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ABSTRACT Thermal imaging is a process of using infrared radiation and thermal energy to collect
information about objects. It is superior to visible imaging for its ability to operate in darkness and tolerate
illumination variations. In addition, it has potential to penetrate smoke, aerosol, dust, and mist, which are
critical inhibitors for visible imaging applications, including semantic segmentation. Unfortunately, current
state-of-the-art image semantic segmentation methods (i) mainly concentrate on visible spectrum images,
which do not adequately capture the context of corresponding pixels, particularly edge details in thermal
images, and (ii) accept a trade-off between higher accuracy and lower speed, or vice-versa. Here, a novel
end-to-end trainable convolutional neural network architecture, feature transverse network (FTNet), has been
proposed to solve the aforementioned problems. FTNet captures and optimizes feature representation at the
multi-scale resolution, thereby improving the capability to process high-resolution images and producing
quality output with a lower computational cost. Extensive computer experimentations were conducted on
publicly available benchmarking thermal datasets, including SODA, MFNet, and SCUT-Seg, to demonstrate
the effectiveness of the proposed FTNet compared to state-of-the-art methods. This comparison includes
multiple aspects, including the quantitative accuracy and speed of the various approaches. The source code
is available at https://github.com/shreyaskamathkm/FTNet.

INDEX TERMS Convolutional neural network, FTNet, semantic segmentation, thermal segmentation,
edge-guidance, transverse network.

I. INTRODUCTION
Image segmentation is the process of partitioning images into
multiple segments [1], and it is one of the most challenging
tasks in computer vision. It paved the way towards scene
understanding, whose importance is highlighted by the fact
that an increasing number of applications nourish from infer-
ring knowledge from imagery, including autonomous driving
[2]–[4], computational photography [5], [6], biomedical anal-
ysis [7], [8], and augmented reality [9]–[13].

Semantic image segmentation (SS) is a high-level task
formulated as a classification problem of pixels with seman-
tic labels [11]. Semantic segmentation algorithms identify
regions of different objects in the scene by grouping parts of
the image together based on the same object of interest and
assigning a label to each pixel of an input image. In contrast,
instance segmentation treats multiple objects of the same
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FIGURE 1. Examples demonstrating the effectiveness of the FTNet’s
ability to reconstruct semantic maps with higher accuracy and crisper
edges. Column (a) Input thermal images, (b) Ground truth semantic maps,
(c) Results produced by FTNet, and (d) Results generated by the
state-of-the-art network- MCNet.

class as distinct individual instances. Panoptic segmentation
assigns two labels to each pixel of an image, namely a seman-
tic label and an instance id. The identically labeled pixels
belong to the same semantic class, and instance their ids
distinguish its instances.
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Despite significant advancements, semantic image seg-
mentation is still considered a challenging task due to the
adverse environmental conditions caused by imaging limita-
tions of the visible spectrum. For instance, visible cameras
are susceptible to lighting conditions and become invalid in
total darkness. Furthermore, their imaging quality decreases
significantly in adverse environmental conditions, such as
rain and smog [11].

Thermal imaging is a process of utilizing infrared radia-
tion and thermal energy to gather information about objects.
It is superior to visible imaging for its ability to operate
in darkness, and across illumination variations. It offers the
capability to penetrate smoke, aerosol, dust, and mist [14].
The global thermal imaging market for the mobility industry
is expected to reach $3.22 billion by 2025 [15]. The growth
of the market can be attributed to growing awareness and
lower prices of thermal cameras. This has led to their appli-
cation in many computer vision tasks, such as detection
[16], [17], tracking, segmentation [18]–[21], and individ-
ual and emotion identification [22]–[25]. Thermal image-
based computer vision will be instrumental in improving
driver-assist systems that are increasingly quintessential in
consumer carmodels. These sensors offer additional informa-
tion to existing autonomous driving sensory systems, which
strives to improve performance in identifying objects within
a vehicle’s surroundings to enhance driving reactions. How-
ever, the inter-class variance of objects in thermal images
is extremely low, making accurate labeling near boundaries
difficult, resulting in a large amount of semantic ambiguity
and intensifying the challenge of semantic segmentation. The
state-of-the-art (SOTA) semantic segmentation approaches
focus on diminishing semantic ambiguity using the rich con-
text information of visible images. However, redundant and
noisy semantic information from thermal images may clutter
the final semantic maps. An example of ambiguous boundary
and the noise-induced from thermal sensors is illustrated in
Figure 2.

Convolutional Neural Networks (CNN) are among the
most effective and widely used deep learning (DL) architec-
tures in computer vision, including classification, detection,
and segmentation. Semantic segmentation models usually
follow an encoder-decoder architecture. A deep convolutional
neural network (CNN) typically computes a feature hierarchy
layer by layer in the encoder stage. It develops an inherent
multi-scale pyramid shape. At the decoder end stage, a high-
semantic feature map is up-sampled and fused with the previ-
ous layer feature map through lateral connections to recover
higher spatial dimensions. After extracting spatial details, the
network predicts the class for each pixel to complete the
segmentation process.

However, this progress has come with a voracious appetite
for computing power which will rapidly become technically
and economically prohibitive [27].

This article presents a novel end-to-end trainable convo-
lutional neural network architecture, named feature trans-
verse network (FTNet), to address these issues. The proposed

FIGURE 2. Illustration of RGB and thermal images from MFN dataset [26].
The object boundaries in thermal images can be visualized as ambiguous
and noisy compared to their RGB counterpart, which will adversely affect
segmentation.

FTNet network will be designed and optimized to perform
image segmentation of thermal images. FTNet consists of two
main components: a high-low feature traversing and an edge
guidance part. The architecture is equipped with skip con-
nections between these two networks to use high-resolution
image details during the reconstruction. An example of the
results obtained using FTNet is illustrated in Figure 1.

Some of the notable contributions of FTNet include:
1) a unified end-to-end trainable network that captures dis-

criminative thermal image features from multiple resolutions
and combines them in a fully connected approach;

2) a network that captures and optimizes feature represen-
tation at the multi-scale resolution, thereby improving the
capability of handling high-resolution images and producing
quality output at a lower computational cost;

3) a network whose main representations are shared
between the semantic segmentation and edge guidance struc-
tures, which means that the FTNet simultaneously achieves
semantic segmentation and edge detection without signifi-
cantly increasing the model complexity;

4) an extensive computer simulation performed on chal-
lenging thermal semantic segmentation tasks on bench-
marks datasets including SODA [11], MFNet [26], and
SCUT-Seg [28], which validate the performance of the pro-
posed model compared with state-of-the-art methods such as
MCNet [28], PSPNet [29], DeepLabv3 [30], and HRNet [31];

5) the source code, whichwill bemade available onGitHub
for the research community.

The remainder of the paper is organized as follows.
In section II, the recent related literature is reviewed.
A detailed description of the FTNet architecture and its anal-
ysis is provided in section III. Section IV presents the experi-
mental results, including training details, ablation studies, and
benchmark results. Finally, a brief discussion and conclusion
are provided in sections V and VI, respectively.

II. RELATED WORK
This section provides an overview of some of the most promi-
nent DL architectures in use for the computer vision commu-
nity for visible and thermal image semantic segmentation.
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TABLE 1. Literature review of the state-of-art techniques for image semantic segmentation.

Some of the earliest segmentation approaches include
thresholding [32]–[34], histogram-based bundling, region
growing [35], k-means clustering [36], watersheds [37],
active contours [38], and graph cuts [39]. Most traditional
semantic segmentation algorithms are based on low-order
visual information of the images. Therefore, the semantic
maps produced by these methods are often not ideal when
complex segmentation tasks which require artificial auxiliary
information are presented [40]. However, DL architectures
have shifted the paradigm in the field of segmentation
with remarkable performance improvements on popular
benchmarks [41].

Long et al. [42] developed one of the first semantic
segmentation DL architectures using a fully convolutional
network. It was able to produce an output of the correspond-
ing size with arbitrary size input and effective reasoning.
However, it did not utilize the global context information

efficiently. Noh et al. [52] generated dense segmentation
masks using a sequence of deconvolution operations. The
network consisted of deconvolution and unpooling layers,
which alleviated a few of the existing limitations.

Eliminating downsampling may increase resolution; how-
ever, it affects the receptive field in subsequent layers,
increasing context loss. To overcome this, Chen et al. [53]
and Yu and Koltunet al. [54] used dilated convolution to
enlarge the receptive field of neural networks. Chen et al. [30]
further combined cascaded and parallel modules of dilated
convolutions.

Badrinarayanan et al. [43] introduced unpooling layers for
upsampling as a replacement for transposed convolutions.
This network eliminated the parameters required for learned
upsampling, thereby achieving a balance between memory
and precision. Liu et al. [55] proposed a method that mod-
els global context directly instead of relying on the largest
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receptive field of the network. This methodmerged the output
of the global pooling layer from previous layers with the cur-
rent map of the posterior layer to generate the final classifier
prediction with both having the same size [56].

Multi-scale feature analysis has been extensively studied
and has been deployed in various neural network architec-
tures. One of the most prominent multi-scale feature analysis
models was FPN [57], [58], which introduced multi-scale
feature fusion by setting a top-down pathway. Following
this, various feature pyramidal-based architectures have been
introduced; for example, PANet [48] suggests an additional
bottom-up path augmentation for preserving the local con-
text, and NASFPN [59] was introduced for object detec-
tion. This network exploited the neural architecture search
framework. Wang et al. [31] proposed a multi-branch par-
allel structure that can efficiently utilize the fine-grained
spatial information, which is generally lost in encoder-
decoder-based models due to the downsampling and upsam-
pling process. However, it does not consider global context
information and boundary information [60]. Zhao et al. [29]
further developed a method to learn feature representations at
different scales. However, it has a sizeable model complexity
and computational requirements.

Edge guidance is simple but effective in indicating the
semantic separation between different regions [61], [62].
In fact, there exists few traditional high-order conditional
random field (CRF) [63], and CNN based [64], [65]
semantic segmentation methods utilize superpixels for
retaining boundary information. However, superpixel based
approaches are unlearnable and not robust [66]. Liu et al. [66]
addressed this issue using edge loss reinforced structures con-
structed from encoder and decoder to retain spatial boundary
information for remote sensing images.

In the thermal image segmentation domain, Li et al. [11]
designed a gated feature-wise transform layer to adaptively
embed edge information as the guidance of a semantic seg-
mentation network. This network extracted edges utilizing
the HED (Holistically nested Edge Detection) network [67]
and embedded the edge features into a network proposed
by Chen et al. [30]. Xiong et al. [28] developed a thermal
image semantic segmentation method that utilized multi-
level edge knowledge to get more edge and shape features.
Ha et al. [26] incorporated RGB and thermal information
to perform segmentation. This network utilized two separate
encoders to extract features from visible and thermal images
and fuse them in the decoder to produce the probability map
for the semantic segmentation results. Other methods that
used RGB and thermal images are described in [68]–[70].
Table 1 provides a chronological list of various other image
segmentation methods, along with a brief explanation for
each method.

III. PROPOSED METHOD
This section presents an end-to-end trainable convolutional
neural network architecture called the feature transverse net-
work (FTNet). A high level flow diagram of the proposed

system is provided in Figure 3. This paper aims to construct
a function f (I ) developed specifically to link each pixel in
an image, where I is an input image of any arbitrary size
(m, n) to a class label with the same dimension. This network
combines the low-level layers with poor semantic features
and strong resolution with the high-level layers that have
rich semantic features and scarce resolution. Following this
theme, the novel FTNet comprises an encoder network, a cor-
responding transverse decoder network, and a final pixel-wise
classification layer. This network aims at capturing and opti-
mizing feature representation at the multi-scale resolution,
thereby improving the capability of handling high-resolution
images and producing quality output at a lower computational
cost than the SOTA techniques. Additional details of these
components are provided in further subsections.

A. ENCODER NETWORK
Since the main focus of the proposed network is to build a
position-sensitive model capable of pixel-level classification,
FTNet employs existing SOTA backbones that follow the
design rule of LeNet-5 [71]. The spatial size of the features
in these classification-based backbones is gradually reduced
from a high-level representation to a low-level representation,
thereby allowing FTNet to capture features with different
representation capabilities.

For simplicity of exposition, consider the case in which
ResNet50 is used as a backbone. The basic structure of
the encoder network is visualized in Figure 3 (a). The
encoder network aims at acquiring features at different res-
olutions by subsampling at various stages. The convolu-
tions in these networks can be divided into four stages,
and the output of each stage’s last block from the encoder
network can be represented as {Ei|i = 1, 2, 3, 4}. This
bottom-up pathway extracts and establishes a feature pyra-
mid by incorporating features from the last convolutional
layer in each stage. The extension to other backbones is
straightforward.

B. FEATURE TRANSVERSE NETWORK (DECODER)
Recent developments have demonstrated the evidence for the
necessity of exploring all the multiple-resolution representa-
tions for a broad range of vision problems [31]. Following
this, a transverse network with a top-down path comprising
feature aggregation to produce final semantic features at
high-resolution is introduced. An illustration of the proposed
decoder network is displayed in Figure 3 (b).

The proposed FTNet considers the features from the stages
{Ei|i = 1, 2, 3, 4}, which comprises multiple resolutions
r = 1/4, 1/8, 1/16, and 1/32, respectively. These feature
maps are passed through a set of residual units U as proposed
by He et al. [72]. The illustration of this unit is provided in
Figure 3 (d). Each residual unit can be defined as formulated
in equation (1).

9l+1 = R(ωs(I (9l))+�(ωl ∗9l + bl)|

× {ωl = [$l,k : k = 1 ≤ k ≤ K]} (1)
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FIGURE 3. The network architecture of the proposed feature transverse network (FTNet) is shown, where (a) provides the encoder
structure that extracts features at different resolutions, (b) provides the decoder structure designed in a transverse manner that
reconstructs a high-resolution semantic map, (c) provides the legend used in FTNet, and (d) visualizes the residual unit proposed
by He et al. [72].

where 9l is the input feature map for the lth residual layer,
ωl and bl are the associated set of weights and biases respec-
tively, K denotes the number of weights, � denotes the com-
bination of layers CONV→BN→ReLU→CONV→BN,
R denotes the ReLU activation function, and I is the identity
map which may comprise of weight ωs when the features
maps do not have the same number of channels.

A set of residual units along each resolution form a residual
stream. The output of these residual streams can be formu-
lated as {8i|i = 1, 2, 3, 4}. These streams are fused in
a fully connected fashion to take advantage of information
exchange across multi-resolution representations. The inte-
gration of multi-resolution features maps r(m) at the ith stage
is a summation of different featuremapswith a corresponding
function f. In certain cases, when dilated convolutions are
used for semantic segmentation purposes, the last three layers
comprise dilated convolutions. To support this mechanism,
the corresponding residual streams contain dilated convolu-
tion to maintain the same resolution. A broad formulation of
both these cases can be defined as shown in (2)

Di =
∑4

j=0
fij(8ij)| i = 0, 1, 2, 3, 4 (2)

The function fij(·) is dependent on feature resolutions.
It can be formulated as shown in III-C.

fij(·) =


8ij, if i = jorri = rj

↓ (8ij), if (i < j) and ri < rj

↑ (8ij) if (i > j) and ri > rj

(3)

To downsample (↓) by a factor of 4, two strided convolu-
tions with kernel size 3× 3 are utilized. For upsampling (↑),
a resize convolution with a bilinear kernel and a convolu-
tional layer of kernel size 1 × 1 are utilized. No function is
applied when the input and output feature maps’ resolutions
are identical and along the same residual stream. When the
residual stream is different, dilated convolution is applied to
maintain the same resolution. Finally, all the feature maps are
upsampled to the original resolution and passed through 2,
which comprises CONV → BN → ReLU → CONV with
convolution kernel size 1× 1.

C. EDGE GUIDANCE (EG)
Thermal image features are coarse due to low resolution and
contrast. The object boundaries are ambiguous due to thermal
crossover, and the images are noisy due to the design of
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FIGURE 4. Illustration of thermal images with their corresponding masks from the Cityscapes and SODA datasets. Rows [a-c] shows the thermal images
with the corresponding semantic maps and edge maps. Columns [i-iii] comprises Cityscapes images converted to the thermal domain, and
columns [iv – vi] contain images converted from the SODA dataset.

thermal sensors. Due to these concerns, the reconstruction of
the semantic maps generally depends on low-level features
and edges details.

Considering these observations, edge map detection is
introduced in the decoder section. The edges are extracted
from the E3 layer and passed through CONV → BN →
ReLU. This is upsampled to the original resolution, passed
through a CONV layer, and finally appended to the feature
maps before applying the function 2. It should be noted that
the edge ground truth is obtained by a simple calculation of
the semantic ground truth gradient, which does not require
additional labeling effort. A detailed study of edges extracted
from various parts of the encoder is provided in further
sections.

TABLE 2. Ablation study on the effect of edge guidance applied at
different encoder blocks.

D. LOSS
An edge-based loss function is employed to ensure the pre-
diction of crisp edges along the boundaries of semantic maps.
In edge detection cases, the labels for edges and backgrounds
are highly imbalanced. A binary cross-entropy with an adap-
tive balancing mechanism proposed by Xie and Tu [67] is
utilized to overcome this issue. For an image with a ground

TABLE 3. Ablation study about the impact of various encoder stage
extractions. The number of params and flops are for input size 640× 480.

truth which comprises of Z+ edge pixels and Z− background
pixels, the prediction p̃ can be formulated as shown in (4).

Ledge (p̃)=−
|Z−|

∑
i∈Z+ log(p̃j)

|Z+ ∪ Z−|
−
|Z+|

∑
i∈Z− log(1− p̃j)

|Z+ ∪ Z−|
(4)

This loss function handles the class imbalance by providing
equal weights irrespective of the ratio of Z+ and Z− between
the two classes.

A cross-entropy loss defined in (5) is utilized to supervise
the semantic maps generated.

L = −
1
N

∑N

m
ymlog(0η (xm | z)

+ (1− ym) log(1− 0η (xm | z) (5)

where 0η (xm | z) denotes the probability at pixel m with the
parameter η, ym is the ground truth. The total loss adapted to
train FTNet is denoted as:

Ltotal = αLedge + βL (6)
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where α and β are continuous hyper-parameters and denote
the weights for edges and semantic loss respectively. For
experimental results, β was fixed to 1, while the α were var-
ied. More discussions are provided in the later sections. This
configuration helps in obtaining refined, spatially consistent,
and crisp boundary-located semantic maps.

IV. EXPERIMENTAL RESULTS
This section provides the performance evaluation of the
FTNet. After describing the experimental settings, datasets,
and training details, the performance comparisons with SOTA
methods are provided to demonstrate the effectiveness and
generalization ability of the proposed FTNet.

TABLE 4. Impact of utilizing different encoders, filter size, and the
number of residual units U with the proposed FTNet. the flops are
calculated for images of input size 640 × 480.

A. DATASET
For training and testing purposes, the SODA dataset [11]
was employed. It comprises 2,168 annotated images among
which, 1,168 images are used for training, and 1,000 images
are used for testing. Due to the scale of this dataset, syn-
thetic images were utilized for pretraining the network.
These synthetic images were obtained by translating the
Cityscapes [73] dataset from RGB space to thermal space.
The original Cityscapes dataset contained 5,000 images,
including 2,975 training images, 500 validation images, and
1,525 test images. Following the training protocol described
in [11], all the training, validation, and testing images were
combined for pretraining purposes. As the dataset does not
comprise the ground truth edge maps, they were generated
following the strategy used in [74]. In this protocol, the
ground truth semantic maps are utilized to generate edges
for each class. However, as FTNet incorporates only binary
information, the protocol was adapted to produce binary
edge maps instead of the generating edges for each class.

An example of set of images utilized for training are provided
in Figure 4.

B. TRAINING DETAILS
For training the network, a progressive learning algorithm is
adopted. Initially, the encoder parameters are loadedwith pre-
trained ImageNet weights. For pretraining the model with
thermal features, synthetic thermal Cityscapes images were
utilized. The thermal input images were augmented by per-
forming random cropping (from 640 × 480 to 480 × 480),
and random scaling in the range of (0.5, 2), and perform-
ing random horizontal flipping along with the corresponding
masks. The SGD optimizer [75] with base learning rate 0.01,
momentum 0.9, and weight decay 0.0001 is employed to train
the model. As the decoder section is randomly initialized, the
learning rate of this network is increased by a factor of 10.
The batch size was set to 16. The network was trained for
100 epochs, and poly learning rate policy with the power of
0.9 is used to drop the learning rate.

As the Cityscapes dataset labels are different from the
SODA dataset, the last layer of the network is discarded after
pretraining and adjusted to match the number of classes from
the SODA. The protocol for training remains the same except
for the initial learning rate, which is dropped by a factor of 10.

The experiments were conducted on the PyTorch plat-
form [76]. The models were trained on 2 V100 GPUs, and it
takes around 12 hours to complete FTNet training (Cityscapes
pretrain and SODA training). To evaluate FTNet, Intersection
over Union (IoU), also known as the Jaccard Index, is utilized.
It provides the ratio of the intersection of the pixel-wise
classification results with the ground truth to their union.
A higher percentage depicts how close the predicted class
maps are to the ground truth.

C. ABLATION STUDIES
Extensive ablation studies on the various architectural
components of FTNet architecture were performed. The
ResNet 50 architecture was utilized as the encoder for base-
line results. The number of filters in the decoder was set to 32,
and the number of residual units U for each residual stream
8i was set to 4. Equal weights (α = β = 1) were provided
to both edge and semantic maps for all the ablation studies
except for loss weight analysis.

1) IMPACT OF ENCODER STAGES EXTRACTIONS AND
DILATION
This ablation study comprises evaluating the model’s per-
formance when features are extracted from various encoder
stages and an analysis of dilation. The results are provided
in Table 3. Initially, all the resolution scales, including the
image space was utilized to reconstruct semantic maps. Grad-
ually, the image space was discarded, and further analysis led
to the elimination of features from E0 stage. For semantic
segmentation techniques, down-sampling may cause loss of
spatial information; however, it is required to understand the
scenes and reconstruct the semantic maps with finer details.
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Excluding down-sampling may increase resolution; however,
it affects the receptive field in subsequent layers, increasing
context loss. To overcome this, dilated convolutions were
employed to adjust receptive fields of feature points without
decreasing the resolution of feature maps [30].

Replacing strided convolutions with dilation-based convo-
lution in FTNet provided superior results for all three cases.
However, there exists a trade-off between the accuracy and
the number of FLOPs. The models in all three cases have
the same number of parameters for tuning, but FTNet with
dilated convolutions have approximately 100 G extra FLOPS
in all cases. As indicated byMinaee et al. [41], an ideal model
should consider multiple aspects, which include quantitative
accuracy, speed (inference time), and storage requirements
(memory footprint). Following this suggestion, FTNet aims
at decreasing the FLOPS, thereby decreasing inference time
while achieving higher accuracy. As FTNet with {Ei|i =
1, 2, 3, 4} without dilation has lower FLOPs with acceptable
accuracy, the rest of the ablation study utilizes the strided
convolution in the model.

2) IMPACT OF EDGE GUIDANCE (EG)
Considering that thermal images are generally blurry and
lack color information when compared to the visible domain,
low-level features and edge details are crucial for generating
semantic maps. In deep CNNs, there is a trade-off between
semantics and resolution at the low-level and high-level lay-
ers. This trade-off is quantitatively shown in Table 2. Edges
were extracted from each stage {Ei|i = 1, 2, 3, 4} and vari-
ous combinations of Ei were investigated. It can be verified
that extracting edges from E3 the stage provides the best
mIoU. Furthermore, the accuracy increased by 1.21% from
55.5% to 56.71%. This confirms that high-level semantics
with sufficient resolution provides better edges. This signif-
icant improvement proves that the edge guidance increases
the learning effectiveness of a neural network by capturing
varying structures to encode meaningful features.

On the contrary, the combination of edges from various
encoder stages does not perform as expected for thermal
imagery. This is because initial encoder stages have poor
semantic and high-level layers, especially E4, which has
rich semantics, but low resolution. This was validated by
examining the E1 and E4 combination. The edge extracted
from E1 provided 56.14% and E4 provided 55.99%, while the
combination of both resulted in 55.03%, which is subpar.

3) IMPACT OF ENCODER TOPOLOGIES
The successful use of CNNs in image classification tasks
has accelerated the research in architectural design. Since
then, numerous network architectures have been proposed
to address this task. Typically, these networks are used as
encoders for complex tasks such as object detection, classifi-
cation, and semantic segmentation. This section aims at eval-
uating the performance of the FTNet decoder with various
encoder architectures on the SODA dataset. For a fair com-
parison, all the decoder components of the FTNet network

were fixed, and only the encoder was replaced. The results
of this study are provided in Table 4. It can be seen that the
mIoU scores of deep stem ResNet-based architecture under-
performed while ResNet and ResNeXt provided superior
mIoU results when the filter sizes were set to 32 and 64. The
ResNet and ResNeXt models were further investigated with
128 filter sizes and two residual units. The ResNeXt model
using this setting outperformed other architectures from the
ResNet family. It indicates that the inclusion of cardinality
is of paramount importance to achieve better semantic maps.
This feature of the ResNeXt model is more effective and of
central importance, in addition to the dimensions of width and
depth.

4) IMPACT OF EDGE LOSS WEIGHTS
As the defined loss from equation IV) comprises of two
components, namely, semantic loss and edge guidance loss,
it is necessary to adapt them to the same order of magnitude
to obtain optimum results. A small edge loss weight may
lead to a failure of edge supervision, while a large weight
may dominate the semantic loss. It is necessary to optimize
them as semantic loss is always higher than edge loss. In this
ablation study, different α values were used to empirically
determine the best edge loss weight. Table 5 provides the
complete set of variations and their corresponding mIoU
scores.

TABLE 5. Analysis of hyperparameter-α weights in the loss function with
β = 1. FTNET - ResNeXt – 50 with 128 filter size and 2 residual units (U)
was utilized for this ablation study.

When setting α = β = 1, the boundaries are not crisp
when compared to the results obtained with α = 20 and
β = 1. This discrepancy explains that setting the magnitude
of different losses is very crucial to gain better accuracy. From
the table, it can be determined that α = 20 provides superior
accuracy.

D. BENCHMARK RESULTS
To show the effectiveness of the proposed FTNet, it is com-
pared with SOTA methods such as FCN [42], UNet [44] with
ResNet based encoder, PSPNet [29], HRNet [31], ICNet [46],
UNet++ [50], PAN [48], LinkNet [47], FPN [45], ENC-
Net [51], DANet [49], PSPNet [29], PSANet [78], Seg-
Net [43], and MCNet [28]. For all these comparisons, FTNet
with ResNeXt backbone was utilized. The hyperparameters
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TABLE 6. Performance comparison in terms of per class IOU with state-of-the-art methods on the soda test dataset. the proposed ftnet uses resnext – 50,
filters = 128, α =20, and U-2.

FIGURE 5. Illustration of edges obtained under different α and β

conditions. Edges obtained in panel [b] have higher intensity with sharper
boundaries when compared to panel [a]. This difference enables better
segmentation with crisp boundaries.

used were filters = 128, residual units = 2, α = 20, and
β = 1.

The performance was tested on the MFNet dataset [26],
SODA dataset [11], and SCUT-Seg dataset [28] to demon-
strate the generalization ability of FTNet. MFNet dataset is
a public semantic segmentation dataset based on the driv-
ing scene with RGB-T images. It comprises 1569 images
divided into 784, 392, and 393 images for training, valida-
tion, and testing. The SCUT-Seg dataset is a set of thermal
images collected with different driving scenarios. This was an

extension of the SCUT FIR Pedestrian Dataset [79]. It con-
sists of 1345 training and 665 testing images. Furthermore,
pretrained weights of cityscapes data were utilized as initial
parameters. The rest of the training details remain the same.

For better understanding, the per-class IoU is provided in
Table 6. The complete set of mIoU for all datasets is pro-
vided in Table 7. These results demonstrate the performance
of FTNet when compared to the SOTA methods. FTNet
achieves 60.09% accuracy on the SODA dataset while the
top four SOTA methods were MCNet, HRNet, PSPNet, and
DeepLabV3 with 50.32%, 58.33%, 58.87%, and 58.37%,
respectively. Furthermore, FTNet’s performance onMFN and
SCUT-Seg datasets is notable when compared to SOTA.

Qualitative evaluation is essential in image segmentation
assessment, and the segmentation maps of FTNet and SOTA
are assessed based on the human visual system. This anal-
ysis is done using humans as an observer [80]–[84]. Human
visual analysis is critical in identifying characteristics of algo-
rithms that quantitative metrics may not identify correctly.
For instance, in a less detailed or incorrectly labeled dataset,
quantitative metrics will automatically penalize segmentation
algorithms for correctly segmenting the object.

The qualitative comparisons are provided in Figure 6 and
Figure 7. These examples show complex indoor and outdoor
scenarios with numerous object instances in multiple scales
and partial occlusion. These scenes were also captured with
diverse lighting conditions, including day and night. These
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TABLE 7. Semantic segmentation results on the different datasets. The number of params and flops are calculated for input size 640 x 480. blue text
indicates the best and red text indicates the second-best performance.

outdoor examples show challenging scenarios with various
objects, such as cars and pedestrians, in close proximity to
each other and far apart. FTNet effectively addresses these
challenges and yields reliable semantic maps. Figure 6 panels
[a,c] and Figure 7 panels [a,b] show that the person class
and other objects have well-defined edges compared to SOTA
methods. Figure 6 panel c shows that the two pedestrians near
the car have crisp boundaries with finer labels representing
the input.

Similarly, in Figure 6 panel b, the car has better edges,
and FTNet and PSPNet, DANet, and UNet++ could detect
the pole. However, FTNet was able to detect the pole with
higher similarity to the input image. In Figure 7 panel b, the
shape of the person and monitors were more clearly defined
when compared to others. In Figure 7 panel c, most of the
SOTA results were erroneous, but FTNet had a clear semantic
map of chairs and tables. Overall, FTNet yielded acceptable
results even though the SODA dataset had few indoor data
representations. The proposed network reconstructs semantic
maps with a higher correlation to the ground truth despite the
poor quality of the thermal images. These examples illustrate
the ability of the FTNet to perform better in circumstances
where ambiguous object boundaries are introduced by ther-
mal crossover compared to the other models.

Since the processing time of CNN-based semantic segmen-
tation tasks is crucial, the inference speed of the network is
computed and tabulated. A 640×480 image was run through
the network 300 times, and then the average of the results
was considered a single run to calculate the computation time.
This experiment was repeated ten different times, and the
average time of these ten runs is provided as the inference

time in Table 8. This table provides the runtime result of
different approaches without any optimizations and provides
the number of parameters. Runtime was measured on an Intel
i9-9900K 3.60GHz CPU system and an Nvidia RTX 2080 Ti
GPU. The simulation results show that the FTNet’s runtime
performance is comparable to other SOTA methods. In terms
of the number of parameters and FLOPS, this model has
less memory overhead (-2.23M) and calculation (-37.42G
Flops) when compared to MCNet. Even though the number
of parameters is slightly higher than HRNet by 3.9M, the
inference time is comparable and provides better accuracy.
These observations demonstrate the potential of FTNet for
application on edge devices and intelligent systems such as
automated driving and video surveillance applications.

E. DISCUSSION
To the best of the authors’ knowledge, the most similar works
to the FTNet are MCNet [28] and HRNet [31].

MCNet introduced multiple structures to preserve bound-
ary information rather than post-fine-tuning the semantic
segmentation results. They utilize two feature representations
E1 and E4 (see Figure 3 (a)) from a dilated encoder network.
It employs a loss function that spans across multiple levels
of a correlation matrix correction module. However, FTNet
does not use dilated networks, thus reducing the number of
parameters. FTNet exploits all the feature representations
{Ei|i = 1, 2, 3, 4} in a transverse structure to aid the net-
work in producing high-quality semantic maps. Furthermore,
a novel edge guidance mechanism is developed to produce
crisp boundaries. Finally, a weighted loss function is explored
to ensure that the edge and semantic losses have the same
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FIGURE 6. Qualitative comparison of thermal image semantic segmentation of outdoor environments with SOTA methods. In addition to the
segmentation output, the edge map reconstructed from FTNet is provided. It can be seen from the images that FTNet has provided clear
boundaries when compared to SOTA methods. In panel (b), the car has finer boundaries near the tires and the pole was detected with clear
distinction even though they were missing in the ground truth. In panels (a) and (c), the person class was segmented more finely while SOTA
methods had ambiguous maps.
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FIGURE 7. Qualitative comparison of thermal image semantic segmentation of indoor environments with SOTA methods. In addition to the segmentation
output, the edge map reconstructed from FTNet is provided. In panel (a), the person and chair class are close to the ground truth, while other SOTA
methods except DeepLabv3 fail to detect the chair. In panel (b), FTNet could detect monitors with much better boundaries while SOTA methods lack
distinction and clarity. Panel (c) FTNet predicted the chairs more accurately while SOTA methods have erroneous results.
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TABLE 8. Average execution time of 300 simulations on a 640 × 480
image.

order ofmagnitude. This loss function preserves the boundary
information along with accurate semantic maps.

HRNet extracts features from high-resolution feature
maps in parallel with the low-resolution feature maps. The
extracted feature maps from multiple parallel streams are
fused to obtain high-resolution representations. However, the
encoder network is not interchangeable with existing encoder
backbones such as VGG, ResNet, and ResNeXt.

On the contrary, FTNet is carefully designed to trans-
verse through multiple streams of existing serially con-
nected encoder networks. This mechanism exploits all the
feature maps at various resolutions, including the low-level
feature maps containing high semantic information. The
introduction of the edge guidance counterpart into this net-
work has an immense impact on the performance shown
in both quantitative and qualitative analysis. Existing SOTA
encoder networks such as Xception [85], DenseNet [86],
and MobileNet [87] can be repurposed with the decoder of
FTNet for various applications, including image denoising
and recoloring. Furthermore, the decoder in FTNet can be
readily extended to incorporate the outputs of dilated convo-
lution in applications where it is necessary to preserve the
resolution.

The benchmarking datasets used in this article [11],
[26], [28] have promoted the research of semantic segmen-
tation using thermal images. However, the annotations pro-
vided in these datasets are coarse and less detailed compared
to RGB datasets. This is most likely due to the extremely
low inter-class variance of objects in thermal images, mak-
ing accurate labeling near boundaries difficult. Additionally,
some of the labels in the datasets were misclassified in SODA
Dataset. The challenges mentioned above can be visualized in
Figure 6 and Figure 7 (input and ground truth). Moreover, the

distribution of the semantic labels is highly imbalanced
among these benchmark datasets. For example, the SODA
dataset comprises 1,304 road images, whereas the number of
monitor images is 75. These issues lead to a negative impact
on the performance of the proposed and SOTA methods.

V. CONCLUSION
In this work, a novel deep learning-based semantic segmen-
tation network, FTNet was presented. This network aims
at exploring the multi-resolution representation to perform
pixel-wise classification accurately. The proposed FTNet is
an end-to-end trainable architecture with ResNeXt encoder
and employs a novel transverse-based decoder network, effi-
cient in terms of parameters/operations and computation
time. This transverse-based network captures discriminative
features from multiple resolutions and combines them in a
fully connected fashion to achieve semantic maps close to the
ground truth. An edge guidance mechanism is proposed to
overcome the poor quality, single-channel, and blurry object
boundary attributes of thermal images. The introduction of
weighted loss further improves spatial boundary information
and reduces semantic ambiguity. Extensive quantitative anal-
ysis demonstrated that FTNet achieved mIoU of 60.08%,
47.12%, and 66.73% on SODA, MFN, and SCUT-Seg
Dataset with 33.44M parameters and 94.55G FLOPS. Fur-
thermore, the qualitative analysis showed that FTNet recon-
structed rich semantic maps with crisp boundaries. These
results show that FTNet can potentially optimize thermal
image perception in intelligent systems such as automated
driving and video surveillance applications, computational
photography, biomedical analysis, and augmented reality.

As a part of future work, the authors intend to explore
dilated convolution with reduced parameters and check the
system’s performance on RGB datasets. Furthermore, FTNet
will be tested on other position-sensitive vision applications,
such as facial landmark detection, image super-resolution,
image recoloring, and image denoising. Another promising
future work will be applying the proposed model in other
domains such as hyperspectral imaging.
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