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ABSTRACT In this paper, a novel fully-automated state-based decoding method has been proposed for
continuous decoding problems in brain-machine interface (BMI) systems, called Gaussian mixture of model
(GMM)-assisted PLS (GMMPLS). In contrast to other state-based and hierarchical decoders, the proposed
method does not demand any prior information about the desired output structure. Instead, GMMPLS uses
the GMM algorithm to divide the desired output into a specific number of states (clusters). Next, a logistic
regression model is trained to predict the probability membership of each time sample for each state. Finally,
using the concept of the partial least square (PLS) algorithm, GMMPLS constructs a model for decoding
the desired output using the input data and the achieved membership probabilities. The performance of the
GMMPLS has been evaluated and compared to PLS, the nonlinear quadratic PLS (QPLS), and the bayesian
PLS (BPLS) methods through a simulated dataset and two different real-world BMI datasets. The achieved
results demonstrated that the GMMPLS significantly outperformed PLS, QPLS, and BPLS overall datasets.

INDEX TERMS Brain–machine interfaces (BMIs), partial least square (PLS), state-based decoding,
continuous decoding, Gaussian mixture of model (GMM).

I. INTRODUCTION
Brain-machine interfaces (BMIs) are technologies for con-
structing an external pathway between the brain and a
machine [1]. These systems capture the neural activities and
translate them into understandable commands for prostheses
and exoskeleton robots [2]–[5], quadcopters [6], or any
external device.

Translating the neural activities has consisted of extract-
ing beneficial features and decoding them to the desired
commands [7]. A BMI application may requests discrete or
continuous commands. Many researchers focus on decoding
continuous parameters like limbmovement [8], applied force,
and grasp trajectories [9]. Therefore, much research has
been conducted on the machine learning aspect of BMIs for
decoding improvement.

Usually, For feature extraction in BMI, each channel of
the recorded brain signals is decomposed to the specific
frequency ranges, e.g., delta 0.5-4 Hz, theta 4-8 Hz, alpha
8-13 Hz, beta 12-30 Hz, low-gamma 30-60 Hz, etcetera.1

The associate editor coordinating the review of this manuscript and

approving it for publication was Larbi Boubchir .
1Frequency division depends on the sampling frequency of the recorded

signals.

Afterward, the envelope of each band per channel is derived.
Sometimes, some specific previous lags in each envelope
are considered too. Therefore, the feature space dimension
equals the multiplication of three factors: the number of
channels, frequency bands, and lags [10]–[12]. From the
machine learning aspect, this procedure usually leads to the
high-dimensionality problem and overfitting phenomena.

Except for the high-dimensionality problem, another
concern is choosing linear or nonlinear models in continuous
decoding. In many cases, a simple linear regression can
not express the relation between the input and the desired
output. However, nonlinear regression methods increase the
risk of overfitting. Besides that, choosing a proper nonlinear
function for the decoder is a critical issue.

To deal with overfitting obstacles, many researchers utilize
feature reduction and feature selection techniques. These
techniques reduce the dimensionality of the input space
by generating reduced-rank combinations of the features
(recorded channels) or selecting an optimal and relevant
subset of features (recorded channels) via specific criteria to
improve the decoder performances. For example, Jin et al.
employed bispectrum analysis for channel selection in
an Electroencephalogram (EEG)-based BMI system [13].
In another study, they proposed to use l1-norm and
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Dempster–Shafer Theory for feature selection in the same
application. Nazari et al. demonstrated that selecting infor-
mative features using a feature-ranking approach based on the
Wilcoxon criterion led to performance improvement in a local
field potential (LFP) based-cognitive BMI application [14].

Partial least square (PLS) and its extensions have
been widely used in BMI systems for continuous decod-
ing [10]–[12], [15]–[25]. PLS is a linear regression technique
that reduces the risk of overfitting phenomena by reducing
collinearity in the input data [26]. To overcome this obstacle,
PLS builds a low-rank linear relation between the extracted
features (input data) and the desired output [25]. However,
PLS still tends to overfit, and because of that, some research
introduced sparsity and regularization to the PLS cost
function [18], [25], [26].

A simple linear regression model in BMI applications
may not always explain the relationship between extracted
features and the desired output [27]. Several nonlinear kernel-
based PLS versions have been proposed and utilized in BMI
applications to deal with this difficulty. Kernel-based PLS
methods established a linear relation between a nonlinear
map of the input and the desired output. However, these
methods impose high computational costs and storage if the
number of samples in the training set be high since they
require building a square kernel matrix with the dimension
equals to the number of samples [28]–[30]. On the other hand,
other nonlinear PLSmethods, such as quadratic PLS (QPLS),
depend on choosing a suitable function for the nonlinear
mapping of the input data.

Recently, some researchers introduced state-based and
hierarchical algorithms for decoding the desired output in
BMI applications. These studies assert that the desired output
may have been composed of different processes. Therefore,
the desired output samples are divided into a certain number
of states (groups), and based on this segmentation, the input
data samples are assigned to the related states. Afterward,
a specific decoder has trained to learn the relation between the
input and output samples in each group. Moreover, switching
between different continuous decoding models is performed
based on a classifier [31].

For example, a hierarchical PLS regression model was
proposed in [32] for decoding hand speed, velocity, and
position using humans electrocorticogram (ECoG) signals by
Bundy et al.. The authors were aware that the designed task
in their application contained rest and movement periods.
Therefore, these periods were separated, and a logistic
regression classifier with elastic net regularization2 was
trained to recognize whether the subject’s hand was moving
or not in every 300 ms time window. Next, a PLS model was
trained for each of these states separately. In other words, the
output of the classifier was used for switching between the
two PLS models.

2Elastic net regularization contains both L1-norm and L2-norm con-
straints on the independent variables.

Ahmadi et al. proposed a state-based decoder for estimat-
ing applied force using recorded LFP signals in rats [33].
This study asserted that the applied force time series includes
resting and active phases. Active phases were included time
segments wherein rats were applying force, while in the
resting phases, they did not perform the task. In this research,
the filter bank common spatial patterns algorithm (FBCSP)
was employed in conjunction with the linear discriminant
analysis (LDA) for classifying the recorded LFP signals to
the rest and active segments. Two different PLS models
were trained then to decode each state of the desired output.
This method led to higher performance compared with the
conventional PLS. It is worth mentioning that a 500 ms
window of LFP signals were required to classify the input
data into rest/active group in this study. Thus, employing this
method leads to at least a 500 ms delay in online decoding
applications like Bundy et al. work in [32].
Farrokhi et al. proposed a state-based probabilistic decod-

ing method for estimating 3D hand position trajectories
of monkeys using recorded electrocorticogram (ECoG)
signals [24]. The authors expressed that the desired output
traces consisted of three states in their task: idle, right-
hand movement, and left-hand movement states. Therefore,
the authors introduced a feature extraction schema based
on linear discriminant analysis (LDA) and PLS. Three
LDA were trained to discriminant one state versus the
others. LDA filters output fed to seven different PLS
models: three models for predicting left-hand movement,
three models for right-hand movement, and one model
for estimating the movement’s state (left, right, or idle).
Afterward, a probabilistic model based on the conditional
expectation operator was trained to decode the desired output
using the output of the PLS models. The achieved results
in this research indicated that their proposed method led to
better performances compared to the naïve PLS and Kalman
filter.

To the best of our knowledge, all the proposed hierarchical
and state-based decoding algorithms in the BMI area relied
on prior information about the desired output structure.
For instance, we should know that the desired output
contains resting/non-resting or different movement (task)
types periods, and we should be able to separate them in the
first step of the state-based decoding algorithm. Therefore,
these algorithms suffer from generalization capabilities for
utilizing in a different types of applications.

In this paper, a generalized state-based decoding algo-
rithm has been proposed, called Gaussian mixture of
model (GMM)-assisted PLS (GMMPLS). First, GMMPLS
discriminates the desired output to a specific number of
clusters using the GMM algorithm, and it calculates the
membership probability of each sample for each cluster.
Next, a regularized logistic regression model has been trained
for each cluster to estimate an input sample’s probability
belonging to that cluster. Finally, a novel extended PLS
algorithm has been developed to decode each extracted
feature sample with respect to its probabilities.
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Unlike other state-based decoding algorithms, the pro-
posed GMMPLS is fully automated and does not rely on
prior knowledge about the desired output, and could be
employed in different BMI applications (and even other
types of continuous decoding paradigms). To illustrate this
advantage, two different BMI datasets were used to validate
the efficiency of the proposed method compared to PLS,
the nonlinear QPLS [34] and the bayesian PLS (BPLS) [35]
methods. In addition to these real-world datasets, a simulation
study was performed for more rigorous analysis. In all
scenarios, the achieved results indicated that the proposed
method outperformed the others regression techniques in
terms of decoding correlation of coefficient, coefficient of
determination, and mean absolute error metrics.

The paper is structured as follows: In Section II, a detailed
description of conventional PLS is given, and then, the frame-
work of the proposed GMMPLS is described. In Section III,
the employed synthetic and real-world BMI datasets, per-
formance metrics, evaluation, and hyper-parameters tuning
procedure are introduced. Finally, section IV describes the
obtained evaluation results, and sections V and VI conclude
the paper.

II. METHODS
First, a detailed description of conventional PLS is given.
Next, the structure of the proposed method has been
demonstrated.

A. NOTATIONS
Throughout this manuscript, letR and T denote the set of real
numbers and the transpose operator, respectively. Matrices
are denoted by boldface capital letters (X and Y), vectors
are denoted by boldface lower-case letters (x and y), row and
column dimensions are denoted by italic upper-case letters
(M and L) except for T , and scalar numbers are denoted by
italic lower-case letters (m and l). A matrix can be present via
its elements, i.e., X =

{
xl,k

}
where l and m are the row and

column index, respectively.

B. PLS ALGORITHM
Let X = [x1, · · · , xM ] ∈ RL×M and Y = [y1, · · · , yN ] ∈
RL×N be the mean-centered extracted features (input) and
desired output matrices, where L is the number of samples,
and M and N are the input and output dimensions, respec-
tively. PLS seeks a reduced-rank linear relation between
X and Y to decrease the chance of overfitting occurrence.
Suppose X and Y could be decomposed as follows:

X = TPT + E =
R∑
r=1

trpTr + E

Y = UQT
+ F =

R∑
r=1

urqTr + F (1)

where T = [t1, · · · , tR] ∈ RL×R and U = [u1, · · · ,uR] ∈
RL×R include the input’s and output’s latent vectors,

respectively, P = [p1, · · · ,pR] ∈ RM×R and Q =

[q1, · · · ,qR] ∈ RN×R consist of the loading vectors, E and
F are the residual matrices, and R is the decomposition rank.
For this purpose, PLS tries to find projections of the input
t = Xw ∈ RL and the output u = Yq ∈ RL , in a way that the
cross-covariance between them become maximum:

max
w,q

tTu = wTXTYq, s.t. ‖w‖2 = ‖q‖2 = 1 (2)

where w ∈ RM is the normalized basis vector and ‖·‖2
is the l2-norm operator. PLS usually solves this problem
via the nonlinear iterative partial least squares (NIPALS)
algorithm [36]. After finding a maximally correlated3 latent
vectors of X and Y, the loading vector p ∈ RM could be
calculated as follows:

p = argmin
∥∥∥X− tpT

∥∥∥2
2
=

XT t
tT t

(3)

A linear inner-relation between the latent vectors t and u
is assumed to exist in PLS, i.e., u = dt + e, where d =
uT t

/(
tT t
)
would be a scalar and e represents the residual

vector. After extracting r-th latent and loading vectors, the
input and desired output matrices are deflated by their rank-
one estimation for seeking the subsequent latent vectors:

Xr+1 = Xr − trpTr
Yr+1 = Yr − dtrqTr (4)

where X1 = X and Y1 = Y. Finally, after extracting R
components, the linear relation between X and Y could be
expressed as:

Y ≈ TDQT (5)

where D = diag (d1, · · · , dR) represents a diagonal matrix
and diag (,) is a diagonal matrix. Furthermore, the following
relation could be proved:

T = XG = XW
(
PTW

)−1
(6)

where G ∈ RM×R. By substituting (6) in (5), the PLS regres-
sion coefficient matrix could be derived as follows [37], [38]:

Y ≈ XB ≈ XGDQT
≈ XW

(
PTW

)−1
DQT (7)

where B = W
(
PTW

)−1 DQT
∈ RM×N is the PLS

regression coefficient matrix. It is worth mentioning that R is
a hyper-parameter that could be tuned using cross-validation
(CV) techniques. The PLS algorithm is presented in the
appendix section.

C. MAIN IDEA OF GMMPLS
The main idea behind the GMMPLS is that the desired
output may compose of several different processes, and the
contribution of each process in forming the desired output

3Correlation and covariance are equal for zero-mean vectors.
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may vary over time. Suppose that the desired output has
formed from K different components:

y (l) =
K∑
k=1

γk (l) yk (l) (8)

where yk (l) ∈ RN is the k-th constituent component of the
desired output and 0 ≤ γk (l) ≤ 1 is a scalar representing
the participation probability of the k-th component at the l-th
sample. With this assumption, (8) can be written as follows
for decoding the desired output:

y (l) =
K∑
k=1

γk (l) fk (x (l)) (9)

where x (l) ∈ RM is the l-th sample of the extracted
features and fk (·) is the k-th decoder. In other words, unlike
employing a binary manner to switch between decoders for
the fibal decoding, we suggest a probabilistic framework for
such a purpose.

We offer to utilize GMM algorithms for estimating γk (l)
in (9). GMM is a model-based clustering technique, which
fitsK independent Gaussian distributions to the data based on
the expectation-maximization (EM) algorithm. In summary,
with an initialized mean vector and covariance matrix for
each cluster, GMM estimates the membership probability
of a sample for each cluster via the expectation step, and
thereupon in the maximization step, GMM updates mean
vectors and covariance matrices based on the obtained
probabilities [39]. The GMM algorithm is presented in the
appendix section.

It should be noted that the GMM initialization is done
via the K-means algorithm in this study. See [40]–[42].
In addition, we used the z-scored version of Y in GMM
algorithm to prevent the effect of data magnitudes in learning
the GMM model.

After applying the GMM algorithm to the desired output
Y, the membership probability matrix for all clusters
0 =

[
γ k , · · · , γ K

]
= {γk (l)} ∈ RL×K is calculated. Fig.

1 illustrates the main idea of the proposed method.

D. MEMBERSHIP PROBABILITY PREDICTION
The membership probabilities could be obtained using the
available desired output and the GMM algorithm in the
training phase. Nevertheless, this approach will not be
executable in the testing phase or real-time applications
since the desired output is absent. Hence, we proposed
using a logistic regression model to decode the membership
probabilities from the extracted features.

Consider a logistic regression for decoding k-th member-
ship probabilities:

γ̂k (l) = σk
(
xT (l)hk + h0k

)
=

1

1+ e−(xT (l)hk+h0k)
(10)

where σ (z) = 1
/(

1+ e−z
)

is the sigmoid function,
hk ∈ RM is the k-th linear regression vector, and h0k is the

FIGURE 1. The main idea of the proposed method. The separate decoders
contribute to forming the desired output with a specific membership
probability, varying from sample to sample.

scalar intercept term. We augment the intercept h0k in hk by
hk ←

[
h0k ,hTk

]T
∈ RM+1 and include a constant +1 in

the input vector as x (l) ←
[
+1, xT (l)

]T
∈ RM+1. Finally,

in the rest of the paper, σk (l) will denote σk
(
xT (l)hk

)
for

simplicity.
Typically, the cross-entropy error is adopted as the logistic

regression’s cost function since it is convex rather than the
mean square error [39], [43], [44]. This cost function could
be represented to estimate hk in (10) as follows:

J (hk) = −
1
L

L∑
l=1

[γk (l) ln (σk (l))

+ (1− γk (l)) ln (1− σk (l))] (11)

where γk (l) and σk (l) are the actual and the predicted
membership probability of the k-th cluster at the l-th sample.
The derivative of this cost function could be represented as
follows:

gk = −
L∑
l=1

x (l) (γk (l)− σk (l)) = −XT (γ k − γ̂ k) (12)

where gk = ∇hk J (hk) is the gradient of (11) with respect
to hk .

To solve (11), adaptive moment estimation (ADAM)
optimization has been employed in this study. In short,
ADAM is an optimization algorithm that uses the first
and second moments of the gradient vector to estimate
an adaptive learning rate for each of the optimization
parameters [45]. In addition, to prevent overfitting during
the learning procedure, the weight decay schema in ADAM
is utilized in this study which is a l2-norm regularization
priocedure in ADAM optimization [46]. The details of
this method are given in the appendix section. It is worth
mentioning that ADAM converges faster than traditional
gradient descent algorithms.

E. GMMPLS ALGORITHM
After estimatingmembership probabilities0 =

[
γ 1, · · · , γ K

]
in the previous section, we should build a model for
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decoding the desired output with the aid of these probabilities.
Therefore, we proposed a novel method using the concept of
the PLS algorithm, called GMMPLS.

Assume the input and the desired output are zero-centered.
Suppose each component of the desired output in (8) could
be decomposed to latent and loading vectors in the form of
equation (1):

yk (l) =
R∑
r=1

ur,k (l)qTr,k + fk (l) (13)

By Substituting yk (l) from (13) in (8), we have:

y (l) =
K∑
k=1

γk (l)

(
R∑
r=1

ur,kqTr,k + fk (l)

)

≈

R∑
r=1

K∑
k=1

γk (l) ur,k (l)qTr,k (14)

where
∥∥qr,k∥∥2 = 1. It is worth mentioning that fk (l) is the

residual term in (13). We assume that all loading vectors in
all clusters for each r are equals for simplification, i.e., qr =
qr,1 = · · · = qr,K . This assumption means that each desired
output’s latent variable could be expressed and decomposed
in the form of (8). Therefore, (14) can be rewritten as:

y (l) ≈
R∑
r=1

zr (l)qTr =
R∑
r=1

(
K∑
k=1

γk (l) ur,k (l)

)
qTr

where zr (l) =
K∑
k=1

γk (l) ur,k (l) (15)

Finally, we assume a linear relation between ur,k (l) and a
linear projection of the input data:

ur,k (l) = dr,k,1tr,k (l)+ dr,k,0 + ψr,k (l)

where tr,k (l) = xTk (l)wr,k (16)

where wr,k is a normalized basis vector, and dr,k,1 and dr,k,0
are scale and intercept scalars, respectively, and ψr,k (l) is
the error term. Thus, equations (15) and (16) are the main
framework of the proposed GMMPLS.

To explain the parameters learning strategy in GMMPLS,
suppose we want to extract the first latent and loading
variables, i.e., r = 1. Therefore, we ignore r sub-
scripts to improve the readability of equations. In addition,
assume we possess initial values for wk , qr,k , dk,1, and
dk,0 and subsequently, tk (l) and uk (l) can be initialized
for k = 1, · · · ,K .

Altogether, we have:

tk (l) = xT (l)wk , k = 1, · · · ,K

uk (l) ≈ dk,1tk (l)+ dk,0, k = 1, · · · ,K

z (l) =
K∑
k=1

γk (l) uk (l)

yT (l) ≈ z (l)qT (17)

Now consider these relations. Due to ‖q‖2 = 1, we have
z (l) ≈ yT (l)q. Next, we can claim:

ϕ (l) ≈
K∑
k=1

dk,1γk (l) xT (l)wk

where ϕ (l) = z (l)−
K∑

k=1,

dk,0γk (l) (18)

Now by defining the following augmented matrices:

X̄ =
[
d1,1γ 1 ⊗ X, · · · , dK ,1γ K ⊗ X

]
∈ RL×KM

w̄ =
[
wT
1 , · · · ,w

T
K

]T
∈ RKM (19)

equation (18) can be reformulated as:

ϕ = X̄w̄ ∈ RL (20)

where ⊗ is the element-wise multiplication operation.
To avoid overfitting phenomena, we can solve (20) by a

rank-1 PLS as follows:

w̄ = X̄Tϕ (21)

where each wk should have a unit norm:

wk ← wk
/
‖wk‖2, k = 1, · · · ,K (22)

After obtaining wk for each k = 1, · · · ,K , latent vectors
tk = Xwk are calculated. Now by constructing augmented
matrices:

T̄ =
[
γ 1, γ 1 ⊗ t1, · · · , γ K , γ K ⊗ tK

]
∈ RL×2K

d =
[
d1,0, d1,1, · · · , dK ,0, dK ,1

]T
∈ R2K (23)

we have:

z ≈ T̄d

⇒ d =
(
T̄T T̄

)
T̄T z (24)

After deriving ẑ using (24), we can estimate q using the
least square error method:

q = YT ẑ
/(

ẑT ẑ
)

q ← q
/
‖q‖2 (25)

The procedure involving (17)-(25) is iterated until the
convergence of the parameters.

After fining r-th components of GMMPLS, the desired
output is deflated for seeking the subsequent components as
follows:

Yr+1← Yr − T̄r d̄rqTr (26)

After the deflation process in (26), GMMPLS goes back
to the iterated process through (17)-(25) to seek the next
(r + 1)-th components. Algorithm 1 demonstrates the
GMMPLS procedure in detail.

It is worth mentioning that the number of clusters K and
GMMPLS rank R are hyper-parameters, and the process for
choosing them will be explained in section III.
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F. ESTIMATING THE DESIRED OUTPUT IN GMMPLS
After extracting theGMMPLS parameters in Algorithm 1, the
desired output could be estimated via Algorithm 2.

III. EXPERIMENTS
In this section, first, we demonstrated the described datasets.
Next, we discussed the hyper-parameter selection procedure,
and finally, we introduced evaluation metrics used in this
manuscript.

A. DATA DESCRIPTION
In this paper, three different datasets were used to evaluate
and to compare the proposed method with PLS, QPLS, and
BPLS. The first dataset is a synthetic dataset, the second
is the publicly available ECoG dataset for decoding hand
trajectories, and the last is our LFP for decoding applied
force.

1) SYNTHETIC DATASET
For building this dataset, we generated each column of X ∈
RL×M randomly with L = 10000 and M = 500 via
the Gaussian distribution with random means and variances.
The means and variances were derived from the normal
Gaussian distribution. To increase collinearity, we performed
the singular value decomposition (SVD) onX and eliminated
40% of the singular vectors and then X was recon-
structed. We assumed that the desired output was generated
as follows:

Y =
K∑
k=1

γ k ⊗ Yk (27)

where: 

Yk = XWk

γ k =
exp (σ k)∑K
j=1 exp

(
σ j
)

σ k = Xvk
0 =

[
γ k , · · · , γ K

]
= XV

(28)

In these relations, WK ∈ RM×N and vk ∈ RM were
generated randomly using Gaussian distribution with random
means and covariances. It is worth mentioning that the
samples of γ k are bounded between 0−1 and

∑K
k=1 γ k = 1.

Twelve different cases were considered in this simulation
with assumingN ∈ {1, 3, 5} andK ∈ {1, 2, 3, 4}. In addition,
we ran the simulation 100 times for performance analysis.
In each run, the first 90% samples of the synthetic data were
used to train the decoders, and the remaining 10% was used
for performance evaluation.

2) PUBLIC ECoG DATASET
This public dataset was introduced in 2012 by Shimoda et al.
for decoding hand movement trajectories using monkeys’
recorded ECoG signals [10]. ECoG electrodes with 64
channels were implanted on the epidural space of the

Algorithm 1 GMMPLS Algorithm for Estimating Desired Y
From X

Input: X ∈ RL×M ,Y ∈ RL×N ,
Predicted membership probabilities: 0 =[
γ k , · · · , γ K

]
∈ RL×K ,

Number of PLS components: R.
Output: Wr =

[
wr,1, · · · ,wr,K

]
∈ RM×K ,

k = 1, · · · ,K ,
dr =

[
dr,1,0, dr,1,1, · · · , dr,K ,0, dr,K ,1

]T
∈ R2K ,

k = 1, · · · ,K ,
qr ∈ RN , k = 1, · · · ,K .

Assign Yr = Y.
for r to R do

Initial loading vector qr .
Initial dr .
while not convergence do

zr = Yrqr .
Calculate ϕ using (19).
Consturct X̄r =

[
dr,1,1γ 1 ⊗ X, · · · ,

dr,K ,1γ K ⊗ X
]
.

w̄r =

[
wT
r,1, · · · ,w

T
r,K

]T
= X̄T

r ϕ.

wr,k ← wr,k
/∥∥wr,k

∥∥
2, k = 1, · · · ,K .

tr,k = Xwr,k , k = 1, · · · ,K .
Consturct T̄r =

[
γ 1, γ 1 ⊗ tr,1, · · · ,

γK , γ K ⊗ tr,K
]
.

dr =
(
T̄Tr T̄r

)
T̄Tr zr .

ẑr ≈ T̄rdr .
qr = YT ẑr

/(
ẑTr ẑr

)
qr ← qr

/
‖qr‖2

end while
Wr ←

[
wr,1, · · · ,wr,K

]
.

dr ←
[
dr,1,0, dr,1,1, · · · , dr,K ,0, dr,K ,1

]T .
Deflation:
Yr+1← Yr − ẑrqTr

end for

Algorithm 2 Estimation of the Desired Output in GMMPLS
Algorithm

Input: X ∈ RL×M ,
Predicted membership probabilities:
0 =

[
γ k , · · · , γ K

]
∈ RL×K ,

Wr =
[
wr,1, · · · ,wr,K

]
∈ RM×K , k = 1, · · · ,K

dr =
[
dr,1,0, dr,1,1, · · · , dr,K ,0, dr,K ,1

]T
∈ R2K ,

k = 1, · · · ,K
qr ∈ RN , k = 1, · · · ,K .

Output: Ŷ.
Assign Ŷ = 0.
for r to R do

tr,k = Xwk,r , k = 1, · · · ,K
ûr,k = dr,k,1tr,k + dr,k,0, k = 1, · · · ,K

ẑ =
K∑
k=1

γ k ⊗ ûr,k

Ŷ = Ŷ+ ẑqTr
end for

prefrontal cortex (PFC) and the primary somatosensory
cortex (S1) in the left hemisphere. Each animal performed
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ten 15-minute sessions of food-tracking task while ECoG
signals were recorded with a 1000Hz sampling rate, and hand
motions were recorded with a sampling rate of 120 Hz.

For feature extraction, similar to [18], the ECoG signals
were down-sampled to 250 Hz, and a common average
reference (CAR) was applied to the recorded channels. Next,
ECoG signals were divided into six different frequency bands
[1-4, 4-8, 8-12, 12-30, 30-60, and 60-120 Hz] using an eight-
order Butterworth filter for extracting delta, theta, alpha, beta,
low-gamma, and high-gamma1 brain rhythms. It is worth
mentioning that the upper bound in the high-gamma1 was
set to 120 Hz due to the frequency range in the epidural
ECoG signals (<120 Hz). Next, each frequency band in each
channel was then rectified and smoothed using third-order
Savitzky–Golay moving average with 0.3s width to obtain
its envelope. The extracted envelopes represent the variations
through each frequency band. Eventually, for each sample of
time, the sample itself and its’ nine previous ones with a 0.1s
interval were collected as the features in each frequency band
of each channel. This manner yielded feature vectors with the
dimension of 3840 = 64 (channels) × 6 (bands) × 10 (lags).

The objective of this manuscript was to decode three-
dimensional right arm trajectories of the monkeys from the
extracted features using PLS, QPLS, BPLS and the proposed
GMMPLS.

3) LFP DATASET
This dataset was collected in our neuroscience lab in 2016
by Khorasani et al. for decoding rats’ applied force from the
16 channels of LFP signals [11]. Thirsty rats were trained to
apply a certain amount of force on a load cell to receive a drop
of water as the reward.

16-channel microwire array was implanted in the forelimb
sensorimotor cortex in the left hemisphere of three Wistar
rats. The neural signals were then recorded with a 10 kHz
sampling rate during the task. First, a low-pass filter with
a 500 Hz cutoff frequency was applied to the recorded
signals, and then the signals were down-sampled to 1000 Hz.
Simultaneously, the output of the load cell was recorded at
a 30 Hz sampling rate.

Again similar to our previous work [18], the recorded
LFP channels were firstly filtered out using CAR. Next,
eight different frequency bands [1-4, 4-8, 8-12, 12-30,
30-60, 60-120, 120-200, and 200-400 Hz] were extracted
from each channel using an eight-order Butterworth filter
to extract delta, theta, alpha, beta, low-gamma, high-
gamma1, high-gamma2 and high-gamma3 brain rhythms.
It is worth mentioning that the spectral range in LFP signals
is up to 400 Hz.

Envelope extraction of each channel’s frequency bands
was achieved via rectifying and smoothing by third-order
Savitzky–Golay moving average with 0.3s width. Finally,
analogously to the previous sub-section, each sample of time
and its lags were collected as the features in each channel’s
frequency band. Therefore, the dimension of the extracted

features was 1280 = 16 (channels) × 8 (bands) × 10 (lags)
for each time sample.

The goal of this manuscript was to continuously decode
one-dimensional applied force values using extracted features
for each rat.

B. HYPER-PARAMETER SELECTION
In the PLS, QPLS, and BPLS algorithms, the only hyper-
parameter is the decomposition rank R. We used the BPLS
toolbox presented in https://github.com/vidaurre/bpls. On the
other hand, GMMPLS involves other hyper-parameters:
the decomposition rank R, the number of clusters K , and
the regularization parameter λ for membership probabilities
estimation (see Algorithm 5 in appendix section). In addition,
β1, β2, ε and the step size α are also hyper-parameters in
ADAM (see Algorithm 5 in appendix section) which have to
tune.

Usually, fix values β1 = 0.9, β2 = 0.999 and ε = 10−8

are used in ADAM algorithms in the manuscript. Therefore,
we employed these values and ignored tuning these hyper-
parameters. On the other hand, the step size α can be tuned
within the ADAM optimization. Therefore, we considered
the list α = [0, 0.0001, 0.001, 0.01, 0.1] and performed a
line search procedure to test different values of α in updating
hk (t) and selected the one that yielded a lower cost value in
equation (11) in each iteration.

For tuning R, K, and λ, we performed an internal
10-fold CV procedure during the GMMPLS algorithm.
More precisely, we divided the training data into new
training and validation sets using 10-fold CV and chose
the optimal hyper-parameters from several values; those that
minimized the mean square error (MSE) of the desired output
estimation in the validation set. The optimal values for the
hyper-parameters were selected among the predefined set
R ∈ [1, · · · , 50], K ∈ [1, · · · , 5] and λ ∈ [0.1, 0.2,
0.5, 1, 2, 5, 10, 20, 50, 100]. In the PLS, QPLS, and
BPLS algorithms, the same procedure was performed to
optimize R.

C. PERFORMANCE EVALUATION
To evaluate and compare the proposed method with the
other regression techniques performances, we performed a
10× 10-fold CV procedure in the ECoG and the LFP datasets
to divide data into training and test sets. Briefly, the recorded
brain signals (ECoG and LFP) and the desired output (hand
trajectories and applied force) were randomly split into ten
non-overlapping folds. At each stage, nine folds were used
to train the decoders, and the remaining one was used to test
the decoding performance. All of the folds were used as the
test set one time. Finally, this procedure was repeated ten
times, and all 100 gained performances were averaged for
each decoding method.

In this manuscript, we employed three different metrics
to analyze and compare PLS, QPLS, BPLS, and GMMPLS
performance. The first one is the correlation coefficient which
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TABLE 1. Decoding correlation coefficients obtained in different scenarios for PLS, QPLS, BPLS and the proposed GMMPLS. N represents the dimension
of the desired output, and K represents the number of clusters in generating the dataset. GMMPLS-K stands for training GMMPLS with K clusters. Bold
values indicate the highest performance in each column. The higher value is better.

ranges between −1 and 1:

ρ =
cov

(
y, ŷ

)
std (y) std

(
ŷ
) (29)

where cov (.) and std (.) are the cross-covariance and the
standard deviation operators, respectively. The next metric
is the coefficient of determination, denoted by R2 which
represents the ‘‘goodness of fit’’ and ranges between −∞
and 1. R2 = 1 means the perfect fit and R2 = 0 means that
the estimated desired output is equal to 0. On the other hand,
negative values of R2 indicates a disaster in the decoding
procedure. R2 is defined as:

R2 = 1−
var

(
y− ŷ

)
var (y)

(30)

where var (.) is the variance operator. It is worth mentioning
that var

(
y− ŷ

)
/var (y) has been defined as the normalized

mean square error (NMSE) in manuscripts.
The last metric used in this paper is the mean absolute

error:

MAE = mean
(∣∣y− ŷ

∣∣) (31)

where mean (·) and |·| are the average and the absolute
operators, respectively. Compared toMSE basedmetrics (like
R2 and NMSE), MAE is less sensitive to outliers and large
error values since it does not involve squaring values [47].

D. RUN-TIME COMPARISON
For complexity comparison, we performed a run-time analy-
sis for each decoding method. To achieve this goal, we used
three minutes of ECoG and LFP datasets to train PLS,
QPLS, BPLS, and the proposed GMMPLS and calculated the
training run-times separately. This process was repeated 100
times, and the obtained values were averaged.

To avoid the effect of hyperparameter tuning and CV
procedure in this analysis, we used fix hyper-parameter
values in all decoding methods. We set R = 20 for all
methods, and we used a fixed regularization parameter value
λ = 10 in training GMMPLS. In addition, we trained
the proposed method using a different number of clusters

K to evaluate the effect of this hyperparameter in the
computational cost.

IV. RESULTS
A. SYNTHETIC DATASET
As mentioned before, we generated the synthetic dataset 100
times randomly. At each time, 90% of the generated data
was used to train PLS, QPLS, BPLS, and GMMPLS, and
the rest of the data was used for performance evaluation.
Tables 1, 2 and 3 demonstrates achieved correlation coef-
ficients, R2 and MAE decoding performance using each
decoding method in this simulation study. Different cases
were considered in this simulation. N = 1, 3, 5 and
K = 1, 2, 3, 4 led to 12 different scenarios. In addition,
we performed the decoding using a different number of
clusters in GMMPLS, e.g., GMMPLS-3 means that we
supposed K = 3 in training GMMPLS. These results
indicated that when the desired output is composed of more
than one process, i.e., K > 1, our proposed algorithm with
K > 1 led to higher performance. On the other hand,
GMMPLS with K = 1 resulted in approximately the same
performance compared to PLS. In other words, GMMPLS is
simplified to the ordinary PLS when we consider K = 1 in
the training of GMMPLS.

It is evident that increasing the number of states in the
generation of the desired output has caused decreasing in
decoding performance. However, the results illustrate that the
proposed GMMPLS could stand against this phenomenon
more than others. GMMPLSwithK = 2 achieved the highest
performance in this simulation study.

B. ECoG DATASET
In this sub-section, first, an example of estimated hand
trajectories in the first monkey using PLS and GMMPLS was
depicted in Fig. 2. To make this figure more clear, QPLS and
BPLS predicted traces were not drawn. In this figure, a 70 s
time window of the observed and predicted hand trajectories
was shown for three dimensions. In this example, all hyper-
parameters were optimized through the CV procedure. The
optimized number of clusters in GMMPLS was K = 4.
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TABLE 2. Decoding coefficient of determination (R2) obtained in different scenarios for PLS, QPLS, BPLS and the proposed GMMPLS. N represents the
dimension of the desired output, and K represents the number of clusters in generating the dataset. GMMPLS-K stands for training GMMPLS with K
clusters. Bold values indicate the highest performance in each column. The higher value is better.

TABLE 3. Decoding mean absolute error (MAE) obtained in different scenarios for PLS, QPLS, BPLS and the proposed GMMPLS. N represents the
dimension of the desired output, and K represents the number of clusters in generating the dataset. GMMPLS-K stands for training GMMPLS with K
clusters. Bold values indicate the highest performance in each column. The lower value is better.

This example demonstrates that the GMMPLS performed
much better decoding in comparison to PLS. The achieved
performances in this example were ρPLS = [0.29, 0.79, 0.62],
R2PLS = [0.15, 0.54, 0.22], MAEPLS = [0.57, 0.49, 0.6] for
PLS and ρGMMPLS = [0.72, 0.95, 0.76], R2GMMPLS = [0.65,
0.77, 0.53], MAEGMMPLS = [0.36, 0.24, 0.43] for GMMPLS
in X, Y and Z directions. In addition, this example depicts
that the proposed algorithm decoded the steady intervals in
the desired output more accurately compared to PLS.

The achieved performances in this dataset were shown
in Fig. 3. The correlation coefficients, the coefficient of
determinations, and the mean absolute errors were given for
monkeys 1 and 2 in three dimensions for PLS, QPLS, BPLS,
and GMMPLS methods (mean ± standard error). All the
hyper-parameters in each method were tuned using described
CV technique for obtaining these results.

This figure demonstrates that except in the Z dimension,
the proposed method outperformed other methods in all
directions in both animals. The Friedman non-parametric
test with the post-hoc Bonferroni correction was applied to
the achieved performance for more rigorous analysis. This
statistical test revealed that the superiority of GMMPLS
performance is significant compared to PLS, QPLS, and
BPLS (p < 0.001 for all metrics).

Finally, the overall performances in the ECoG dataset
were ρPLS = 0.55, R2PLS = 0.25, MAEPLS = 0.67 for
PLS, ρQPLS = 0.57, R2QPLS = 0.27, MAEQPLS = 0.66
for QPLS, ρBPLS = 0.56, R2BPLS = 0.27, MAEBPLS =

0.66 for BPLS, and ρGMMPLS = 0.63, R2GMMPLS = 0.41,
MAEGMMPLS = 0.55 for GMMPLS. These results indicated
that the proposed method improved performance metrics by
about 15%, 12% and 13% in ρ, 64%, 52% and 52% in R2,
and 22%, 20% and 20% in MAE compared to PLS, QPLS
and BPLS, respectively.

An example for explaining the effect of the number of
used components (R) and the number of clusters (K ) in
decoding performance in the ECoG dataset is given in Fig. 4.
The rank-R was varied from 0 to 20 for decoding hand
trajectories, and the achieved performances were averaged
over three dimensions for PLS, QPLS, BPLS, and GMMPLS.
In addition, the GMMPLS was trained using a different
number of clusters. i.e., from K = 1 to K = 5, which was
denoted as GMMPLS-K in this example. Fig. 4 demonstrates
that the performance of GMMPLS was approximately equal
to PLS when K = 1 in lower R values. GMMPLS-2 behaved
slightly better than PLS, QPLS, BPLS, and GMMPLS-1.
However, the best results were achieved when the decoding
was performed using K = 3 to K = 5 in GMMPLS. Finally,
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FIGURE 2. Decoding comparison between PLS and GMMPLS methods in an example time window. The hyper-parameters for each
method were optimized using the CV technique for generating this figure. The optimized number of clusters in GMMPLS was K = 4, and
the decomposition rank was R = 20 for both methods in this example. This figure indicates that the proposed method estimated the
desired output more precisely in all three dimensions compared to PLS.

FIGURE 3. The achieved performances (mean ± standard error) for PLS, QPLS, BPLS and GMMPLS in the ECoG dataset. The left and right
sides of each sub-figure represent the results for the first and second monkeys, respectively, in X, Y, and Z directions. The overall
performances in this dataset were ρPLS = 0.55, R2

PLS = 0.25, MAEPLS = 0.67 for PLS, ρQPLS = 0.57, R2
QPLS = 0.27, MAEQPLS = 0.66 for

QPLS, ρBPLS = 0.56, R2
BPLS = 0.27, MAEBPLS = 0.66 for BPLS, and ρGMMPLS = 0.63, R2

GMMPLS = 0.41, MAEGMMPLS = 0.55 for the
proposed method.
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FIGURE 4. An example for illustrating the effect of the used components
(R) in all decoding methods and the number of clusters (K ) in GMMPLS
for decoding hand trajectories in the ECoG dataset. The achieved
performances were averaged over three dimensions for each metric.
GMMPLS-K stands for running GMMPLS with K clusters.

FIGURE 5. An example of decoding in the LFP dataset using PLS and
GMMPLS in the first rat. All the hyper-parameters were optimized using
CV technique for generating this figure. The optimized number of clusters
in GMMPLS was K = 3, and the decomposition ranks were R = 10 for
GMMPLS and R = 5 for PLS in this example.

this example showed that all the decoders’ performances
become steady for R ≥ 4 except BPLS.

C. LFP DATASET
Fig. 5 shows an example of the decoded applied force trace
using PLS and GMMPLS in the LFP dataset. To make this
figure more clear, QPLS and BPLS predicted traces were not
drawn. A time window (≈30) of the observed and predicted
desired output in the first rat was depicted in this example.
All hyper-parameters were optimized through the CV pro-
cedure. The optimized number of clusters in GMMPLS was
K = 3, and the number of used components were R = 5

and R = 10 for PLS and GMMPLS, respectively. The gained
performances in this example were ρPLS = 0.82, R2PLS =
0.62, and MAEPLS = 4.84 for PLS and ρGMMPLS = 0.89,
R2GMMPLS = 0.79 and MAEGMMPLS = 2.85 for GMMPLS.
Again similar to the ECoG dataset, it can be noticed that the
proposed method won over PLS when it came to decoding
steady intervals in the desired output.

Fig. 6 demonstrates the obtained performances in the
LFP dataset via the correlation coefficient, the coefficient
of determination, and the mean absolute error metrics for
the three rats using all decoding methods. Again, the
hyper-parameters were optimized through the CV procedure.
From this figure, it seems that the proposed method slightly
outperformed PLS, QPLS, and BPLS in all metrics. The
Friedman non-parametric test with the post-hoc Bonferroni
correction was employed to investigate this hypothesis.
This test revealed that the proposed method’s results were
significantly higher than PLS, QPLS, and BPLS in all metrics
(p < 0.001 in all metrics).

The overall mean performances in this LFP dataset were
ρPLS = 0.71, R2PLS = 0.46, MAEPLS = 5.34 for PLS,
ρQPLS = 0.71, R2QPLS = 0.45, MAEQPLS = 7.64 for QPLS,
ρBPLS = 0.72, R2BPLS = 0.45, MAEBPLS = 5.20 for BPLS,
and ρGMMPLS = 0.75, R2GMMPLS = 0.53, MAEGMMPLS =

3.99 for the proposed method. The GMMPLS performance
improvements were about 6%, 6% and 4% in ρ, 15%, 18%
and 15% in R2, and 34%, 91% and 30% in MAE over PLS,
QPLS and BPLS, respectively.

It is worth mentioning that the improvement in MAE
was more remarkable than other metrics since the desired
output in this dataset includes intervals with high-value
peaks. Prediction error in these intervals causes dramatic
effects in l2-norm based performance metrics (like ρ and R2).
On the other hand, since MAE is a l1-norm based metric,
it is less sensitive to large error values. In addition, the
proposed method caused more minor prediction errors in
steady intervals compared to PLS, QPLS, and BPLS, and this
feature led to a lower MAE.

Finally, the effect of the decomposition rank (R) and
the number of clusters (K ) in decoding performance for
the second rat in the LFP dataset was explicated via an
example in Fig. 7. The rank-R was varied from 0 to 20
for all decoding methods. A different number of clusters
were used for training the proposed GMMPLS, which is
denoted as GMMPLS-K . This figure demonstrates that the
best performance in this example was achieved by using
GMMPLS-2.

As it can be deduced from this figure, PLS, QPLS, and
GMMPLS-1 behaved similarly for R ≤ 5. However, unlike
GMMPLS, the metrics R2 and MAE achieved for PLS and
QPLS fell down when more than R = 5 components were
used for training. On the other hand, the performance of
BPLS was lower than others for R ≤ 5. Unlike PLS and
QPLS, BPLS performance did not decrease for R > 5 and
it behaved almost similar to GMMPLS-1. However, the best
performances belonged to GMMPLS with K = 2 to K = 5.
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FIGURE 6. The obtained performances (mean ± standard error) for PLS, QPLS, BPLS, and GMMPLS in the LFP
dataset. Symbols ρ, R2 and MAE stand for the correlation coefficient, the coefficient of determination, and the mean
absolute error metrics. The overall mean performances in this dataset were ρPLS = 0.71, R2

PLS = 0.46, MAEPLS = 5.34
for PLS, ρQPLS = 0.71, R2

QPLS = 0.45, MAEQPLS = 7.64 for QPLS, ρBPLS = 0.72, R2
BPLS = 0.46, MAEBPLS = 5.20 for

BPLS, and ρGMMPLS = 0.75, R2
GMMPLS = 0.53, MAEGMMPLS = 3.99 for the proposed method.

FIGURE 7. The effect of the rank of decomposition (R) in all decoding
methods and the number of clusters (K ) in GMMPLS for decoding applied
force in the LFP dataset. GMMPLS-K stands for running GMMPLS with K
clusters.

Therefore, we can claim that the proposed method is more
robust to over-fitting when the number of used components
is overvalued compared to PLS and QPLS.

D. RUN-TIME COMPARISON
In this sub-section, we presented the run-time analysis results
as the metric of computational complexity. Table 4 presented
each decoder training computational time using threeminutes
of LFP and ECoG datasets. Again, a different number of

TABLE 4. Averaged computational time (s) for training decoding methods
using three minutes of LFP and ECoG signals.

clusters were used for training GMMPLS, which is denoted
as GMMPLS-K .
It can be seen that the computational complexity of

GMMPLS-1 is almost equal to PLS and QPLS. However,
the run-time is increased with increasing the number of
clusters (K ) used in the GMMPLS structure, which is not
unexpected.

V. DISCUSSION
The simulation and the experimental results represented the
efficacy of the proposed method in the continuous decoding
problems. This method led to higher performances in the
sense of correlation coefficient, coefficient of determination,
and mean absolute error compared to ordinary PLS, QPLS,
and BPLS with statistical significance.
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GMMPLS achieved more success than other employed
methods in decoding steady intervals. This may occur
because of the state-based and hierarchical nature of the
GMMPLS. The proposed method divides the desired output
into a specific number of clusters. Then, the membership
probabilities of each sample are estimated for each cluster,
and these probabilities are employed in the GMMPLS
algorithm. Therefore, the aforementioned steady intervals
are recognized as a specific cluster, which helps GMMPLS
perform more accurately for these samples.

As mentioned before, all the previously state-based
algorithms have been introduced for specific applications.
Thus, they are dependent on the existence of some prior
information about the structure of the desired output. On the
contrary, the proposed method is more generalized for such a
purpose since the clustering and the decoding procedures are
fully automated.

The proposed method includes three hyper-parameters
which have to tune using the CV procedure: the regularization
parameter (λ), the decomposition rank (R), and the number
of clusters (K ). Regularization parameter (λ) is used to
avoid overfitting phenomena in the ADAM algorithm.
We tuned this parameter using the CV procedure through this
manuscript. However, our investigation reveals that setting
λ = 10 or λ = 20 may be a good choice in most scenarios.
The decomposition rank is a common hyper-parameter in all
variants of PLS algorithms. We showed that GMMPLS is
more robust to R increment compared to PLS and QPLS in
Fig. 7. On the other hand, we illustrated that the proposed
method leads to higher performances in lower R compared to
other employed methods.

GMMPLS with one cluster (K = 1) downgrades to
the ordinary PLS. On the other hand, our simulation study
illustrated that increasing K does not necessarily lead to
improved performances. In other words, choosing optimal
K is depended on the structure of the desired output, and it
should be tuned using a CV procedure.

In the end, we used a simple logistic regression with
the regularized ADAM optimizer to decode the member-
ship probabilities. However, based on our experiments,
we informed that the membership probability estimation
in GMMPLS significantly influences decoding precision.
Therefore, improving this estimation will be the goal of our
future studies.

It should be noted that the MATLAB code of the proposed
GMMPLS is available upon request from the authors.

VI. CONCLUSION
This paper presents a novel fully automated state-based
decoder called GMMPLS for continuous decoding in various
BMI applications. Unlike the other state-based decoders,
GMMPLS does not rely on prior information about the
desired output structure. We illustrated and evaluated the
generalization of GMMPLS in two different real-world
datasets and a synthetic dataset. In all cases, the proposed
method outperformed the ordinary PLS, quadratic PLS

(QPLS), and Bayesian PLS (BPLS) in terms of decoding
correlation coefficient, coefficient of determination, and
mean absolute error metrics.

APPENDIX
NIPALS algorithm for PLS is outlined in Algorithm 3.
Algorithm 4 explains the detail of the GMM method imple-

Algorithm 3 PLS Algorithm for Estimating Desired Y From
X

Input: X ∈ RL×M ,Y ∈ RL×N ,
number of PLS components: R

Output: T = [t1, · · · , tR] ∈ RL×R,
P = [p1, · · · ,pR] ∈ RM×R,
Q = [q1, · · · ,qR] ∈ RN×R,
W = [q1, · · · ,qR] ∈ RM×R.
D = diag (d1, · · · , dR) ∈ RR×R and B ∈ RM×N

Assign X1 = X and Y1 = Y
for r to R do

Initial qr
while not convergence do

ur = Yrqr
wr = XT

r ur
/(

uTr ur
)

wr ← wr
/
‖wr‖2

tr = Xrwr
qr = YT

r tr
/(

tTr tr
)

qr ← qr
/
‖qr‖2

end while
pr = XT

r tr
/(

tTr tr
)

dr = uTr tr
/(

tTr tr
)

Xr+1← Xr − trpTr
Yr+1← Yr − dr trqTr

end for
B =W

(
PTW

)−1DQT
∈ RM×N

Algorithm 4 GMM Algorithm for Estimating Membership
Probability

Input: Y = [y (1) , · · · , y (L)]T ∈ RL×N

number of clusters: K
Output: 0 = {γk (l)} ∈ RL×K

Initialization the means µk ∈ RN , covariance6k ∈ RN×N

using k-means algorithm and the mixing coefficients πk =
1 for k = 1, · · · ,K
while not convergence do

E-step

γk (l) =
πkN

(
y (l)

∣∣µk ,6k
)∑K

j=1 πjN
(
y (l)

∣∣µj,6j
)

where N (·) is the Gaussian distribution operator
M-step

µnewk =
1
sk

∑L
l=1 γk (l) y (l)

6new
k =

1
sk

∑L
l=1 γk (l)

(
y (l)−µnewk

)(
y (l)− µnewk

)T
πnewk =

sk
L

where sk =
∑L

l=1 γk (l)
end while
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mentation. Note that we used the K-means for initializing
the GMM algorithm. In addition, the z-scored version of
the desired output is used as the input of this algorithm
to prevent the effect of data magnitudes in learning the
GMM model.

Algorithm 5 demonstrates the ADAM algorithm with
weight decay. In this algorithm, β1 and β2 are exponential
decay rates for the moment estimates, ε is a small constant,
α is a step size parameter, and λ is the regularization
hyper-parameter. Choosing these parameters is explained in
section III.

Algorithm 5 Adam Optimization With Weight Decay

Input: X ∈ RL×(M+1), γ k ∈ RL

Hyperparameter scalers β1, β2 and ε
Regularization hyperparameter λ
Step size α

Output: hk ∈ RM+1

Initialize parameter vector: hk (0)
Initialize iteration: t ← 0
Initialize 1st moment vector:m (0)← 0
Initialize 2st moment vector: v (0)← 0
while not convergence do

t ← t + 1
calculate gk = ∇hk J (hk (t)) from eq. (12)
m (t) = β1m (t − 1)+ (1− β1) gk
v (t) = β2v (t − 1)+ (1− β2) g2k
m̂ (t) = m (t)

/
(1− β1)

v̂ (t) = v (t)
/
(1− β2)

hk(t)=hk(t−1)−α
(
m̂(t)

/(√
v̂ (t)+ ε

)
+ λhk(t−1)

)
end while
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