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ABSTRACT This research presents hybrid level set evolution for complex and inhomogeneous image
segmentation. Firstly, we develop an adaptive force with level set evolution, which is driven by region
information. Adaptive force is produced by consolidating local and global force terms in an altered fashion.
Besides, to avoid local fitting terms being stuck into a local minimum, we use the swap function to
interchange the fitting terms so that fitting values inside the object are always higher. Later for the elimination
of the costly contour initialization that existed in previous level set based evolutions, we integrate kernel
based fuzzy c-means clustering and intensity-based thresholding framework with the proposed framework
to automate the proposed strategy. Finally, for the level set function regularization and the for the elimination
of its re-initialization we have used the Gaussian function in the level set evolution. We demonstrate the
results on some complex images to show the strong and exact segmentation results that are conceivable with
this new class of adaptive active contour model. We have additionally performed statistical analysis on real
images and BRATS dataset using Dice index, accuracy, sensitivity, specificity and Jaccard index metrics.
Results show that the proposed method gets high Dice index, accuracy, sensitivity, specificity and Jaccard
index values compared to the previous state of art methods.

INDEX TERMS Active contours, bias field, level set, clustering.

I. INTRODUCTION

A n Image segmentation is a significant stage in computer
vision and image processing applications [1]. Inhomogene-
ity or pixel variation is one of the striking issues in image
segmentation, which emerges from the flaws that occurred
during the image obtaining process or because of outside
obstructions. It appears as a smooth variation of pixels that
causes problem during segmentation process. For instance,
in clinical imaging, these weaknesses could prompt some
unacceptable choice of image boundaries. Thusly, the com-
plexity of inhomogeneity can incite counterfeit results that
can be hard for experts and radiologists to decide actual
outcome [2].
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In the context of Image segmentation, active contours have
been profoundly used [3]-[6], which have ended up being
incredibly well known and have found applications in numer-
ous image segmentation applications. The core idea is to
allow a curve to deform using the energy minimizing princi-
ple. Two significant classes that exist for active contours are
edge-based [7]-[9] and region-based [10], [11], [17]-[19],
[21], [22], [24]-[28], [30], [31].

Edge related contours use gradient data to perceive object
boundaries. However, gradient information is not adequate in
all circumstances. Moreover, this technique is very fragile to
noisy image data and extraordinarily dependent on contour
initial position. One preferred benefit of this sort of plan is
that there should be no region based constraints considered
for this kind of technique. Consequently, the correct segmen-
tation can be achieved in specific instances for diverse or
homogeneous intensity images.
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On the other hand, region based level set methods are based
on pixel information inside an image. These approaches
distinguish the background and foreground in a quantifi-
able manner and build up a vital energy function. Among
all region based techniques, some comprehensively used
regional global models and presumes the image regions
as homogeneous or constant [10], [11]. Further, few of
the eminent region based methods are local, which over-
throw the issues of the global active contours and con-
sider localized data of an image for inhomogeneous image
segmentation [22].

The corresponding segmentation of edge and region
active contours is appeared in Fig 1, where (a) expresses
the outcome of LSEWR (level set evolution without
re-initialization) [9] technique, (b) expresses the result of
the Chan-Vese [11] and (c) expresses the result of the LBF
(Local Binary Fitting) [9]. This may be reasoned from Fig 1
that, local energy active contours have some capacity to deal
with inhomogeneities to some extent. Nevertheless, localized
active contours are not constantly adequate to accomplish
precise image segmentation. Despite various intensity based
contour techniques, inhomogeneous image segmentation is
as yet a current issue in this research area, which occurs
from unsatisfactory image obtainment procedures or from the
outside impedance. It has been seen that the bias field is like-
wise utilized as a first step for achieving better segmentation
results. So far, various bias correction segmentation strategies
have been also proposed in this context [3], [5], [S]. However,
these methods have been found insufficient to segment object
due to the occurrence of only local energy functionals.

A local energy functional model was proposed by
Zhang et al. in [24]. This method has described the local
image fitting (LIF) model by utilizing localized intensity
information. In this method, the force term was developed
as a subtractive term between the original and fitted image.
In addition, the Gaussian kernel is used to direct the level-set
function stability after each cycle.

In [16], a unique region based active contour scheme is
given by utilizing a global signed pressure force (SPF) func-
tion. The SPF force term is characterized by utilizing intensity
means taken from [11].

In [3], [34] force term was proposed, which has infused
bias estimation and correction in the context of inhomo-
geneous segmentation. This model has portrayed force that
segments an object by minimizing the energy formulation and
performs bias field estimation altogether.

Lately, hybrid active contours [17]-[21], [28], [35] have
been exceptionally well known for segmentation. These
models consolidate region-edge data in an alternate fash-
ion dependent on various applications. In this context,
Soomro et al. [20] proposed a hybrid technique, which coor-
dinates region and edge data in an additive fashion. This
technique unites region and edge force terms, which produces
improved segmentation results.

This research proposes a novel active contour strategy with
the subsequent contributions.
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1) Firstly, this method develops hybrid energy functionals
based on a local and global image model.

2) Local and Global force terms are formulated and com-
bined to form an adaptive force, which accomplishes
inhomogeneous image segmentation.

3) Local fitting terms are swapped by using swap function
to avoid contour being trapped in a local minimum.

4) A kernel base fuzzy c-means clustering and Inten-
sity based thresholding is used as an initialization
stage, which makes the proposed algorithm robust and
consistent.

The proposed method has been carried out over various
images including the BRATS dataset and compared with
previous research. Results will verify that the proposed strat-
egy offers a better approach and accomplish required seg-
mentation results with high accuracy in contrast to previous
methods.

The next steps of the proposed research are as follows. The
background literature is depicted in segment II. The proposed
method is clarified in III. Exploratory and results investiga-
tions are portrayed in segment IV. Quantitative descriptions
are introduced in segment V using skin lesion and BRATS
dataset.Discussion is explained in VI. Finally, the conclusion
is portrayed in segment VII.

Il. BACKGROUND

A. CHAN-VESE MIODEL

Chan-Vese [11] foreseen a progressively fathomable formu-
lation containing an idea of Mumford and Shah model [10].
By estimating the image intensity forces inside and outside
of curve, Chan-Vese computes forces known as j; and j»
separately. Let an image be represented as I : @ C R?, level
setas ¢ : Q C R? and curve C is zero level set: C = {x €
Q|¢(x) = 0}. The energy formulation of Chan-Vese strategy
defined as:

Ecy(C,j1,j2) = M / 11(x) — j11*He ($(x))dx
Q
+h / () — jolP(1 = Ho(@(x))dx
Q
+u f |VH,(¢)|%dx + v f He(p)dx (1)
Q Q

where u > 0, v > 0 and A1, Ap > 0, are scaling constants
where 1 > 0 balances the length term and v balances the
region term for curve C individually. H.(¢) is the Heaviside
term composed as:

1 2 ¢
H.(¢) = 3 (1 + = arctan (;)) 2)

€ stabilize the smoothness of Heaviside term. Two forces
j1 and jp in Eq (1), describe globally approximated terms
across the curve C. By getting derivative of Eq (1), with
respect to ¢ using [36], the proportionate level set energy
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(a)

(©)

FIGURE 1. Previous methods segmentation. a: Result of LSEWR [9]; b: Outcome of Chan-Vese [11];

c: Outcome of the LBF [22].

functional is composed as follows.

99
at
- (—M(l—j Vb dn I o)+ pudiv (&> - v) 5:(@)
: Vol ‘
(3)
3¢(¢) defined as a Dirac delta function, described as:
£
3e(d) = T 1D (€]

Besides scaling the value of the Heaviside term in Eq (2),
€ also adjusts the width of a Dirac delta term in Eq (4).
Keeping ¢ fixed and minimization of Eq (1), for j; and j3,
we get the following details:

[ I()H,($(x))dx
.9
N T HA(pG)dx
Q
J1(x)(1 — He(p(x)))dx
=2 (5)

J (1 = He(p(x)))dx
Q

The final energy in Chan-Vese strategy is related solely
to global intensity for an image inside and outside of the
curve C. Therefore, this strategy creates an inappropriate
outcome if the image has a localized or inhomogeneous force
locales.

B. LOCAL BINARY FITTED MODEL

Li et al. [22] foreseen (LBF) local binary fitting strategy
to manage inhomogeneity issue by coupling an image
local pixel data into their formulations. Let us accept an
image I : Q C R2, a level set ¢ Q C R2, and a curve
as C. The proposed energy term is characterized as:

Ergr(C, f1,/2)
Y / Ko (x — W) — fiOPHGO)dy
Q

+k2fKa(x — W) = AP = H@m)dy  (6)

Q
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where some parameters are Ay, Ap> 0 and H.(¢) is the
Heaviside function clarified in Eq (2). f; (x) and f>(x) are local
forces determined from the two sides of curve C, which are
characterized as.

Ko # [H(@)I ()]
fie) = = ©

Ko # [(1 = He (@) (x)]

PO = = Ha@)) ®

Furthermore, the length term is additionally incorporated
for the regularization of the level set ¢. The numerical detail-
ing of this procedure is composed as:

0
B—‘f — 5. / Ko (x — WI) — i) 2dy
Q
2 f Ko — DI — SO dy(—50)
Q
V@) Ve
S (P)d Aod—d —_
FV0e(@) ’V<|V<¢>|)+“< ¢ ”(|V¢|>>

©))

In above formulation, p is to tune regularization term and
v is a parameter for length term, which helps curve to move
towards image boundaries. K, is a Gaussian window term
with standard deviation characterized as:

2
Ko(x —y) = b y') (10)

1
Qny2gn P <_ 202

o is for Gaussian standard deviation used to adjust the local
property of LBF model, which can be taken for smaller local
space or for the entire image local space.

The consideration of Gaussian function ponders an image
local pixel force data inside the two sides of curve C and
grants leverage to this strategy to catch objects with inhomo-
geneity. Moreover, local pixel data is not in every case enough
to complete an exact segmentation process. Moreover, this
strategy is horrendously sensitive to the initial curve and
stuck into local minima if we initialize it away from image
boundaries.
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C. LOCAL IMAGE FITTED (LIF) MODEL
This model was proposed [24] a subtractive fitted model in
their formulation. The formulation of this strategy is:

1
Eur = / () — Ir(o|Pd, (11)
Q

I Fy is locally fitted image defined as:

Ir(x) = fi)He(@) + f2(x)(1 — He()) (12)

where both f; and f, are localized forces characterized in
Eq (7) and Eq (8). Hc(¢) is Heaviside term characterized
in Eq (2). Utilizing standard gradient decent strategy [36],
minimization of Eq (11) regarding ¢ acquire these details.

d
a—q: = (I(x) = Iur )1 (x) + /2(x))5:(¢) (13)

D. VLSBCS MODEL

Asoflate, Li et al. [3], [34] conceived a(VLSBCS) variational
level-set strategy for the segmentation and bias rectification.
This technique relies upon retinex model, which explain
images having inhomogeneity, described as:

I(x) = b(x)J (x) + n(x), (14)

The equation above represents I(x) as an image with
inhomogeneities, J(x) is the image to be restored from inho-
mogeneities, b(x) is the bias field that is liable for inhomo-
geneities and n(x) is noise in the image. This strategy takes
retrieved image J(x) as a smooth inside each region in an
image. This idea technically formulated as:

N
J(x) = Y eiM; for x € Q withx € ()L, ., (15)
i=1
This strategy utilizes K-means to group neighborhood

image forces. K-implies use iterative method to minimize the
following target function:

N
= [ (Z / Kg(x—y)|1(y)—b(x)ci|2dy>dx (16)

i=1¢;

where b(x) is the bias field defined in Eq (18) and ¢; is
local pixel intensity. For the single level set approach the
estimation of i will be i = 2. On account of single-phase
level set based active contour, taking derivative of the above
formulation with respect to {Q,'}fy: - We have two regions
Q1, Q2 represents by zero level set 21 = ¢ > 0 and Q2 =
¢ < 0. We have final energy functional as:

N
E= / (Z/Ko(x Q) — b(x)0i|2Mi(¢)dy>dx,

i=lg;
(17)

where M; represents Heaviside term and for single phase level
set strategy we take M1 = H(¢) and M, = (1 — H(¢)).
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By getting the derivative of E, we get the undermentioned
equations for b(x) and c;.

Y2 Ko % [1(0)ciMi(9)]
Y Ko * [2Mi(9)]
[ Ko x [1(0)b(x)M(¢)]dx
C; =
[ Ko * [b?(x)Mi(¢)]dx

b(x) =

(18)

19)

E. WANG et al MODEL

In [35], proposed the adaptive level set force, which can
adaptively move contour direction as up or down as per image
data. They propose the final energy functional as follows:

. . i1+
El,j1,j2) = szgn(l(x, y) — JITD> (20)

where j1 and j, are global intensity forces taken from Eq (5)
respectively.

In this method the level set function has essentially intro-
duced as a constant value instead of the generally utilized
signed distance function adapted in existing level set models.
Thus, this model totally dispenses the necessities of initial
contour, thus eliminates the issues that came because of initial
curve initialization. The level set evolution of this method is
as follows:

Eagp(I. §) = g(|wa|)sign<l(x,y) _ 2 ;’2) @1)

IIl. PROPOSED HYBRID ENERGY FUNCTIONAL

To address inhomogeneity, a multiplied model is being taken
for the bias field approximation. Therefore, this research
takes multiplicative retinex model clarified in Eq (14), where
J(x) is believed to be built up by smooth image intensities
i-e., k. I(x) would in this way be formulated as:

I(x) =bx){ciM1+co2My+...... ckMy} (22)

where force implies ¢; determined for relating region {Q,-}f.\’: 1
and M; is the attribute of each region.
We propose an adaptive level set function as,

Eadp = asign <Ef0rce(¢)) + vAuap(9) (23)

where « and v are controlling parameters for adaptive energy
and area term.

Eforee(¢) is an adaptive driving force of local and global
energy, which operates the movement of the level set func-
tion. Defined as:

Eforee = (100)-(1 = w)(b(x))(c1) — w(J1))
+(10)-(1 = w)(b())(e2) = w(2))  (24)
The scaling parameter w is used to modify the model
for intensity variation. w is picked close to 1 if an image

has greater variations or inhomogeneities and w is picked
close to 0 for images, which have smooth or homogeneous
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regions. Eq (23) area term A(¢) accelerates the curve evolu-
tion, written as.

AlP) = V/He(_¢) (25)

c1 and c; are taken as local intensity means from Eq (19).
b(x) is a bias estimation field taken from Eq (18) and j; and
J» are global means explained in Eq (5).

It has been observed that, local energy models are very
sensitive to contour position, in this regard we have also
addressed and tried to improve local energy model with little
improvement. It has been noticed that, to acquire the required
object segmentation the contour position is to be consid-
ered near the object boundary and the value of ¢ (inside
object) should be greater than c¢; (outside object). To make
this happen, we have formulated a swap function inside our
framework, this function will check the values of both ¢; and
¢y near the object and interchanges it in that region. This
phenomenon is described in Fig 2.

Swap function comprises of min and max functions to
interchange local intensity values of ¢; and c; taken from
Eq (19), these functions are mathematically described as:

c1™ = min(cy, ¢2)
2™ = max(cy, ¢2) (26)

The global force terms characterized in Eq (24) have only
help contour to move away from the boundary and assist
local force to capture inhomogeneous regions smoothly.
Hybrid active contours have been defined in detailed perspec-
tive [17], [18], [21], [24], some of them join global forces
and others utilizing localized imperatives. The new force
proposed in this research relies on global and local intensity
forces. Fig 3 shows how global and local force intermingle
during level set evolution.

Global intensity forces are not satisfactory to complete
the image segmentation process having inhomogeneity. Sim-
ilarly, models dependent on the merely local forces have
many computational and time complications. Adapting local
and global fitted forces, the proposed system can deal with
the inhomogeneity issue without causing any hindrances.
Further, it has been additionally seen that models with
merely global forces cannot catch objects with inhomogene-
ity because global models are built up under the supposition
of homogeneous pixel regions.

Taking the derivative of the proposed method’s energy
functional Esq, from Eq (23) by using gradient descent
method [36], the final level set equation is:

¢
T <0tEAdp(¢))—V> LB 27)

In this research, adaptive force is designed, which changes
its sign itself. Therefore, we initialize the level set function as
a constant function for all the images defined as:

px,t=0)=p xeQ (28)
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TABLE 1. Experiment and validation values used in results.

Symbol | Quantity Parameter value

« Adaptive force parameter 0.4

v Area term 0.00001 * 255 * 255
o Gaussian kernel parameter | 0.3

p Initial level set constant 2

€ Dirac constant 1.5

v Time-step 0.1

w W parameter 0.001

p > 0 is an any constant value. In the end, the iterative
steps of the proposed strategy are followed as algorithm
below:

Algorithm

1) Initialize Ievel set as constant function,@(x, f = 0) in
Eq (28).

2) n=1.

3) while curve evolution is not completed do

4) Find global and local intensities from Eq (5) and from
Eq (26).

5) Find the bias value Eq (18),

6) Solve the final level set using Eq (27).

7 n=n+1.

8) end while

9) Output: Converged outcome, ¢.

IV. RESULTS AND DISCUSSION

Each observation is executed in MATLAB 2019 on a Win-
dows 10 in a PC with Intel 17, 2.9 GHz with 16 GB RAM. The
values for proposed technique are documented in Table 1.

The initial result is displayed in Fig 4, which explains the
working principle of the proposed approach over inhomoge-
neous image. The initialization curve is shown in (a), the bias
field and the corrected image is shown in (b), (c) and the final
outcome of the proposed method is shown in (d).

To check the consistency of the proposed method, we used
some images, which are common for almost all previous
methods. The result of the proposed method and its compar-
ison is shown in Fig 5. Column VII reflects the results of
the proposed method, which is consistent and robust against
previous methods.

Further, we used images from a publicly available dataset
for assessing the quality of the proposed method and its com-
parison with other methods. The results of the proposed and
previous methods are depicted in Fig 6, where the proposed
method has surpassed existing methods.

We acquire more outcomes on images defiled by inhomo-
geneity in Fig 7, where columns I, II, III, IV, V, VI and VII
show the consequences of the Chan-Vese [11], DRLS [12],
LBF [22], LIF [24], VLSBCS [3], Zhang et al. [5] model
and proposed method separately. Results show that proposed
method has achieved better results than previous methods.

Table 2 shows the time and repetitions of every strategy
dependent on Fig 7. It is clear in Table 2 that, Chan-Vese took
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FIGURE 2. Effect of the swap function over local force terms. Column I: (Initialization contour), Column II: (Local term without swap

function), 111: (local terms after swap function).

FIGURE 3. The intermingling of two forces: a: a global force moves
contour towards boundary; b: The local energy captures inhomogeneous
regions.

less time and cycles contrasted with past techniques, in any
case, this strategy isn’t able to yield precise outcomes. How-
ever, Proposed technique have delivered precise outcomes
with second least number of cycles and time.

In Fig 8, one image is taken by changing its level
of inhomogeneity from low to high. The consequences
of the Chan-Vese [11], DRLS [12], LBF [22], LIF [24],
VLSBCS [3], Zhang et al. [5] and proposed strategy are
shown in columns I, II, III, IV, V, VI and VII. Results
show that as the degree of inhomogeneity expands the past
techniques surrender and perform incorrect image segmenta-
tion, while proposed strategy keeps up its strength and per-
forms precise segmentation. Computational time and number
of cycles taken for Fig 5 are appeared in Table 3, where
Chan-Vese [11] didn’t yield precise outcomes yet devoured
least time. However, proposed strategy devoured fewer cycles
and CPU time contrasted with past technique aside from
Chan-Vese [11] and delivered precise outcomes.

Fig 9 gives result on some real images taken from publicly
available sources. Results and its correlations are exhibited
in I: (Chan-Vese [11]), II: (DRLS [12]), III: (LBF [22]),
IV: (LIF [24]), V: (VLSBCS [3]), VI: (Zhang et al. [5]) and
VII: (proposed technique) separately. Results determine the
shortcomings of the past strategies, where Chan-Vese and
DRLS techniques cannot get precise outcomes in appearance
of inhomogeneity. LBF and LIF techniques are delicate to

VOLUME 9, 2021

TABLE 2. Time consumption and iterations of previous methods and
proposed method in Fig 7.

Methods a b c

Iterations 20 20 20
Chan-Vese [11] CPU 3564 [3.985 |[|4.125

time(sec)

Iterations 290 290 290
DRLS [12] CPU 21797 8541 [|6.339

time(sec)

Iterations 60 60 60
LBF [22] CPU 12,658 [10.857 ||8.954

time(sec)

Iterations 400 400 400
LIF [24] CPU 17657 [6.128  ||7.147

time(sec)

Iterations 30 30 50
VLSBCS. [3] CPU 3968 [5.785  |[7.258

time(sec)

Iterations 100 100 100
Zhang etal. [5] CPU 17.857 (8015 |[6.927

time(sec)

Iterations 50 50 50
Proposed method | -y 4985 (3874 |[5.254

time(sec)

position of initial curve, therefore these strategies yield false
results. VLSBCS technique performed well and get precise
outcomes at times, Zhang et al. [5] did not admirably per-
formed as well. Therefore, the proposed strategy has out-
performed past techniques and accomplished the required
segmentation accurately.

We have counted the time consumption and cycles of every
technique in Table 4 from Fig 9. The result of the proposed
strategy is discrete as far as CPU time and cycles contrasted
with past techniques.

V. KERNEL-BASED FUZZY C-MEANS CLUSTERING AND
THRESHOLDING FOLLOWED BY PROPOSED METHOD

In traditional FCM [13], [14], the scope of each class is
evaluated to minimize the cost function and it has been widely
used in medical image segmentation algorithms. Recently,
several methods have used FCM technique to automate active
contour procedures [15], [41] in their way. Inspired by these
methods [15], [41], we have also adapted kernel based FCM
and thresholding approach to automate our segmentation
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FIGURE 4. Proposed method result for inhomogeneous image a: Image. b: Bias estimation; c: Bias correction; d: Segmentation result.

FIGURE 5. Proposed method result and its comparison. Column I: (Chan-Vese [11]), Column II: (DRLS [12]), 11I: (LBF [22]), IV: (LIF [24]),
V: (VLSBCS [3]), VI: Zhang et al. [5] and VII: (proposed method) respectively.

FIGURE 6. Proposed method result and its comparison over real set of images. Column I: (Chan-Vese [11]), Column II: (DRLS [12]),
111: (LBF [22]), IV: (LIF [24]), V: (VLSBCS [3]), VI: Zhang et al. [5] and VII: (proposed method) respectively.

method and to eradicate the problem of initial contour. distribution. Moreover, a kernel window function is utilized
We use, adaptive regularization for contextual information instead of the Euclidean distance metric to increase seg-
based on the heterogeneity factor of the grayscale intensity mentation accuracy. Further, We use clustered images for

147022 VOLUME 9, 2021
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FIGURE 7. Comparison of the proposed method on different images from different modalities.
Column I: (DRLS [12]), Column II: (Chan-Vese [11]), IlI: (LBF [22]), IV: (LIF [24]), V: (VLSBCS [3]),
VI: Zhang et al. [5] and VII: (proposed method) respectively.

FIGURE 8. From low to severe intensity inhomogeneity comparison. Column I: (Chan-Vese [11]), Column II: (DRLS [12]),
111: (LBF [22]), IV: (LIF [24]), V: (VLSBCS [3]), VI: Zhang et al. [5] and VII: (proposed method) respectively.

FIGURE 9. Comparison on real images with complicated intensity. Column I: (Chan-Vese [11]):, 1I: (DRLS [12]), 1lI: (LBF [22]),
IV: (LIF [24]), V: (VLSBCS [3]), VI: Zhang et al. [5] and VII: (proposed method).

binarization and perform intensity-based thresholding taken where the foreground and background of the object can be

from [39], [40]. This scheme allows us to capture the desired separated in multi-level of gray levels.
region of interest by thresholding the image with a certain Traditional FCM techniques have used fixed statistical
number of gray levels. It is very powerful preprocessing step, or pixel information for corresponding membership value,

VOLUME 9, 2021 147023
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TABLE 3. Time consumption and iterations taken by every method
in Fig 8.

Methods row 1 row?2 [row3 [row4 [row 5
Tterations |20 20 20 20 20
Chan-Vese [11] | cpyy 1014|1025 [1.852 [1365 [2.362
time(sec)
Iterations 250 250 250 250 250
DRLS [12] CPU 6.579 6.579 6.472 6.039 [6.335
time(sec)
Tterations |20 20 20 30 50
LBF[22] CPU 4325|4254 |4857 4958 [9.241
time(sec)
Iterations  |500 500 500 500 700
LIF [24] CPU 3.254 3.754 3.857 |4.014 [4.852
time(sec)
Tterations |50 50 50 200 200
VLSBCS. 131 |cpy 2758|2807 [3.965 |4.325 |4.254
time(sec)
Zh tal. [5] Iterations  [100 100 100 100 100
ang et al. CPU 3365 12254 [11.852 [21.875 [24.965
time(sec)
Proposed method Tterations |20 20 25 30 30
POs CPU 1874 [1.015 [1.784 [1.745 |1.965
time(sec)

TABLE 4. Time consumption and iterations taken by every method
in Fig 9.

Methods row 1 row 2 row 3

Tterations [250 1210 610
Chan-Vese [11]1epy 18205 (13,199 {9.919

time(sec)

Iterations |20 20 20
DRLS [12] CPU  [2254  [2951  |[2.456

time(sec)

Iterations |100 100 100
LBF [22] CPU  [13754 |12657 |[11.967

time(sec)

Iterations {500 500 500
LIF [24] CPU 18752 [16965 |[17.652

time(sec)

Iterations |30 30 30
VLSBCS.- B3I lepy  |7354  [a254  |[6.742

time(sec)

Iterations |50 50 50
Zhangetal- 51 lepy (16325 (10875 |[8.965

time(sec)

Iterations |50 50 50
Proposed method | cpry |5 875 3312|4458

time(sec)

which is not appropriate because noise may differ within
each local window. Subsequently, to get rid of this issue,
this method uses an adaptive regularization parameter, which
deals with spatial or contextual information. To do so,
the local variation coefficient (LVC) is introduced to compute
the inconsistency of the gray values within a local window.
LVC is defined as:

ZkENi (xk - E)z

(LVC); =
N * (%)’

(29)

where x; is the grayscale pixel values around pixel i within
local window N;,N, is cardinality and X; is average of
grayscale values. Furthermore, to acquire weights within
the local window, exponential function is applied to LVC
and ultimately weight is assigned to every pixel using
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FIGURE 10. Result of the proposed method on Mammogram images
taken from [47].

FIGURE 11. Result of the proposed method on real images taken
from [46].

the following terms.

G = exp( > (LVC»)
keN;,i#k

&i

D S G0
2+ wj, Xj < X

o = 12— wi, X > x; (31)
0,x; = x;

Further, (31) allocates large values for pixels with higher
LVC values and similarly if the mean of local window
grayscale is equal to the value of central pixel value, (31) will
be zero and the algorithm will act as a normal FCM algorithm.

Finally, we perform the active contour segmentation over
the images obtained from previous stage. We use the level set
method proposed earlier in this research for final contouring.
In the end, we compare ground truth with final result to
validate our method. This process is shown in Fig 12.

VI. QUANTITATIVE COMPARISONS
For the quantitative results, this method presents segmenta-
tion of Mammogram images in Fig 10 taken from public
dataset [47], the size of all images is 1024 x 1024. This
presents the segmentation of mammogram tumor images (in
pink) and manually annotated ground truths (in green). Fur-
ther, we also took more real images from [46] dataset and
the segmentation result of the proposed method is also shown
in Fig 11 over some real images [46].

We process the Dice index, accuracy, sensitivity, speci-
ficity and Jaccard index metrics to analyze our technique
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Quantitative Evaluations

Proposed

Zhangetal.

VLSBCS

LIF

LBF

DRLS

Chan-Vese

o

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Chan-Vese DRLS LBF LIF VLSBCS Zhang et al. Proposed
m Jaccard 0.4782 0.4412 0.7741 0.6741 0.9297 0.9035 0.9976
Specificity 0.5874 0.4542 0.6841 0.7241 0.9254 0.9168 0.9974
W Sensitivity 0.5141 0.4367 0.7012 0.7143 0.9482 0.9032 0.9981
W Accuracy 0.4874 0.4528 0.7178 0.6245 0.9164 0.9354 0.9963
mDSC 0.5542 0.4327 0.7415 0.7345 0.9247 0.9276 0.9912

FIGURE 12. Comparison of the proposed method with previous methods
from Fig 10.

quantitatively. The acquired outcome will be considered
acceptable when their values are near 1. Dice coefficient
measures the amount of recognized tumor that matches the
ground truth, sensitivity metric characterizes that every sin-
gle recognized locale (tumors) are right and associated with
the ground truth, accuracy metric explains the similarity of
segmented part to ground truth, specificity is how accurately
system avoids true negative regions and Jaccard index coef-
ficient measures the overlap of result over ground truth.

DSC = 2 x TP (32)

~ 2x TP+ FP+FN
Accuracy = P+ IN (33)

YT TPYIN + FP1 FN’
TP
Sensitivity = —— (34
TP + FN
Specificity = —(TN) 35
pecificity = (TN n FP) (35)
B (TP)

Jaccard = (36)

(FP+TP+FN)

TP (true positive) relate to fragmented tumor tissues,
TN (true negative) compare to accurately unsegmented tis-
sues, FP (false positive) relate to the normal tissues consid-
ered wrongly as tumor tissues and FN (false negative) relate
to the undetected tumor locales.

The quantitative analysis of Fig 10 is shown in Fig 12 and
it shows that proposed strategy has accomplished better Dice
index, accuracy, sensitivity, specificity and Jaccard index
values contrasted with past strategies.

Similarly, the quantitative analysis of proposed method
over caltech [46] dataset is shown in Fig 13 and it shows that
proposed strategy has accomplished better average values
of Dice index, accuracy, sensitivity, specificity and Jaccard
index values contrasted with past strategies.

A. QUANTITATIVE VALIDATION ON BRATS DATASET
MRI (Magnetic Resonance Imaging) is viewed as the most
generally utilized noninvasive methodology for brain tumor

VOLUME 9, 2021
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Chan-Vese DRLS LBF UF VLSBCS Zhanget al Proposed
—==DSC 0.6745 0.4327 0.6415 0.7345 0.7354 0.7176 0.8912
~a=Accuracy 0.7126 0.4528 0.6178 0.6245 0.7652 0.7354 0.7963
w=Sensitivity 0.6121 0.4367 0.6012 0.6143 0.7452 0.7032 0.8781
Specificity ~ 0.7164 0.4741 0.6357 0.6452 0.7365 0.7417 0.8102
—we=Jaccard 0.6654 0.4365 0.6251 0.6175 0.7347 0.7745 0.8985

FIGURE 13. Comparison of the proposed method with previous methods
on real images from [46].

INPUT BRAIN MR

LEVEL SET
SEGMENTATION AND
VALIDATION

BINARIZATION /
THRESHOLDING

FIGURE 14. Proposed framework for brain MR tumor detection.

detection [44]. Detection of unusual regions in MRI is fun-
damental since it helps specialists and experts to examine
the development of a tumor. Researchers have proposed
numerous segmentation approaches for brain tumor detec-
tion. Active contours have been also associated with brain
tumor detection [45]. Therefore, we have likewise proposed
a technique on the BRATS 2015 test dataset [48]. This
dataset contains four successions for every case known as T1-
weighted(T1), T1 with gadolinium-upgrading contrast (T1c),
T2-weighted (T2), and FLAIR. Proposed clustering-based
approach has been executed over BRATS 2015 [48] dataset
over 200 HGG( high-grade glioma) and 44 LGG(low-grade)
patient volumes.

Fig 15 shows the segmentation result of proposed cluster-
ing based approach for brain tumor detection on few MR
Images. We have also calculated average values of dice
index, accuracy, sensitivity, specificity and Jaccard index
metrics for the BRATS dataset as shown in Fig 16 and
compared it with the previous state of the art active contour
methods. From the results, we can deduce that proposed
semi-automatic approach has captured desired output with
increased quantitative values.

B. COMPARISON WITH EXISTING CLUSTERING MODELS

We have also evaluated and compared adaptive FCM rmethod
with two popular clustering methods i-e spectral [43] and
K-means [42] clustering. These methods are executed over
skin lesion images and the captured results are evaluated by
using ground truth. The results of adaptive FCM, K-means
and spectral clustering on a single image are shown in 17,
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FIGURE 15. Proposed method for brain tumor detection. Column I:
original image, II: clustering, II: thresholding, IV: final result, V: ground
truth.

Quantitative Evaluations of BRATS dataset
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FIGURE 16. Quantitative results of the BRATS dataset and its comparison.
(@) (b)
(© (d)

FIGURE 17. Comparison of clustering methods a: original image;

b: Outcome of k-means clustering; c: Outcome of spectral clustering;
d: Outcome of adaptive FCM.

which shows that adaptive FCM can distinguish boundaries
better than previous approaches. We processed 30 images
of the skin lesion dataset taken from [37] and compared
quantitative results in 18 by using Jaccard, specificity, sen-
sitivity, accuracy and DSC metrics explained in 36, 33, 34,35
and 32. The results have shown that adaptive FCM is robust
and efficient compared to K-means and spectral clustering
methods.

VII. DISCUSSION

A. TRAD-OFF BETWEEN THE LOCAL AND GLOBAL
INFORMATION

Global information can only segment objects, which have
only homogeneous region of pixels and these models
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FIGURE 18. Quantitative validations of the clustering methods.

== ~ r ==
(b) (©

FIGURE 19. Euclidean distance metric and kernel window comparison
a: original image; b: Outcome of FCM clustering with Euclidean distance
metric; c: Outcome of adaptive FCM with kernel window function.

cannot provide subtle segmentation results with inhomogene-
ity. The local models can segment objects in the presence of
inhomogeneity to some extent. However, local models alone
are insufficient to carry out segmentation in a smooth way
and often stuck into local minimum due to its sensitivity
for contour initialization. Therefore, modern active contour
methods are proposed on a hybrid strategy.

B. KERNEL FUNCTION vs. EUCLIDEAN DISTANCE METRIC
The traditional FCM method uses the Euclidean distance
metric for partitioning data. However, this technique is proved
to be sensitive to perturbations and outliers. Lately, a kernel
trick has been utilized by Support vector machines where
data could be partitioned with good accuracy [49]. Adaptive
FCM also uses kernel based scheme to modify the behavior
of the adaptive FCM as nonlinear. In this regard, we have
illustrated the comparison of traditional FCM and Adaptive
FCM in Fig 19 which uses kernel window function instead
of Euclidean distance metric. The outcome of the Adaptive
clustering demonstrates that kernel window function can pre-
serve borders of data accurately compare to the traditional
FCM method.

C. DIFFERENCE BETWEEN MACHINE LEARNING-BASED
AND LEVEL SET BASED SEGMENTATION MODELS

Modern segmentation methods are also using machine learn-
ing [38], specifically deep learning based structure for object
segmentation because of its accuracy and robustness. How-
ever, deep learning methods demand high cost resources and
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prior knowledge of data, which may not available in all the
cases. The proposed method uses a level set based partial
differential structure, which does not require GPU, physical
resources and any prior knowledge of data.

VIil. CONCLUSION
This research has proposed a novel hybrid model based on
active contours. A hybrid force term of the local and global
energy is proposed for inhomogeneous image segmentation.
The adaptive force model is coordinated with the bias field,
where a swap function was introduced to interchange local
fitting terms to avoid level set evolution being stuck in a
local minimum and produce wrong segmentation results.
Moreover, the proposed technique has been extended and
automated by integrating kernel-based fuzzy c-means clus-
tering and thresholding as an initialization technique for
the proposed method. In this way, we have eliminated the
problem of contour initialization and its limitation for dif-
ferent applications. In this regard, we have conducted sev-
eral experiments on images with various intensity variations.
For quantitative approval, we have performed experiments
over brain tumor images taken from the BRATS dataset
and mammogram images from. Further, these results were
evaluated using Dice index coefficient, accuracy, sensitivity,
specificity and Jaccard index metric investigations. Results
show that the proposed strategy has achieved better outcomes
contrasted with past techniques, which has outperformed the
restrictions of past global and local active contour techniques
and expanded the proficiency of the proposed technique.
One of the bottlenecks of the local region based model
is time complexity. Therefore, in our future work, we may
eliminate the local force and enable the newly formulated
method to capture objects using only the edge and semantic
information of an image.
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