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ABSTRACT Despite the fact that SimRank has been successfully applied to various applications as a
link-based similarity measure, it suffers from a counter-intuitive property called a pairwise normalization
problem; JacSim is a powerful variant of SimRank that alleviates this problem. In this paper, we first point out
three existing drawbacks of JacSim and then propose JacSim* to effectively solve them; JacSim* exploits
those paths neglected by JacSim in similarity computation, its matrix form provides the exact similarity
scores while not being sensitive to the number of node-pairs with common neighbors, and it has simpler,
easier to understand, and easier to implement formulas in both iterative and matrix forms than those of
JacSim. We conduct extensive experiments with eight real-world datasets to evaluate both the accuracy and
performance of JacSim* in comparison with those of JacSim. Our experimental results demonstrate that
JacSim* shows better accuracy than JacSim and the JacSim* matrix form is dramatically faster than its own
iterative form and also than the two forms of JacSim with all datasets.

INDEX TERMS Link-based similarity, pairwise normalization problem, similarity computation, SimRank.

I. INTRODUCTION
In many domains such as social networks, citation net-
works, bio-medical drug molecules, and the World Wide
Web, graphs are widely used to encode relational structures
where nodes represent objects and links do their relationships
in the domain [1]–[3]. In a wide range of applications such
as recommender systems, spam detection, web page ranking,
and social network analysis, computing accurate similarity
among nodes based on the graph structure is a fundamental
task [1], [3]. Toward this end, various link-based similarity
measures (in short, similarity measures) such as SimRank [4]
and its variants [1], [5]–[7] have been proposed in the litera-
ture. The philosophy behind SimRank is that two objects are
similar if they are related to similar objects and any object
is most similar to itself [4]. SimRank recursively computes
the similarity between two nodes a and b as the average of
similarity between all possible pairs of neighbors pointing to
a and b (i.e., in-neighbors) where the similarity between a
node and itself is defined as one (i.e., the base case of the
recursion); it is called the pairwise normalization [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Sathish Kumar .

It is worth to note that to compute the similarity between
two nodes, some existing similarity measures such as Struct-
Sim [8] exploit the roles of nodes in the graph based on the
automorphism equivalent property; however, SimRank and
its variants compute the similarity score of a pair of nodes
by exploiting their neighbors (i.e., in-link paths) regardless
of their roles in the graph. The graph similarity learning
methods compute the similarity between two graphs by
applying learning techniques (e.g., graph embedding meth-
ods) [9]–[11], while similarity measures compute the simi-
larity between two nodes in a single graph. Graph embedding
methods exploit the graph structure to represent each node in
the graph as a low-dimensional vector [12], [13], and then the
similarity of two nodes can be computed by applying vector-
based measures (e.g., Cosine and Euclidean distance [14]) to
their corresponding vectors [8], [15]; on the contrary, similar-
ity measures directly exploit the graph structure to compute
the similarity of nodes. It has been shown that similarity
measures are better than the graph embedding methods to
compute nodes similarity [8], [15].

Although SimRank has been successfully applied to
many applications such as clustering [16], citation analy-
sis [17], [18], query rewriting [19], k-nearest neighbor search
[20]–[22], and link prediction [23], it suffers from
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a counter-intuitive property raised by the pairwise normal-
ization where a more number of common in-neighbors may
adversely affect the similarity score of a pair of nodes [1], [5],
[6], [24]; it is called the pairwise normalization problem [1].
In the literature, different variants of SimRank have been
proposed to alleviate this problem. MatchSim [5] exploits
only the pairs of similar (i.e., matched) in-neighbors instead
of considering all possible pairs of in-neighbors. PSim-
Rank [24], C-Rank [6], and JacSim [1] employ Jaccard
coefficient (i.e., Jaccard) [14] along with the pairwise nor-
malization to address the problem; PSimRank and C-Rank
behave closely but they apply different normalization tech-
niques. On contrary to PSimRank and C-Rank, JacSim avoids
redundancy in computation and assigns an importance factor
to the two scores computed based on Jaccard and the pairwise
normalization; it has been shown that JacSim significantly
outperforms SimRank, PSimRank, C-Rank, and MatchSim
in terms of both accuracy and performance (i.e., execution
time) [1].

As such, JacSim is an excellent variant of SimRank that
successfully alleviates the pairwise normalization problem.
In this paper, we first point out the following drawbacks of
JacSim: 1) JacSim does not exploit some paths in the graph,
which incurs limitations in accurate similarity computation;
2) the JacSim matrix form provides approximate similarity
scores, thereby providing lower accuracy than that of its itera-
tive form; 3) although the JacSim matrix form is significantly
faster than its iterative form, it is still slow even with small
graphs if the graph contains a large number of node-pairs
with common in-neighbors. Then, we propose JacSim* that
not only effectively solves the above three drawbacks but also
preserves the JacSim philosophy in similarity computation to
solve the pairwise normalization problem. JacSim* exploits
those paths neglected by JacSim in similarity computation, its
matrix form provides the exact similarity scores and identical
accuracy to that of the iterative form, and the JacSim* matrix
form is composed of only matrix-based operations, thereby
not being sensitive to the number of node-pairs with common
in-neighbors. We conduct extensive experiments with eight
real-world datasets to evaluate both the accuracy and perfor-
mance of our JacSim* in comparison with those of JacSim.
Our experimental results with all datasets demonstrate that
JacSim* improves the accuracy of JacSim and the JacSim*
matrix form is dramatically faster than its own iterative form
and also than the both forms of JacSim.

Our contributions in this paper are summarized as
follows:
• We propose JacSim* that exploits the paths neglected
by JacSim in similarity computation while solving the
pairwise normalization problem.

• We propose a matrix form for JacSim*, which is dra-
matically faster than its own iterative form and the both
forms of JacSim while providing the exact similarity
scores and not being sensitive to the number of node-
pairs with common in-neighbors in the graph.

FIGURE 1. A sample graph.

• JacSim* has formulas in both iterative and matrix forms
simpler, easier to understand, and easier to implement
than JacSim.

• We conduct extensive experiments with eight real-world
datasets to validate the accuracy and performance of our
JacSim* in comparison with JacSim.

The remain of this paper is organized as follows.
In Section II, we provide some preliminaries about the pair-
wise normalization problem, JacSim, and its drawbacks.
In Section III, we present our proposed similarity mea-
sure, JacSim*, in details. Section IV explains the experi-
mental settings and analyzes the results of our experiments.
In Section V, we conclude and summarize the paper.

II. PRELIMINARIES
In this section, we provide brief explanations of the pairwise
normalization problem, JacSim, and its drawbacks.

A. PAIRWISE NORMALIZATION PROBLEM
In spite of the current success of SimRank, it suffers from the
pairwise normalization problem, which is a counter-intuitive
property of the pairwise normalization where more number
of common in-neighbors may adversely affect the similarity
score of a pair of nodes [1], [5], [6], [24]. Consider the
sample graph in Fig. 1; nodes h and i have one common
direct in-neighbor (i.e., c), while nodes k and l have two of
them (i.e., f and g). Therefore, the similarity score of node-
pair (k, l) should be intuitively higher than that of node-pair
(h, i); however, SimRank assigns a lower similarity score
to (k, l) (i.e., 0.16) than that of (h, i) (i.e., 0.20). The same
circumstance is observed for node-pairs (m, n) and (p, q) each
of which do not have any common direct in-neighbors;m and
n have one common indirect in-neighbor (i.e., c), while p and
q have two of them (i.e., f and g). It means the similarity score
of (p, q) should be higher than that of (m, n); however, the
SimRank score of the former node-pair (i.e., 0.042) is lower
than that of the latter one (i.e., 0.053).1

B. JACSIM
JacSim [1] is a powerful variant of SimRank that alleviates the
pairwise normalization problem by employing both Jaccard
and the pairwise normalization. Suppose that G = (V ,E) is

1The SimRank scores are computed by (4) in [4] where C is set as 0.8.
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an unweighted and directed2 graph where V is a set of nodes,
E ∈V×V is a set of links among nodes, and Ia denotes a set of
nodes directly pointing to node a (i.e., direct in-neighbors);
JacSim computes the similarity score of a node-pair (a, b),
S(a, b), as follows. If a=b, then S(a, b)=1; if a 6=b and Ia=
∅ or Ib =∅, then S(a, b)= 0; otherwise S(a, b) is calculated
by the following recursive formula:

S(a,b)=C ·
(
α ·
|Ia ∩ Ib|
|Ia ∪ Ib|

+
(1−α)

|Ia||Ib| − |Ia ∩ Ib|2

·
( ∑
i∈Ia−Ib

∑
j∈Ib

S(i, j)+
∑

i∈Ib−Ia

∑
j∈Ia∩Ib

S(i, j)
))

(1)

where the left and right sides of + operator in the main
parenthesis computed by Jaccard and the pairwise normaliza-
tion are referred to as the J-score and P-score, respectively.
α ∈ (0, 1] is an important factor to control the degree of
importance of these two scores in similarity computation and
C ∈ (0, 1) is a damping factor.
Consider our sample graph in Fig. 1 again. As explained

before, the SimRank score of node-pair (h, i) with one com-
mon direct in-neighbor is higher than that of node-pair (k, l)
with two common direct in-neighbors due to the pairwise
normalization problem; however, JacSim assigns higher sim-
ilarity score to (k, l) (i.e., 0.128) than that of (h, i) (i.e., 0.080).
On the contrary to SimRank, JacSim also assigns higher
similarity score to (p, q) (i.e., 0.0204) than that of (m, n)
(i.e., 0.0128).3

C. JACSIM DRAWBACKS
Now, let us point out the existing drawbacks of JacSim as
follows.

D1: As observed in (1), to compute the similarity scores
for any node-pairs (a, b), JacSim neglects all in-neighbor
pairs (i, j) where i and j pointing to both a and b (i.e., i, j ∈
Ia ∩ Ib) in calculating the P-score since (Ia − Ib) ∩ Ib = ∅
in
∑

i∈Ia−Ib

∑
j∈Ib S(i, j) part, and (Ib− Ia) ∩ (Ia∩ Ib) = ∅ in∑

i∈Ib−Ia

∑
j∈Ia∩Ib S(i, j) part. As an example, consider nodes

i and j in the sample graph in Fig. 1. To compute S(i, j),
all node-pairs (d, d), (d, e), (e, d), and (e, e) are neglected
in calculating the P-score (i.e., Ii ∩ Ij = {d, e}) where node-
pairs (d, d) and (e, e) are ignored to alleviate the pairwise
normalization problem (i.e., the similarity score based on
the common direct in-neighbors are computed by Jaccard);
however, by ignoring node-pairs (d, e) and (e, d), the partic-
ipation of node a, the common indirect in-neighbor pointing
to both i and j via nodes d and e, is not regarded in computing
similarity between i and j. More specifically, JacSim does not
exploit part of paths in the graph in similarity computation.

D2: The JacSim iterative form represented in (1) can-
not be directly transformed to a matrix form for the

2For the sake of generality, we regard G as a directed graph since an
undirected graph G′ can be considered as a directed one where each single
link in G′ is represented by two links each of which in a different direction.

3In (1), C and α are set as 0.8 and 0.4 by following [1].

following reason.4 To calculate the P-score, JacSim par-
tially employs the pairwise normalization on Ia and Ib
(i.e., as explained in D1, all in-neighbor pairs (i, j) where
i, j ∈ Ia ∩ Ib are ignored and normalization is performed by
using the value of |Ia||Ib|−|Ia ∩ Ib|2). Therefore, in order to
transform the JacSim iterative form to a matrix form, (1) is
slightly modified such that the P-score is normalized by the
value of |Ia||Ib| instead of |Ia||Ib|−|Ia ∩ Ib|2. As a result, the
JacSim matrix form does not provide the exact JacSim scores
(i.e., the approximate scores are computed) and its accuracy
is lower than that of the iterative form as shown in [1].
D3: The similarity score of a node-pair (a, b) is computed

by the JacSim matrix form as follows:

S = C ·
(
α · J ′ + (1− α) · (QT · S · Q−E)

)
+ (1− C · α) · I

[E]a,b =

∑
i∈Ia∩Ib

∑
j∈Ia∩Ib S(a, b)

|Ia||Ib|
(2)

where S, J ′,Q,E, I ∈ R|V |×|V |, S is a similarity matrix
whose entry [S]a,b denotes the similarity score of node-pair
(a, b), entry [J ′]a,b of matrix J ′ denotes the J-score of (a, b),
Q is a column normalized adjacency matrix whose entry
[Q]a,b = 1/|Ib| if a points to b (i.e., a ∈ Ib); [Q]a,b = 0
otherwise. QT is a transpose matrix of Q, I is an identity
matrix, and E is a matrix whose entry [E]a,b denotes the
summation of JacSim scores of all in-neighbor pairs (i, j)
where i, j∈ Ia∩ Ib normalized by the value of |Ia||Ib|. It has
been shown that the JacSimmatrix form is significantly faster
than its iterative form [1].

To accelerate the matrix multiplications in (2), matrices
Q and S are represented by the compressed sparse column
(CSC) storage schema [25]; however, the time complexity of
the JacSimmatrix form is dominated by computing matrix E .
Let } denotes the number of node-pairs (a, b) with common
in-neighbors (i.e., } = |{(a, b)|Ia ∩ Ib 6= ∅}|), d does the
average number of nodes in Ia ∩ Ib for all node-pairs (a, b),
and k be the number of predefined iterations to compute the
similarity scores. As observed in (2), matrix E is computed
on each iteration; the time complexity for calculating the
entries in E is O(k}d2), which could be O(k|V |4) in the
worst case; this computation is slow when the graph contains
a large number of node-pairs with common in-neighbors.
More specifically, the execution time of the JacSim matrix
form with a small graph having a large number of node-
pairs with common in-neighbors is longer than that with
a large graph having a small number of such node-pairs.
Furthermore, matrix J ′(i.e., the J-scores) is computed by the
conventional approach (i.e., ‘‘for’’ loop), which is expensive
with large graphs; the JacSim matrix form is not computed
by only matrix-based operations since both matrices E and J ′

are computed by employing ‘‘for’’ loops.

4The complete process of transforming the JacSim iterative form to the
matrix form can be found in [1, Section 4].
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III. PROPOSED MEASURE: JACSIM*
In this section, we present JacSim* that effectively solves the
existing drawbacks of the original JacSim.

A. ITERATIVE FORM
As explained in Section II, JacSim does not exploit some
paths in the graph to compute the similarity score of any node-
pair (a, b). In order to solve this issue, we propose a novel
randomwalk model as follows: two randomwalkers ra and rb
traverse the graph backward via in-links (i.e., incoming links
to nodes) by starting at a and b (i.e., a 6=b), and the two nodes
are regarded similar if ra and rb meet up at a common direct or
indirect in-neighbors of a and b; however, the random walk-
ers are supposed to meet up at common direct in-neighbors
(i.e., ra visits i and rb visits j, i = j) with the highest prob-
ability (i.e., 1) where the similarity is computed by Jaccard
(i.e., the J-score) or they traverse the graph to meet up at
common indirect in-neighbors of a and bwhere the similarity
is computed by the pairwise normalization (i.e., the P-score).
More specifically, in computing the P-score, we exploit all
in-neighbor pairs (i, j) where i 6= j (i.e., instead of neglecting
{(i, j)|i, j∈ Ia ∩ Ib}, only {(i, j)|i= j, i∈ Ia, j∈ Ib} are ignored).

JacSim* computes the similarity score of a node-pair (a, b)
as follows. If a= b, then S(a, b)= 1; if a 6= b and Ia = ∅ or
Ib = ∅, then S(a, b) = 0; otherwise S(a, b) = S ′(a, b) that is
obtained by the following recursive formula:

S ′(a,b) = C ·
(
α ·
|Ia ∩ Ib|
|Ia ∪ Ib|

+
(1−α)
|Ia||Ib|

·

∑
i∈Ia

∑
j∈Ib

S ′(i, j)
)

(3)

where the base case of the recursion is S ′(a, b)= 0 if a= b;
this base case guarantees that only those in-neighbor pairs
(i, j) where i 6= j are considered in calculating the P-score.
Fig. 2 illustrates simplified versions of both JacSim* and

JacSim recursive computations to calculate the similarity
score of node-pair (i, j) in our sample graph from Fig. 1;
in both cases, the circled numbers denote the required recur-
sive calls (i.e., in order of their executions) to compute the
P-score of (i, j). JacSim* and JacSim employ seven and five
recursive calls to calculate the P-score, respectively; JacSim*
exploits two node-pairs (d, e) and (e, d) neglected by JacSim
and considers the contribution of node a (i.e., the common
indirect in-neighbor of i and j) in similarity computation,
thereby assigning the higher similarity score (i.e., 0.1984) to
(i, j) than the one JacSim does (i.e., 0.1600). In the case of
(h, i), (k, l), (m, n), and (p, q), the similarity scores computed
by JacSim* are identical to the ones computed by JacSim in
our sample graph5; JacSim* effectively solves the pairwise
normalization problem by preserving the JacSim philosophy
in similarity computation.

The recursive computation in (3) can be solved by an
iteration to a fixed-point for k = 1, 2, . . . over S ′(a, b) as
follows. If a = b, then Sk (a, b) = 1 for any k; if a 6= b and
Ia=∅ or Ib=∅, then Sk (a, b)=0 for any k; otherwise Sk (a, b)

5In both similarity measures, the values of C and α are set as 0.8 and 0.4,
respectively, by following [1].

FIGURE 2. Simplified versions of JacSim* and JacSim computations.

is computed by S ′k (a, b):

S ′k (a, b)=C ·
(
α ·
|Ia ∩ Ib|
|Ia ∪ Ib|

+
(1− α)
|Ia||Ib|

·

∑
i∈Ia

∑
j∈Ib

S ′k−1(i, j)
)
(4)

where S ′k (a, b) = 0 if a = b; the iterative computation starts
with S ′0(a, b)=0 for all node-pairs (a, b).
The JacSim* scores are symmetric, bounded, monotonic,

unique, and always existent as shown in Appendix A.
In Section IV-B2, we show that JacSim* outperforms Jac-
Sim in terms of accuracy in similarity computation with all
datasets.

B. MATRIX FORM
In this section, we provide a matrix form for our JacSim*.
We start by proposing a matrix-based formula for Jaccard,
which is employed to compute J-scores; the J-score of a node-
pair (a, b) is calculated as follows [1]:

J−score(a, b)=
|Ia ∩ Ib|
|Ia ∪ Ib|

(5)

We can rewrite (5) as follows:

J−score(a, b)=
|Ia ∩ Ib|

|Ia|+|Ib|−|Ia ∩ Ib|
(6)

In order to calculate the numerator (i.e., the size of the
intersection of Ia and Ib) in (6), we provide the following
formula:

N=AT ·A (7)

VOLUME 9, 2021 146041
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where A∈R|V |×|V | is the adjacency matrix of the graph and
N ∈R|V |×|V | is a matrix whose entry [N ]a,b indicates the size
of the intersection of Ia and Ib.
Lemma 1: In (7), ∀a, b∈V , [N ]a,b=|Ia ∩ Ib|.
Proof: Based on the definition of the matrix multipli-

cation, [N ]a,b =
∑|v|

i=0[A
T ]a,i · [A]i,b. We know that in the

adjacency matrix A, [A]i,j = 1 if there is a direct link from
i to j (i.e., i ∈ Ij) and [AT ]i,j = 1 if there is a direct link
from j to i in the graph (i.e., j ∈ Ii). [AT ]a,i · [A]i,b 6= 0 if
[AT ]a,i = [A]i,b = 1, which means i ∈ Ia ∩ Ib; therefore,∑|v|

i=0[A
T ]a,i ·[A]i,b=|Ia ∩ Ib|.

We obtain the |Ia|+|Ib| part in the denominator of (6) as
follows:

M=AT ·J+(AT ·J )T (8)

where J ∈ R|V |×|V | is an all-ones matrix (i.e., all elements
are set as one) and entry [M ]a,b in matrix M ∈ R|V |×|V | is
identical to the value of |Ia|+|Ib|.
Lemma 2: In (8), ∀a, b∈V , [M ]a,b=|Ia|+|Ib|.
Proof: Based on the definition of the matrix multiplica-

tion, [AT·J ]a,∗=
∑|V |

i=0[A
T ]a,i ·[J ]i,∗. As we know, [AT ]a,i=1

if there is a direct link from i to a in the graph (i.e., i∈ Ia) and
[J ]∗,∗=1; therefore, [AT ·J ]a,∗=

∑|V |
i=0[A

T ]a,i· 1=|Ia|. Also,
[AT ·J ]∗,a=

∑|V |
i=0[A

T ]∗,i ·[J ]i,a and we know that [AT ]∗,i=1
if there is a direct link from i to ∗ in the graph (i.e., i∈ |I∗|);
therefore, [AT·J ]∗,a=

∑|V |
i=0[A

T ]∗,i·1= |I∗|.More specifically,
all entries in any row i of matrix AT ·J are identical to the
value of |Ii| (i.e., ∀i, [AT ·J ]i,∗=|Ii|) and each entry [AT ·J ]∗,j
in a column j is identical to |I∗| (i.e., corresponding entries in
all columns are identical where ∀j, [AT · J ]∗,j = |I∗|). As a
result, in (8), entry [M ]a,b = [AT · J ]a,b+ [(AT · J )T ]a,b =
[AT ·J ]a,b+[AT ·J ]b,a=|Ia|+|Ib|.
Now, we can calculate the denominator of (6) as follows:

U=M−N (9)

where U ∈R|V |×|V | is a matrix whose entry [U ]a,b indicates
the size of the union of Ia and Ib (i.e., [U ]a,b=|Ia ∪ Ib|).
Finally, we can calculate the J-scores by the following

matrix formula:

J ′= N� U (10)

where � denotes the Hadamard division (i.e., [X � Y ]i,j =
[X ]i,j
[Y ]i,j

) [26] and entry [J ′]a,b denotes the J-score of (a, b).
However, in the directed graphs, when Ia = Ib = ∅, the
Hadamard division for node-pair (a, b) will be defined asNaN
(i.e., not a number) since [N ]a,b= [U ]a,b=0. In order to solve
this problem, we rewrite (10) as follows:

J ′=N�(J� U ) (11)

where � denotes the Hadamard product (i.e., [X � Y ]i,j =
[X ]i,j · [Y ]i,j) [26]. Note that in calculating J � U , we face
the division by zero problem when Ia = Ib = ∅ (i.e., [J �
U ]a,b = 1

[U ]a,b
=

1
0 = inf , positive infinity); however, since

[N ]a,b=0, the result of the Hadamard product as the final
J-score of (a, b) is 0 (i.e., [J ′]a,b=0 if Ia= Ib=∅).

Now, we can propose a matrix form to compute the Jac-
Sim* scores in a directed graph. In (3), instead of considering
only nodes i∈ Iaand j∈ Ib, we consider all nodes in the graph
to calculate the P-score of (a, b) as follows:

S ′(a,b)

= C ·
(
α ·
|Ia ∩ Ib|
|Ia ∪ Ib|

+
(1−α)
|Ia||Ib|

·

∑
i∈V

∑
j∈V

[A]i,a · S ′(i, j) · [A]j,b
)

(12)

we note that [A]i,a = 1 if i directly pointing to a
(i.e., i ∈ Ia); otherwise, [A]i,a = 0. Equation (12) can be
rewritten as follows:

S ′(a,b)

= C ·
(
α · [J ′]a,b+(1−α) ·

∑
i∈V

∑
j∈V

[A]i,a
|Ia|
· S ′(i, j) ·

[A]j,b
|Ib|

)
(13)

where [A]i,a
|Ia|

and [A]j,b
|Ib|

are identical to [Q]i,a and [Q]j,b
(i.e., Q is the column normalized adjacency matrix), respec-
tively; therefore, we provide the following matrix form for
JacSim*:{

S ′=C ·
(
α ·J ′+(1−α)·(QT · S ′ · Q)

)
∧I0

S=S ′∨I
(14)

where entry [S]a,b in matrix S ∈ R|V |×|V | denotes the
JacSim* score of (a, b), ∧ is the conjunction operator select-
ing the minimum operand (i.e., X ∧Y = H , then [H ]a,b =
min{[X ]a,b, [Y ]a,b}), ∨ is the disjunction operator selecting
the maximum operand (i.e., X ∨ Y = H , then [H ]a,b =
max{[X ]a,b, [Y ]a,b}), and inmatrix I0∈R|V |×|V |, the diagonal
entries are set as 0 and others are set as 1. ∧ and ∨ operators
set the respective diagonal entries in S ′ and S as 0 and 1; they
guarantee that S ′(a, b)= 0 if a= b and S(a, b)= 1 if a= b,
respectively.

The recursive formula in (14) can be solved by the follow-
ing iteration for k = 1, 2, . . .:

S ′k=C ·
(
α ·J ′+(1−α) · (QT · S ′k−1 · Q)

)
∧ I0

Sk=S ′k∨I
S0=Z

(15)

the computation is initialized by matrix Z where all entries
are set as 0.

Let us clarify the following points about the JacSim*
matrix form: 1) as explained step by step, we employed a
straightforward mathematical process to transform the Jac-
Sim* iterative form to the matrix form without applying any
changes to the original JacSim* formula in (3); our matrix
form provides the exact JacSim* scores with no approxima-
tion. 2) Contrary to JacSim, our matrix form is represented
and calculated only by matrix-based operations even in the
case of matrix J ′. 3) Matrix J ′ is computed once and reused
in all iterations, we have two matrix multiplications in each
iteration, and all matrices are represented by the CSC storage
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TABLE 1. Some statistics about our datasets.

schema [25]; let m be the number of non-zero entries in
matrix Q, then the time complexity to compute the JacSim*
matrix form is O(km|V |).
In Section IV-B3, we show that the JacSim* matrix form

is dramatically faster than its iterative form and also than the
both forms of JacSim. In Appendix B, we propose JacSim*
formulas (i.e., in both forms) that exploit out-neighbors in
similarity computation instead of in-neighbors with directed
graphs. We note that both of the JacSim* formulas proposed
in Section III and Appendix B can be equivalently applied to
undirected graphs.

IV. EXPERIMENTAL EVALUATION
In this section, we evaluate the accuracy and performance of
our JacSim* in comparison with those of JacSim.

A. EXPERIMENTAL SETTINGS
We employ eight real-world datasets as follows; Table 1
shows some statistics of our datasets:

Amazon [27] is a products co-purchasing graph collected
by crawling Amazon website (i.e., if products a and b are
frequently co-purchased, there is a link between them in the
graph). The node labels denote the product category. To per-
form reasonable evaluation, we neglected labels with less
than ten corresponding nodes; this graph is partially tagged
by 71 labels.

BlogCatalog [12] is a graph where nodes represent blog-
gers and links do their social relationships. The node labels
denote blogger interests inferred through the metadata pro-
vided by the bloggers; this graph is fully tagged by 39 labels.

CoraCitation [28] is a citation graph where nodes rep-
resent academic papers in the area of computer science and
links do citation relationships among papers. The node labels
denote the paper’s topic (e.g., reinforcement learning); this
graph is fully tagged by 70 labels.

DBLP [1] is a citation graph of papers in the areas of data
mining and databases published in 2006 and earlier. The node
labels denote the papers research topics created based on a
famous data mining book [29] where the papers relevant to a
chapter’s research topic have been grouped together in the
bibliographic section of the chapter; the graph is partially
tagged by 11 labels corresponding to 11 chapters of the book.

EmailEU [30] is a graph constructed based on the email
communication data of a European research institution
(i.e., if member a sent at least one email to member b, there

is a link from a to b in the graph). The node labels denote the
working department of the member; this graph is fully tagged
by 42 labels.

LiveJournal [27] is a graph representing social relation-
ships among bloggers. The node labels denote bloggers inter-
ests, which are explicitly stated by bloggers themselves.
To perform reasonable evaluation, we chose labels with more
than ten and less than a hundred nodes; this graph is fully
tagged by 7,086 labels.

TREC [1] is a hyperlink graph constructed based on TREC
20036 where nodes represent webpages and links do the
hyperlinks among them. The node labels indicate the rele-
vant query topic for the webpages, which are created based
on LETOR 3.0 [31], a benchmark collection for research
on learning to rank for information retrieval, released by
Microsoft Research Asia; this graph is partially tagged by
11 labels.

Wikipedia [32] is a co-occurrence graph of words appear-
ing in the first million bytes of the English Wikipedia dump.
The labels represent the inferred Part-of-Speech (POS) tags
of words. This graph is fully tagged by 40 labels.

To evaluate the accuracy, we utilize MAP (mean average
precision), precision, recall, F-score [14], and PRES [33] as
evaluation metrics. In each dataset D, labels are considered
as ground truth sets and every single node tagged by a label
l is used as a query node q for a similarity based searching
to find top-t (t = 5, 10, 20, 30) nodes similar to q as a
result set; if a node in the result set is originally tagged by l,
it is labeled as relevant, otherwise irrelevant. For each value
of t, we compute average precision (AP), precision, recall,
F-score, and PRES for q; we take their average values over all
the queries tagged by l to get the metrics values for l. Then,
we compute the average values of MAP, precision, recall,
F-score, and PRES over all labels in the dataset for t. Finally,
the average values of the five metrics over all values of t are
regarded as the final accuracy for D.

For JacSim, damping factor C is set as 0.8 and impor-
tance factor α is set as 0.4 by following [1]. In our experi-
ments, we do not consider SimRank, PSimRank, C-Rank, and
MatchSim since it has been shown than JacSim significantly
outperforms all of those similarity measures in terms of both
accuracy and performance [1]. All the experiments were per-
formed on an Intel machine equipped with sixteen 3.60 GHz
i9-9900K CPUs, 128 GB RAM, and a 64-bit Fedora Core 33
operating system. All required codes are implemented with
Python 3.8.

B. RESULTS AND ANALYSES
In this section, we first perform a parameter tuning for Jac-
Sim* and then analyze our experimental results.

1) PARAMETER TUNING
First of all, we note that for the parameter tuning and
then accuracy comparison in Section IV-B2, we employ the

6https://trec.nist.gov/data.html
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TABLE 2. Results of parameter tuning with DBLP and LiveJournal datasets.

TABLE 3. Best values of α for all datasets.

TABLE 4. Accuracy of JacSim* and JacSim with undirected graphs.

JacSim* matrix form represented by (15) instead of its iter-
ative form represented by (4) since the matrix form provides
exact JacSim* scores and it is dramatically faster than the
iterative form as discussed in Section IV-B3. As explained
in Section III, JacSim* has two parameters: C , the damping
factor, and α, the importance factor; we aim to figure out how
the accuracy of JacSim* changes when it is equipped with
different values of C and α. Our experimental results with all
datasets show that the accuracies of JacSim* equipped with
different values ofC (i.e.,C ∈{0.4, 0.6, 0.8}) are not tangible;
thus, we set the value of C as 0.8 in accordance to JacSim.
To find the best value of α, we conduct extensive experiments
as follows. For each datasetD, we set the value of α in (15) as
0.1 to 0.9 in step of 0.1 and evaluate the accuracy of JacSim*
on ten iterations for each case (i.e., we totally consider 720=
(8 × 9 × 10) different cases); the value of α providing the
highest accuracy is selected as the best value for D. We do
not consider α = 0 and α = 1.0 since in the former case,
the similarity scores of any node-pairs (a, b) would be zero
on all iterations and in the latter case, the similarity scores
of any node-pairs (a, b) are computed based on only J-scores
on all iterations where only direct in-neighbors of a and b
are exploited. As an example, Table 2 shows the results of
parameter tuning with DBLP and LiveJournal datasets; the
values in the parentheses show the iterations on which the

highest accuracy are observed (e.g., the highest accuracy with
theDBLP dataset when α=0.5 is observed on iteration 5) and
the values in boldface show the highest accuracy.

As observed in Table 2, JacSim* shows the highest accu-
racy with DBLP and LiveJournal datasets when α = 0.2
and α = 0.3, respectively. Table 3 summarizes the complete
results of our parameter tuning where the highest accuracy
of JacSim* is observed when α is set as 0.2 or 0.3 with all
datasets except one case (i.e., theWikipedia dataset); it means
JacSim* is not too sensitive to the value of α. For the sake of
brevity, we set the value of α as 0.2 with all datasets for our
experimental evaluations in Sections IV-B2 and IV-B3.

2) ACCURACY COMPARISON
In this section, we evaluate the accuracy of JacSim* in com-
parisonwith that of JacSimwith our datasets in terms ofMAP,
precision, PRES, recall, and F-score; in this comparison,
we consider the iterative form of JacSim since it shows higher
accuracy that its matrix form [1]. Let us start with undirected
graphs in Amazon, BlogCatalog, LiveJournal, andWikipedia
datasets; with each dataset, we consider the best accuracy of
both JacSim* and JacSim observed in ten iterations. Table 4
represents the results of this comparison where the numbers
in the parentheses show the iterations on which the best
accuracies are observed (e.g., JacSim* and JacSim show their
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TABLE 5. Accuracy of JacSim* and JacSim with directed graphs by exploiting in-neighbors.

TABLE 6. Accuracy of JacSim* and JacSim with directed graphs by exploiting out-neighbors.

best accuracies on iterations 7 and 6 with the Amazon dataset,
respectively). As observed in the table, JacSim* shows batter
accuracy than JacSim in terms of MAP, precision, PRES,
recall, and F-score with all datasets; the reason is that Jac-
Sim* exploits those paths in the graph neglected by JacSim
in similarity computation, thereby providing higher accuracy;
thanks to our random walk model explained in Section III-A.

Now, we investigate the accuracy of JacSim* in compar-
ison with that of JacSim with directed graphs in CoraCita-
tion, DBLP, EmailEU, and TREC datasets; first, we exploit
in-neighbors in similarity computation. In this comparison,
we also consider the best accuracy of both similaritymeasures
observed in ten iterations and the corresponding iterations are
represented in parentheses as before. Table 5 demonstrates
the results of this experiment where our observations are
in accordance with those in Table 4; JacSim* outperforms
JacSim in terms of five metrics with all datasets.
Table 6 presents the results of experiments when out-

neighbors are exploited in similarity computation with our
directed graphs. As observed in the table, JacSim* shows
better accuracy than JacSim in terms of MAP, precision,
PRES, recall, and F-score with all datasets except with the
DBLP dataset where the both similarity measures show the
identical accuracy in terms of all five metrics. The reason is
that JacSim* and JacSim have their best accuracy on the first
iteration where the similarity scores for any node-pairs (a, b)
(i.e., a 6= b and Oa,Ob 6= ∅) are computed only
based on the J-scores. For simplicity, let us explain this
issue based on in-neighbors as follows; it is applicable to
out-neighbors as well. In the case of JacSim* (refer to
Section III-A), on the first iteration, S1(a, b) = S ′1(a, b) =
α · [J ′]a,b +

(1−α)
|Ia||Ib|

∑
i∈Ia

∑
j∈Ib S

′

0(i, j) where S ′0(i, j) = 0

for all node-pairs (i, j); thus, S1(a, b) = S ′1(a, b) =
α · [J ′]a,b. In the case of JacSim (refer to Section II),
S1(a, b)= α ·[J ′]a,b+

(1−α)
|Ia||Ib|−|Ia∩Ib|2

∑
i∈Ia−Ib

∑
j∈Ib S0(i, j)+∑

i∈Ib−Ia

∑
j∈Ia∩Ib S0(i, j) where S0(i, j)=0 for all node-pairs

(i, j) that i 6= j and node-pairs (i, j) that i= j are not considered
in the computation; thus, S1(a, b)= α · [J ′]a,b. Although the
values of α are set as 0.2 and 0.4 in JacSim* and JacSim
as respectively mentioned in Sections IV-B1 and IV-A, the
accuracy of the both cases are same regardless of the value
of α, since multiplying identical value [J ′]a,b by constant α
does not change the similarity-based ranking of node-pairs
regarding any query node.

3) PERFORMANCE COMPARISON
In this section, we evaluate the performance (i.e., execu-
tion time) of JacSim* in comparison with that of JacSim
as follows. We apply each of the JacSim* iterative form
(JS∗-IF), JacSim* matrix form (JS∗-MF), JacSim iterative
form (JS-IF), and JacSim matrix form (JS-MF) respectively
represented by (4), (15), (1), and (2) to our datasets in ten
iterations; we do not consider the required time to store the
results of similarity computations in files or database. Fig. 3
illustrates the execution times of the above measures with our
four undirected graphs; times are represented in minutes and
the execution time of each similarity measure is also written
on the top of its corresponding bar.

We have the following observations in Fig. 3. 1) Although
JS∗-IF outperforms JS-IF in terms of accuracy (refer to
Section IV-B2), it is slower than JS-IF with all datasets;
the reason is that JS∗-IF exploits more paths in similarity
computation than JS-IF does as explained in Section III-A.
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FIGURE 3. Execution times with undirected graphs.

2) JS∗-MF is dramatically faster than all other three similar-
ity measures with all datasets since it employs compressed
matrices by the CSC storage scheme and only matrix-based
operations for similarity computations, while both JS∗-IF
and JS-IF employ the conventional approach (i.e., ‘‘for’’
loops) and JS-MF is not computed by only matrix-based oper-
ations (i.e., matrices E and J ′ are computed by employing
‘‘for’’ loops). 3) JS-MF is sensitive to the number of node-
pairs with common neighbors in the graph such that it is
slower with a small graph having a large number of node-
pairs with common in-neighbors than with a large graph
having a small number of such node-pairs. As an exam-
ple, in spite of the fact that BlogCatalog and Wikipedia
datasets have smaller number of nodes than those of Amazon
and LiveJournal (refer to Table 1), the execution times of
JS-MF with the two former datasets are higher than those
with the two latter ones since the number of node-pairs
with common neighbors in BlogCatalog (i.e., ‘‘32,787,165’’)
and Wikipedia (i.e., ‘‘11,015,803’’) are larger than those in
Amazon (i.e.,‘‘780,43’’) and LiveJournal (i.e., ‘‘1,452,366’’).
On the contrary, the execution time of JS∗-MF depends
on |V |; it shows the highest execution time with the
largest undirected dataset (i.e., amazonwith ‘‘30,000’’ nodes)
and the lowest execution time with the smallest one
(i.e., Wikipedia with ‘‘4,777’’ nodes).

Figures 4 and 5 illustrate the results of the performance
comparison with the directed graphs where in-neighbors and
out-neighbors are exploited, respectively. In these figures,
our observations are in accordance with those in Fig. 3. The
execution time of JS∗-IF is higher than that of JS-IFwith all
datasets when any of in-neighbors and out-neighbors are con-
sidered since JS∗-IF exploits more paths than JS-IF does
in similarity computation. JS∗-MF is dramatically faster than
all other similarity measures with all datasets regardless of
the exploited neighbor type since it employs only compressed
matrices along with matrix-based operations for similarity
computations. JS-MF is sensitive to the number of node-
pairs with common neighbors in the graph regardless of the

FIGURE 4. Execution times with directed graphs when exploiting
in-neighbors.

FIGURE 5. Execution times with directed graphs when exploiting
out-neighbors.

neighbor type. As an example, the DBLP dataset has smaller
number of nodes (i.e., ‘‘21,177’’) than that of CoraCitation
(i.e., ‘‘23,166’’); however, the execution times of JS-MF
with DBLP based on both in-neighbors and out-neighbors
are higher than those with CoraCitaion since the number
of node-pairs with common in-neighbors (i.e., ‘‘466,990’’)
and out-neighbors (i.e., ‘‘2,214,105’’) in DBLP are larger
than those in CoraCitaion (i.e.,‘‘229,306’’ and ‘‘1,100,051’’,
respectively). The execution time of JS∗-MF depends on |V |;
it shows the highest and lowest execution times with TREC
as the largest directed dataset (i.e., with ‘‘43,202’’ nodes)
and EmailEU as the smallest one (i.e., with ‘‘1,005’’ nodes),
respectively, regardless of the exploited neighbor type.

In addition, it is worth to note that contrary to JS-MF,
JS∗-MF shows same execution times when exploiting in-
neighbors and out-neighbors with each dataset. For example,
in the case of the TREC dataset, the execution times of JS-MF
with in-neighbors and out-neighbors are 33.12 and 35.70,
respectively (i.e., there is 2.58 minutes time difference) and
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those execution times of JS∗-MF are 8.56 and 8.55, respec-
tively (this very small difference is caused by inconsistent
system resources such as CPU overload). This again shows
that the performance of JS-MF depends on the number of
node-pairs with common neighbors in the graph, while that
of JS∗-MF depends on the actual number of nodes.

V. CONCLUSION
In this paper, we first pointed out the three existing drawbacks
of JacSim, a powerful variant of SimRank alleviating the pair-
wise normalization problem, as follows: 1) JacSim neglects
some paths in the graph in similarity computation, which
adversely affects its accuracy; 2) the JacSim matrix form
provides the approximate similarity scores; thus, it shows
lower accuracy than its iterative form, and 3) the JacSim
matrix form still suffers from the low performance since it is
sensitive to the number of node-pairs with common neighbors
in the graph. Then, we proposed JacSim*, which effectively
solves the above three issues along with the pairwise nor-
malization problem, it shows higher accuracy than JacSim
with eight real-world datasets, its matrix form provides the
exact similarity scores and identical accuracy to that of the
iterative form while it is dramatically faster than its own
iterative form and the both forms of JacSim, its matrix form
is not sensitive to the number of node-pairs with common
neighbors, and it has more simpler, easier to understand, and
easier to implement formulas in both iterative and matrix
forms than the original JacSim.

We figured out interesting directions for our future work as
follows. We plan to extend JacSim* to compute similarity of
nodes in signed graphs, where two types of links (i.e., positive
and negative) exist. It has been shown that negative links
contain additional information, which is beneficial to various
tasks such as link sign prediction and node classification
in signed graphs [34]. Furthermore, to highly improve the
performance of JacSim* with very large graphs (i.e., with
millions or billions of nodes), we plan to propose an acceler-
ation technique (e.g., partial sums memoization [35]) for our
JacSim*; in this case, we need to apply such technique to only
matrix multiplications in (15) since matrix J ′ is computed
once and reused in all iterations.

APPENDIX A
In this section, we show that the JacSim* scores are symmet-
ric, bounded, monotonic, unique, and always existent.

(1) Symmetry: for any node-pair (a, b), S(a, b)= S(b, a).
According to (4), if a=b, Sk (a, b)=Sk (b, a)=1; if a 6=b and
Ia=∅ or Ib=∅, Sk (a, b)=Sk (b, a)=0; otherwise Sk (a, b)=
S ′k (a, b)=S

′
k (b, a)=Sk (b, a) for all k≥0.

(2) Bounding: for all k , 0≤Sk (a, b)≤1.
According to (4), if a=b, then S0(a, b)=S1(a, b)=· · ·=1;

therefore, 0 ≤ Sk (a, b) ≤ 1 for all values of k . If a 6= b and
Ia=∅ or Ib =∅, then S0(a, b)= S1(a, b)=· · ·= 0; therefore,
0≤Sk (a, b)≤1 for all values of k . If a 6=b, Ia 6=∅, and Ib 6=∅,
then S0(a, b) = S ′0(a, b) = 0; therefore, 0 ≤ S0(a, b) ≤ 1,
which means the property holds for k = 0. Now, we assume

that the property holds for k , which means 0 ≤ Sk (a, b) =
S ′k (a, b)≤1; according to this assumption S ′k (a, b)≥0, thus

S ′k+1(a, b) = C ·
(
α ·
|Ia ∩ Ib|
|Ia ∪ Ib|

+
(1− α)
|Ia||Ib|

·

∑
i∈Ia

∑
j∈Ib

S ′k (i, j)
)

≥ C ·
(
α ·
|Ia ∩ Ib|
|Ia ∪ Ib|

+
(1− α)
|Ia||Ib|

·

∑
i∈Ia

∑
j∈Ib

0
)

≥ C ·α ·
|Ia ∩ Ib|
|Ia ∪ Ib|

where 0≤ |Ia∩Ib|
|Ia∪Ib|

≤1, 0<C<1, and 0<α≤1, which means
S ′k+1(a, b)=Sk+1(a, b)≥0.
According to the assumption S ′k (a, b)≤1, thus

S ′k+1(a, b) = C ·
(
α ·
|Ia ∩ Ib|
|Ia ∪ Ib|

+
(1− α)
|Ia||Ib|

·

∑
i∈Ia

∑
j∈Ib

S ′k (i, j)
)

≤ C ·
(
α ·
|Ia ∩ Ib|
|Ia ∪ Ib|

+
(1− α)
|Ia||Ib|

·

∑
i∈Ia

∑
j∈Ib

1
)

since
∑

i∈Ia

∑
j∈Ib1=|Ia||Ib|, then S

′

k+1(a, b)≤C ·
(
α·
|Ia∩Ib|
|Ia∪Ib|

+

(1−α)
)
. We know that |Ia∩Ib|

|Ia∪Ib|
≤1, which means S ′k+1(a, b)≤

C ·α+C ·(1−α)=C ; since 0<C<1, then also S ′k+1(a, b)=
Sk+1(a, b)≤1.
(3)Monotonicity: for every node-pair (a, b), the sequence

{Sk (a, b)} is non-decreasing as k increases.
If a = b, S0(a, b) = S1(a, b) = · · · = 1; thus, the property

holds. If a 6= b and Ia = ∅ or Ib = ∅, S0(a, b) = S1(a, b) =
· · · = 0; thus, the property holds. If a 6= b, Ia 6= ∅, and
Ib 6= ∅, according to (4), S0(a, b) = 0 and by the bounding
property, 0 ≤ S1(a, b) ≤ 1; therefore, S0(a, b) ≤ S1(a, b),
which means for k = 0, the property holds. We assume that
the property holds for all k where Sk−1(a, b)= S ′k−1(a, b)≤
Sk (a, b) = S ′k (a, b), which means S ′k (a, b)−S

′

k−1(a, b) ≥ 0.
Now, we show the property holds for k+1 as follows:

S ′k+1(a, b)− S
′
k (a, b)

= C ·
(
α ·
|Ia ∩ Ib|
|Ia ∪ Ib|

+
(1− α)
|Ia||Ib|

·

∑
i∈Ia

∑
j∈Ib

S ′k (i, j)
)

−C ·
(
α ·
|Ia ∩ Ib|
|Ia ∪ Ib|

+
(1− α)
|Ia||Ib|

·

∑
i∈Ia

∑
j∈Ib

S ′k−1(i, j)
)

=
C ·(1−α)
|Ia||Ib|

(∑
i∈Ia

∑
j∈Ib

S ′k (i, j)−
∑
i∈Ia

∑
j∈Ib

S ′k−1(i, j)
)

=
C ·(1−α)
|Ia||Ib|

(∑
i∈Ia

∑
j∈Ib

S ′k (i, j)−S
′

k−1(i, j)
)

according to the assumptions, S ′k (a, b)−S
′

k−1(a, b) ≥ 0 and
we already know that C · (1 − α) ≥ 0 and |Ia||Ib| ≥ 0;
therefore, S ′k+1(a, b)−S

′
k (a, b)≥0, which means Sk+1(a, b)=

S ′k+1(a, b)≥S
′
k (a, b)=Sk (a, b).

(4) Existence: the fixed points S(∗, ∗) of the JacSim*
equation always exists.

By the bounding and monotonicity properties, for any
node-pairs (a, b), S ′k (a, b) is bounded and non-decreasing as
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k increases; a sequence S ′k (a, b) converges to a lim S ′(a, b)=
S(a, b) in [0, 1], according to the Completeness Axiom of
calculus. lim

k→∞
S ′k+1(a, b) = lim

k→∞
S ′k (a, b) = S

′(a, b) and the

limit of a sum is identical to the sum of the limits, therefore

S ′(a, b)

= lim
k→∞

S ′k+1

= C ·
(
α ·
|Ia ∩ Ib|
|Ia ∪ Ib|

+
(1−α)
|Ia||Ib|

· lim
k→∞

∑
i∈Ia

∑
j∈Ib

S ′k (i, j)
)

= C ·
(
α ·
|Ia ∩ Ib|
|Ia ∪ Ib|

+
(1−α)
|Ia||Ib|

·

∑
i∈Ia

∑
j∈Ib

lim
k→∞

S ′k (i, j)
)

= C ·
(
α ·
|Ia ∩ Ib|
|Ia ∪ Ib|

+
(1−α)
|Ia||Ib|

·

∑
i∈Ia

∑
j∈Ib

S ′(i, j)
)
=S(a, b)

(5) Uniqueness: the solution for the fixed-point S(∗, ∗) is
always unique.

Suppose that S(∗, ∗) and Ŝ(∗, ∗) are two solutions for the
JacSim* equation. Also, for all node-pairs (a, b), let δ(a, b)=
S(a, b)−̂S(a, b) be the difference between these two solutions.
Let M =max |δ(a, b)| be the maximum absolute value of all
differences observed for node-pairs (a, b) (i.e., |δ(a, b)|=M ).
We need to prove that M = 0. If a = b, M = 0 since
S(a, b) = Ŝ(a, b) = 1. If a 6= b and Ia = ∅ or Ib = ∅, M = 0
since S(a, b)= Ŝ(a, b)= 0. Otherwise, S(a, b)= S ′(a, b) and
Ŝ(a, b) = Ŝ ′(a, b) are computed by JacSim*. When α = 1,
M = 0 since S ′(a, b) = Ŝ ′(a, b) = C · α · |Ia∩Ib|

|Ia∪Ib|
. When

0 < α < 1, we have

δ(a, b) = S ′(a, b)− Ŝ ′(a, b)

=
C · (1− α)
|Ia||Ib|

·

∑
i∈Ia

∑
j∈Ib

S ′(i, j)− Ŝ ′(i, j)

=
C · (1− α)
|Ia||Ib|

·

∑
i∈Ia

∑
j∈Ib

δ(i, j)

thus,

M = |δ(a, b)| =

∣∣∣∣C · (1− α)|Ia||Ib|
·

∑
i∈Ia

∑
j∈Ib

δ(i, j)

∣∣∣∣
≤

C · (1− α)
|Ia||Ib|

·

∑
i∈Ia

∑
j∈Ib

|δ(i, j)|

≤
C · (1− α)
|Ia||Ib|

·

∑
i∈Ia

∑
j∈Ib

M

= C · (1− α) ·M

Since 0 < α < 1 and 0 < C < 1, then 0 < C ·(1−α) < 1,
which meansM = 0.

APPENDIX B
In this section, we provide JacSim* formulas that exploit out-
neighbors in similarity computation instead of in-neighbors
in directed graphs. Let us define Oa as a set of nodes directly
pointed to by node a (i.e., direct out-neighbors of a). Then, the

similarity score of a node-pair (a, b) by considering out-
neighbors is computed as follows by JacSim*. If a= b, then
S(a, b)= 1; if a 6= b and Oa=∅ or Ob=∅, then S(a, b)= 0;
otherwise S(a, b)=S ′(a, b) that is obtained by the following
formula:

S ′(a,b)=C ·
(
α ·
|Oa ∩ Ob|
|Oa ∪ Ob|

+
(1−α)
|Oa||Ob|

·

∑
i∈Oa

∑
j∈Ob

S ′(i, j)
)
(16)

where the base case of the recursive computation is
S ′(a, b) = 0 if a = b; this base case guarantees that only
those out-neighbor pairs (i, j) where i 6= j are considered in
calculating the P-score.

The overall mathematical process to transform the JacSim*
iterative form to a matrix form based on out-neighbors
is exactly similar to the one represented in Section III-B
except we exploit out-neighbors instead of in-neighbors. The
JacSim* matrix form based on out-neighbors is as follows:{

S ′ = C ·
(
α · J ′ + (1− α) · (Q· S ′ · QT )

)
∧ I0

S = S ′ ∨ I
(17)

where entry [S]a,b in matrix S ∈ R|V |×|V | denotes the sim-
ilarity score of (a, b), Q ∈ R|V |×|V | is the row normalized
adjacency matrix whose entry [Q]a,b=1/|Oa| if b is pointed
to by a (i.e., b ∈Oa); otherwise [Q]a,b = 0, and matrix J ′ is
calculated as follows:

J ′=N�(J�(M−N ))

N =A·AT

M =A·J+(A·J )T (18)

We note that both recursive formulations in (16) and (17)
can be solved by the iteration to a fixed-point similar to the
ones explained in Section III.
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