
yn − ŷn

)2 (18)

MAE =
1
N

∑N

n=1

∣∣yn − ŷn∣∣ (19)

MAPE =
1
N

∑N

n=1

∣∣yn − ŷn∣∣
yn

(20)

R2 = 1−

∑N
n=1

(
yn − ŷn

)2∑N
n=1 (yn − ȳ)

2
(21)

In the formulae, N is the number of samples, yn is the true
value, ȳ is the mean of the true value, and ŷn is the predicted
value of the model.

E. MODELING RESULTS AND ANALYSIS
This paper conducted 20 random experiments on the
proposed model, and the evaluation criteria of all models
are shown in Table 4 and in Fig. 9-Fig. 16. As seen from
Table 4, the average values of the evaluation criteria of the
LSTM model are as follows: R2 is 0.757 ± 0.015, RMSE is
1.277± 0.037, MAPE is 4.116%± 0.185, and MAE is 0.980
± 0.046. The average values of the evaluation indicators of
the LSTM-AM model are as follows: R2 is 0.792 ± 0.005,
RMSE is 1.182 ± 0.014, MAPE is 3.709% ± 0.097, and
MAE is 0.878 ± 0.025; The average values of the evaluation
indicators of the PSO-LSTM-AM model are as follows:
R2 is 0.815 ± 0.011, RMSE is 1.115 ± 0.031, MAPE is
3.347% ± 0.084, and MAE is 0.786 ± 0.015; The average
values of the evaluation indicators of the AHMPSO-LSTM-
AM model are as follows: R2 is 0.842 ± 0.013, RMSE
is 1.028 ± 0.045, MAPE is 3.046% ± 0.134, and MAE
is 0.710 ± 0.030.

From the analysis of Fig. 10, Fig. 12, Fig. 14 and Fig. 16,
we can see that compared with the model that introduces the
attention mechanism, the LSTM model has more outliers,

FIGURE 9. Variation curve of R2 of each model in 20 experiments.

FIGURE 10. Box plot of R2 obtained from each model.

the average value of the evaluation criteria is larger, the
accuracy and stability of the model are poorer. As seen from
Table 4, the accuracy and stability of the LSTM model are
improved after the introduction of the attention mechanism.
Using the same parameters as the LSTM model, the R2 of
the LSTM-AM model is increased by 4.624%, the RMSE
is reduced by 7.439%, the MAPE is reduced by 9.888%,
and the MAE is reduced by 10.408%. The reason for the
above phenomenon is that the attention mechanism allocated
corresponding weights to the input features according to the
different importance degrees of the input features. Thus,
the attention mechanism reduces the error of the model,
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FIGURE 11. Variation curve of RMSE of each model in 20 experiments.

FIGURE 12. Box plot of RMSE obtained from each model.

FIGURE 13. Variation curve of MAPE of each model in 20 experiments.

the ability of the LSTMmodel to fit the true value of effluent
COD is enhanced, and the accuracy and stability of the model
are further improved.

The above experimental results illustrate that the attention
mechanism can improve the performance of the LSTM
model. We will discuss the influence of the PSO algorithm
and AHMPSO algorithm on model performance based on
four evaluation criteria. The specific analysis is shown below.

FIGURE 14. Box plot of MAPE obtained from each model.

FIGURE 15. Variation curve of MAE of each model in 20 experiments.

FIGURE 16. Box plot of MAE obtained from each model.

1) MODEL GOODNESS OF FIT EVALUATION
R2 can measure the goodness of fit for the model. A larger R2

indicates that the model fits the dataset better. A smaller R2

indicates that the model fits the dataset poorer. Compared
with the LSTM-AM model, the R2 of the PSO-LSTM-AM
model is increased by 2.904%. Using the PSO algorithm
to optimize the model hyperparameters can improve the
model’s goodness of fit, but this improvement is limited by
the PSO algorithm’s optimization accuracy. Compared with
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FIGURE 17. The prediction curve of the model proposed in the paper.

FIGURE 18. The bias curve of the model proposed in the paper.

PSO-LSTM-AM, the R2 of the AHMPSO-LSTM-AMmodel
is increased by 3.313%, which proves that the optimization
accuracy of the AHMPSO algorithm is better than that of
the PSO algorithm. Using the nonlinear inertia weight of
the AHMPSO algorithm can expand the optimization space
of the algorithm, and the hybrid mutation strategy improves
the optimization accuracy of the AHMPSO algorithm by
balancing the global and local search abilities.

As shown in Fig. 9, although the AHMPSO-LSTM-
AM model achieves better goodness of fit than the other
models, its goodness of fit curve varies greatly. The reason
for this result is that the AHMPSO algorithm expands the
optimization space, and the model obtains one of the optimal
solutions in each optimization process. However, different
optimal solutions have different influences on the goodness
of fit of the model, which leads to a larger variation in the
goodness of fit curve of the AHMPSO-LSTM-AM model.

2) MODEL ACCURACY EVALUATION
The RMSE can measure the accuracy of the model. A smaller
RMSE indicates a higher model accuracy; conversely,
a higher RMSE indicates worse model accuracy. Compared
with the LSTM-AM model and the PSO-LSTM-AM model,
the average RMSE of the AHMPSO-LSTM-AM model
is reduced by 13.029% and 7.803%, respectively. The
experimental results illustrate that the prediction accuracy of
the AHMPSO-LSTM-AM model is better than that of the
PSO-LSTM-AM model. The reason for this result is that the
number of neurons in the hidden layer of the LSTM-AM
model is 70, and the network structure is relatively simple.
Although the pattern of the dataset can be learned quickly
during the training process, the accuracy of the model
is also limited. The numbers of hidden layer neurons in
the PSO-LSTM-AM model and the AHMPSO-LSTM-AM
model are 142 and 114, respectively. The network structure
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is relatively complex, and the dataset pattern can be learned
more fully during the training process. The overly complex
network structure easily overfits the model and reduces the
prediction accuracy of the model, which is also the reason
why the accuracy of the PSO-LSTM-AM model is slightly
lower than that of the AHMPSO-LSTM-AM model.

In addition, the Adam optimizer can adjust the learning rate
adaptively. When the learning rate is set to 0.002, the weight
and bias update amplitude of the LSTM-AM model is small,
which limits the further improvement of the model accuracy.
However, a larger learning rate will make the weight and bias
of the model update within a larger amplitude, resulting in
a larger RMSE variation amplitude. As shown in Fig. 11,
the RMSE of the AHMPSO-LSTM-AM model reached a
minimum value of 0.923 in the 10th experiment and a
maximum value of 1.103 in the 19th experiment. In summary,
although the RMSE of the AHMPSO-LSTM-AM model
varies greatly, the hyperparameter obtained through the
optimization of the AHMPSO algorithm ensures that its
average RMSE is the smallest among the models proposed.

3) EVALUATION OF MODEL STRENGTHS AND WEAKNESSES
The MAPE can measure the strengths and weaknesses of
models. A MAPE value that is closer to 0% indicates a
model that is of higher quality; a MAPE value closer to
100% indicates that the model is inferior. As shown in
Table 4, the average MAPE of the AHMPSO-LSTM-AM
model (3.046) is the smallest. This indicates that compared
with other models proposed in this paper, the model has
better performance. The reason for this is that a more
complex network structure enables the model to better handle
nonlinear datasets, thereby making it easier for the model to
identify patterns in the dataset to improve the performance
of the model. In addition, the larger learning rate enables the
model to quickly find the direction of gradient descent in the
early stage of training, and theAdamoptimizer can adaptively
adjust the learning rate of the model so that the model can
converge faster.

However, the more complex network structure and higher
learning rate will also bring certain negative effects. From
Fig. 13, we can see that the MAPE of the AHMPSO-LSTM-
AM model varies greatly because the complexity of the
network structure has caused parameter (weights, biases)
complexity, and the higher learning rate will make the model
weights and biases update more extensively, which leads to
the MAPE of the model have a large amplitude change over
several experiments.

4) MODEL ERROR EVALUATION
The MAE is used to describe the average value of the
absolute value error between the predicted value and the true
value. It is the average value of the error in a more general
form and can better reflect the error of the predicted value.
In Fig. 15, it can be seen that the MAE of the AHMPSO-
LSTM-AM model in 20 historical experiments is lower than
that of the other models. The reason for this result is that the

TABLE 5. Evaluation indicators for the average prediction effect of each
model under twenty runs.

attention mechanism can improve the accuracy of the model,
thus reducing the error between the predicted value and the
true value. In addition, the hyperparameters obtained by the
AHMPSO algorithm can also guarantee a smaller MAE value
for the AHMPSO-LSTM-AM model.

F. ANALYSIS OF THE PREDICTION RESULTS
Fig. 17 shows the average prediction results for all models
from 20 random experiments. All the models proposed in this
paper can predict the effluent COD trend of the WWTP more
accurately.

Fig. 18 shows the bias curve of the model. We can see from
it that among all the models proposed in this paper, the LSTM
model has the largest bias, and the goodness of fit for the
effluent COD is poor. It can be seen from Table 5 that after
the introduction of the attention mechanism, the goodness
of fit of the LSTM-AM model is improved, R2 is increased
from 0.756 to 0.792, and the predictive ability is improved.
In addition, other evaluation criteria have also been improved:
RMSE decreased by 7.783%, MAPE decreased by 8.236%,
and MAE decreased by 8.545%. This explains that the
attention mechanism improves the ability of the LSTM-AM
model to mine local important features of wastewater data
under the same parameters as the LSTM model, thus
increasing the prediction effect and accuracy of the model.

Compared with the LSTM-AM model, after the PSO
algorithm was used to optimize the hyperparameters of the
PSO-LSTM-AM model, R2 was improved from 0.792 to
0.814, RMSE was reduced by 5.499%, MAPE was reduced
by 7.254%, and MAE was reduced by 9.232%. In addition,
Fig. 17 and Fig. 18 show that the bias of the PSO-LSTM-
AM model was further reduced, and the prediction effect of
some abnormal points was also improved. This illustrates
that using the PSO algorithm to optimize the number of
hidden layer neurons and the learning rate can enhance the
prediction effect and accuracy of the model. As seen from
Table 5, compared with the PSO-LSTM-AM model, the R2

of the AHMPSO-LSTM-AM model increased from 0.814 to
0.869, RMSE decreased by 14.682%, MAPE decreased by
18.841% and MAE decreased by 18.505%. The bias curve
is relatively small compared with other models and is closer
to zero. This illustrates that the ability of the AHMPSO-
LSTM-AM model to fit abnormal points has been further
improved. At the same time, the ability of the model to fit the
true value of the effluent COD trend has been improved, and
the prediction accuracy of the model has been significantly
improved compared with the LSTM model. The reason
for this result is that the AHMPSO algorithm has better
optimization capabilities than the standard PSO algorithm
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and can help the model obtain a better network structure and
learning rate.

IV. CONCLUSION
In this paper, an LSTM model based on the AHMPSO
algorithm and attention mechanism was proposed to monitor
the key features of sewage treatment in sewage treatment
plants. First, the AHMPSO algorithm is used to optimize
the hyperparameters of the LSTM-AM model, including the
number of hidden layer neurons and the learning rate. Second,
the hyperparameters obtained by the AHMPSO algorithm are
used to establish an LSTM-AMmodel and train the model on
the wastewater data training set. Finally, the wastewater data
test set is input into the trained model to obtain the predicted
value of the WWTP effluent COD. The simulation results
show the following:

1) Compared with the PSO algorithm, the introduction
of nonlinear inertial weights with random factors
and adaptive hybrid mutation methods enables the
AHMPSO algorithm to better balance the global
search ability and the local search ability, reduce the
probability of the algorithm falling into local optima,
and improve the convergence speed and accuracy of the
algorithm.

2) With the attention mechanism, the ability of the LSTM
neural network to learn the importance of wastewater
local features has been strengthened. The AHMPSO
algorithm is used to optimize the hyperparameters of
the LSTM-AM model, which offsets the cumbersome
and time-consuming shortcomings of manual selection
and effectively improves the prediction accuracy of the
model.

3) Compared with the LSTM model, the LSTM-AM
model, and the PSO-LSTM-AMmodel, the AHMPSO-
LSTM-AM model achieves better prediction accuracy
and stability in terms of predicting effluent COD. The
AHMPSO-LSTM-AM model can enhance the mon-
itoring ability of wastewater treatment key indicator
features, which is beneficial to WWTPs to obtain more
stable and accurate prediction results of wastewater
features.

In summary, the AHMPSO-LSTM-AMmodel can provide
a stable and effective tool for monitoring wastewater’s key
features.

The focus of this research is to optimize the structure
of the effluent COD prediction model and improve the
prediction accuracy of the model for effluent COD. However,
the presence of some noise in the wastewater dataset will
have some influence on the model’s ability to extract key
features. Therefore, in future research, we will consider
further optimization of the model in terms of data noise
reduction and feature construction.
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