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ABSTRACT UNet and its variations achieve state-of-the-art performances in medical image segmentation.
In end-to-end learning, the training with high-resolution medical images achieves higher accuracy for
medical image segmentation. However, the network depth, a massive number of parameters, and low
receptive fields are issues in developing deep architecture. Moreover, the lack of multi-scale contextual
information degrades the segmentation performance due to the different sizes and shapes of regions of
interest. The extraction and aggregation of multi-scale features play an important role in improving medical
image segmentation performance. This paper introduces the MH UNet, a multi-scale hierarchical-based
architecture for medical image segmentation that addresses the challenges of heterogeneous organ seg-
mentation. To reduce the training parameters and increase efficient gradient flow, we implement densely
connected blocks. Residual-Inception blocks are used to obtain full contextual information. A hierarchical
block is introduced between the encoder-decoder for acquiring and merging features to extract multi-scale
information in the proposed architecture. We implement and validate our proposed architecture on four
challenging MICCAI datasets. Our proposed approach achieves state-of-the-art performance on the BraTS
2018, 2019, and 2020Magnetic Resonance Imaging (MRI) validation datasets. Our approach is 14.05 times
lighter than the best method of BraTS 2018. In the meantime, our proposed approach has 2.2 times fewer
training parameters than the top 3D approach on the ISLES 2018 Computed Tomographic Perfusion (CTP)
testing dataset. MH UNet is available at https://github.com/parvezamu/MHUnet.

INDEX TERMS BraTS, convolutions, dense connections, encoder-decoder, ISLES, MICCAI, UNet.

I. INTRODUCTION
Convolutional Neural Network (CNN) is a popular approach
for medical image segmentation such as brain tumor seg-
mentation [1], stroke lesion segmentation [2], and infant
brain tissue segmentation [3]. Manual 3D image segmenta-
tion is a time-consuming task due to the variations of each
patient’s shapes, sizes, and locations. For example, Figure 1
shows three brain MRI patient slices; each tumor has a
distinctive shape, size, and location. An accurate automatic
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segmentation method can speed up clinical decisions in
life-threatening problems.

CNN is a sequence of convolution, pooling, non-linearities
operations to learn high-level features [4], [5]. However,
2D and 3D CNNs face challenges in obtaining competitive
results. For example, Havaei et al. [6] and Kamnitsas et al. [2]
presented multi-scale architectures for local and global fea-
tures. 2D convolutions in the conventional architecture do
not exploit the full contextual information of 3D medical
datasets. At the same time, 3D filters provide higher accuracy
compared to 2D filters. However, the depth of 3D CNNs is
restricted due to the limited resources. Furthermore, the lack
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of end-to-end training schemes with traditional 3D CNN
degrades the segmentation accuracy.

These limitations can be mitigated by Fully Convolutional
Neural Networks (FCNNs) such as UNet [7] and its varia-
tions [8]–[10]. UNet is made up of an encoder and decoder.
The encoder learns the context features and reduces medical
images’ high resolution by applying convolution and pooling
operations. In contrast, the decoder recovers the resolution
of medical images by using an upsampling operation. Simul-
taneously, the decoder adds more abstract representation to
the aggregating features of the encoder and the upsampling
function by applying convolution operations. In the skip-
connection, the aggregation function is either concatena-
tion [8] or addition [9] in the UNet architecture.

Nearly, most CNN methods apply UNet [8], [11], [12]
for medical image segmentation. However, these architec-
tures suffer from a huge number of parameters. In addition,
several researchers employed cascaded strategies on UNet,
especially for brain tumor segmentation [13]–[16] because
of overlapped labels. Cascaded UNet involves two or more
encoder-decoder networks to solve the problem of segmen-
tation. For example, Baid et al. [14] presented a cascaded
UNet in which the first encoder-decoder network segments
the whole tumor, and the second UNet is trained to segment
the tumor core and the enhancing tumor. However, solving a
multi-class segmentation problem using the cascading UNet
architectures is complicated.

Cascaded UNet also used residual connections [17] to
prevent vanishing gradient issues in a deeper network. A deep
network allows the encoder-decoder architecture to extract
multi-scale contextual information. However, the residual
UNet uses several channels during training, which causes an
increase in training parameters. Residual network is replaced
by dense connections, which allows a sequence of short
connections between layers [18]. Dense connections help in
reducing parameters and developing a deep network. In a
dense network, each layer has a connection with all previous
layers. Researchers have developed densely connected UNet
for multiple organ segmentation problems [9], [19].

UNet architectures cannot address the issues of heteroge-
neous organ segmentation, in which regions of interest are
inconsistent and vary in size. For example, as seen in Figure 1,
the size of brain tumors varies significantly in MRI modali-
ties. Two restrictions are available in the UNet architectures.
First, the residual-based UNet architectures take a huge num-
ber of parameters for training. Furthermore, in traditional
residual blocks, the convolution layers have redundant fea-
tures. Meanwhile, these layers fail to include previous layers’
efficient low-level features in training. Second, current UNet
architectures have limited ability to retrieve the contexts of
multiple receptive scales efficiently. Researcher presented
solutions to overcome this problem [2], [6], [9]. These meth-
ods introduced different receptive scales of feature maps.
However, thesemethods cannot deal properly with the diverse
medical image modalities that have large-scale variations.
Theoretically, the decoder extracts features from deep layers

FIGURE 1. MRI scans show the variations of shape, size, and location of
brain tumors. Each row depicts T1ce, ground truth and overlaying of
ground truth on the T1ce modality of each patient from left to right. Each
colour represents a different region: green for the tumor core, blue for
the whole tumor, and yellow for enhancing tumor.

in the architecture. Low-resolution features have adequate
semantic information, whereas layers of the encoder contain
rich spatial information and little global semantic context.
Consequently, in the architecture, the high-level semantic and
low-level spatial information can be adequately merged to
maximize the integration of multi-scale features.

In inspiration of the above concepts, we propose MHUNet
to address the issues of heterogeneous organ segmentation.
The proposed architecture consists of three blocks. First,
we suggest dense blocks in the encoder-decoder to reduce
the number of learnable parameters. We replace the residual
learning function with a dense connection in each dense
block to provide multi-scale features to its adjacent block.
As a result, feature maps with different receptive scales are
sent into the blocks. Second, we use a residual-inception
block comprising three parallel dilated convolution layers
to learn local and global contexts in the first level of the
encoder. The multi-scale context is then applied to the first
dense block of the encoder. As a result, each dense block
in the encoder provides multi-scale features to its adjacent
block. In the decoder, a variance of the residual-inception
block is proposed. As a result, the multi-scale features are
available to the dense blocks of the decoder. Third, we offer
a unique hierarchical block between the encoder-decoder to
efficiently extract features of multiple receptive scales. The
encoder’s dense blocks extract multi-scale features with fixed
receptive scales. Thus, the proposed hierarchical block with
dilated convolution layers enhances the sizes of the receptive
fields. In particular, we construct a multi-path block of dif-
ferent dilated convolution layers and then combine features
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with different paths’ receptive fields. As a result, the hier-
archical block efficiently fuses high-level semantic features
with low-level spatial features to improve the segmentation
scores. In addition, a deep supervision concept is presented
in the decoder to acquire new semantic features and improve
the segmentation maps of multiple organs. The proposed
MH UNet outperforms contemporary approaches on four
publicly available benchmark datasets.

For segmentation tasks, as a variation of 3D UNet,
MH UNet is more profound, flexible, and lightweight.
We summarize the key contributions of the proposed work
as below:

• We develop a novel multi-scale hierarchical architec-
ture for medical image segmentation. Dense connec-
tions allow deep supervision, smoothing the gradients
flow, and reduced learnable parameters. Meanwhile,
the residual-inception blocks extract multi-scale features
for robust representation.

• The hierarchical block efficiently combines the multi-
scale local and global contexts in an encoder-decoder
architecture. The hierarchical block improves the recep-
tive field sizes of the dense blocks’ feature maps
by different parallel dilation rates at the encoder
of 3D UNet.

• We present a deep supervision approach for faster
convergence and superior segmentation accuracy. All
dense blocks generate multi-scale segmentation maps in
the decoder. These multi-scale segmentation maps are
aggregated to boost the model’s convergence speed and
accuracy.

• We propose a combination of binary cross-entropy and
dice loss functions to deal with severe class imbalance
problems. Our model achieves significant segmenta-
tion accuracy due to the combined loss function, which
does not require sophisticated weight hyper-parameter
tuning.

• We propose an efficient and simple post-processing
technique to eliminate false-positives voxels.

• We have used MICCAI BraTS and ISLES datasets for
experimentation. Our proposed model outperformed all
other state-of-the-art methods, including cascaded and
ensembled approaches.

II. RELATED WORK
This section reviews UNet and its variations, frequently pre-
sented for the brain tumor and stroke lesion segmentation
tasks.

A. STROKE LESION SEGMENTATION
Both 2D and 3D variations of UNet are extensively avail-
able in brain tumor segmentation literature, while 3D UNet
requires huge memory requirements, 2D filters ignore the
slice level contextual information. The majority of stroke
lesion segmentation tasks use 2D UNet and its variations
[12], [19]–[22], except some works of 3D UNet [23], [24].

Furthermore, earlier methods used the weight hyper-
parameter in the different loss functions to address the
data imbalance problem during training. However, predicted
results might be biased towards the category with the big
weight, which is generally provided to the lesions. Specif-
ically, more false-positive voxels may be associated with
predictions. We use a non-weighted loss function for our
proposed work to avoid the number of false-positive voxels
in the predicted maps.

B. BRAIN TUMOR SEGMENTATION
Cascaded UNet and its variations are used for brain tumor
segmentation. Here, different variants of UNet [13]–[16] have
solved issues in several stages. Cascaded UNet contains two
or three encoder-decoder architectures, which add complexity
in solving the segmentation problem. Researchers used single
UNet to solve multi-class segmentation problems. Residual
based 3D UNet is effective to obtain high accuracy using
required depth in a single step. Therefore, researchers used
variant forms of 3D Residual UNet [25], [26] to exploit
multi-scale contextual information for segmentation. Further-
more, the attention mechanism is used in different variations
of UNet [27]–[29] to remove unnecessary and redundant
features. However, the variations of UNet are shallow and
contain a high number of channels during training, thus
require a huge number of training parameters.

In the proposed work, we use densely connected blocks
in encoder-decoder. Dense connections reduce the train-
ing parameters by using a value of growth-rate in the
blocks. We use densely connected residual-inception blocks
to extract multi-scale contextual information. A unique hier-
archical block between the encoder and decoder is present
to extract multi-scale features from numerous receptive
scales efficiently. We hierarchically design our mechanism
to achieve state-of-the-art performances with a minimum
number of parameters.

III. PROPOSED ARCHITECTURE
The proposed architecture for brain tumor segmentation is
depicted in Figure 2. The encoder-decoder employ several
dense and residual-inception blocks. In addition, we adopted
a hierarchical idea inspired by Liu et al. [30]. In Figure 17
(see supplementary materials section VII), we visualize
MH UNet with channels description. In addition, we also
visualize some layers of our proposed work.

A. DENSE BLOCKS
As depicted in Figure 3, a dense block has three convo-
lution layers, in which feature maps of all previous layers
are concatenated and passed as input to the current layer.
In addition, after the first convolution layer in each dense
block, the spatial dropout layer is employed at a rate of 0.2 to
avoid overfitting problems. The concept of dense connections
in a dense block can be summarized as

xl+1 = g (xl) 
xl (1)
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FIGURE 2. Proposed MH UNet. The size of the input to the first convolution layer (Conv) is 128× 128× 128. After then, combined feature maps of the
residual-inception (RI) block and first convolution layer (Conv) are passed to the dense block (DB). Consequently, the output features have hierarchical
information and incorporate the details of all previous layers. The combined information is then transferred via two paths (i) skip-connections, which
are used to fuse the features of multiple scales, and (ii) upcoming depths, which are represented by the strided convolution layers (violet arrows) and
the dense blocks. Strided convolution layers are employed to reduce the input data’s sizes in the encoder. In contrast, the decoder has non-parametric
upsampling layers to retrieve the lost information, followed by the RI blocks for the hybrid contextual learning. In addition, a hierarchical block has
aggregated features of the encoder and the first upsampling and RI block. In the meantime, a deep supervision concept is employed on the depths of
the decoder for the segmentation maps (blue squares). Finally, an activation function, sigmoid, is applied on the combined segmentation maps for the
final output. Figure 3 depicts the details of a dense block, Figure 5 shows variants of residual-inception blocks, and Figure 6 depicts the concept of the
hierarchical block.

where xl denotes the output of a current layer l, g(.) rep-
resents a sequence of Conv-IN-LeakyReLU and 
 denotes
a concatenation operation. Furthermore, the input fea-
ture maps of a l th convolution layer can be summarized
as

xl+1 = X−1 +
l∑
j=1

Xj (2)

where X−1 is the input feature maps for each layer of a dense
block.

A growth-rate 2 (Xj) is used in a dense block to reduce
the number of parameters in each convolution layer. The
input layer uses the feature re-usability property to have more
significant features. In this way, dense networks decrease the
number of training parameters and the redundant features of
a standard 3D convolution. A 1 × 1 × 1 convolution is also

utilized to keep an equal number of input and output channels
of a dense block.

The advantages of dense connections in the encoder-decoder
are 1) Flow of gradients information easily propagates to
all preceding lower layers through short-skip connections.
In contrast, the layers without residual and dense con-
nections have an issue of gradients vanishing/exploding.
2) Each dense block offers multi-scale features to its neigh-
bour block. Therefore, feature maps of different receptive
scales are input to the blocks. In the proposed architecture,
the first dense block has multi-scale inputs resulting from a
residual-inception block. 3) Fewer learnable parameters are
sufficient for improving the final segmentation scores.

B. RESIDUAL-INCEPTION BLOCKS
Deep learning architectures face challenges of depth and
width. In addition, the result of deep learning architectures
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FIGURE 3. Overview of the proposed dense block. X1, X2, and X3 denote the feature maps of the convolution layer in terms of growth-rate. Additionally,
each convolution layer’s input and output channels are subjected to a concatenation operation.

is degraded by insufficient multi-scale features. Inception
blocks [31] with residual connections [32] address the above
mentioned issues. We can develop very deep architectures
by using inception blocks without increased parameters.
Such architecture has sufficient features of multiple receptive
scales by the use of the existing inception blocks. Multi-
ple receptive scales generate multi contextual information
for segmentation tasks. An inception block, which contains
three convolution layers of different receptive field sizes,
is depicted in Figure 4a. Moreover, to reduce the number of
features, 1 × 1 convolution layers are used. Finally, aggre-
gating the output features maps of various receptive scales
provides multi-scale features. In addition, the residual-based
inception block (Figure 4b) solves the issue of the vanishing
gradients in the deep architecture.

We apply residual-equipped inception blocks’ multi-scale
concepts in our proposed work by substituting 2D lay-
ers with 3D layers. Figure 5 illustrates the variants of
residual-inception blocks. In the residual-inception block at
the encoder (Figure 5a), we employ a dilation rate 2 in the
top parallel layer. In contrast, dilation rates 3 and 5 are used in
the middle and last parallel layers, respectively. Meanwhile,
in the residual-inception blocks of the decoder (Figure 5b),
we utilize dilation rates 2 and 3 in the top and last paral-
lel layers, respectively. Different dilation rates increase the
receptive field sizes of parallel convolution layers by adding
zeros between kernel elements without incrementing param-
eters. As a result, the proposed residual-inception blocks use
large receptive field sizes to learn more local and global
contexts. In addition, having multiple dilation rates helps to

avoid the gridding implications that erupt with equal dilation
rates [33]. We concatenate input and output feature maps of
each receptive scale. We aggregate feature maps convolved
by three receptive scales in Figure 5a, such as 5 × 5 × 5,
7×7×7, and 11×11×11. Meanwhile, we aggregate feature
maps convolved by two receptive scales in Figure 5b, such as
5× 5× 5 and 7× 7× 7.

Given a convolution layer l, which has ml kernel with
m × m × m size, the effective receptive size or scale of ml

can be described as

rfml = (rm − 1)× (m− 1)+ m (3)

where rm is the kernel’s dilation rate and ml is the size of the
kernel. Mathematically, the output of the residual-inception
blocks can be expressed as

yl+1 = ((fone (fd (yl) 
yl))⊕ fone (yl)) (4)

where yl denotes output of a current layer l, fd (.) repre-
sents a sequence of Dilated Conv-IN-LeakyReLU, 
 denotes
a concatenation operation, fone (.) represents a sequence of
1 × 1 × 1 Conv-IN-LeakyReLU and ⊕ denotes element-
wise-sum operation.

C. HIERARCHICAL BLOCK
Because of the substantial size variations in the medi-
cal image modalities, the extraction and aggregation of
multi-scale features play an important role in improving
segmentation precision. UNet and its variations can extract
multi-scale features. Such variants, however, are still bound
by fixed receptive field restrictions. Furthermore, the dense
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FIGURE 4. Overview of the inception blocks. (a) an inception block without residual connection.
(b) a residual-inception block.

FIGURE 5. Overview of the different residual-inception blocks. (a) a residual-inception block at the encoder (Encoder’s RIB).
(b) a residual-inception block at the decoder (Decoder’s RIB). (c) the details of residual-inception blocks’ variants in terms of the
layers, residual, and dense connections. IN refers to instance normalization. Dilation rates (orange) 2, 3, and 5 are used in (a).
In contrast, for (b), two parallel layers with dilation rates 2 and 3 are used. Meanwhile, the numbers at the top of each dilated
convolution layer denote receptive field sizes.

blocks of the encoder produce multi-scale features. However,
these features have fixed receptive scales. Therefore, we pro-
pose a hierarchical block with dilated convolution layers to
increase the receptive field sizes without incrementing the
parameters.

In the proposed MH UNet, we present a hierarchical block
to extract the multi-scale features of large receptive field sizes
to resolve the issue of restricted receptive scales. As shown
in Figure 6, we apply the hierarchical block concept by
including the output feature maps of all dense blocks of the
encoder and the first upsampling layer and residual-inception
block of the decoder. The output feature maps of the last
dense block at the encoder are fed to the first upsampling
layer at the decoder, followed by a residual-inception block
to 256 × 16 × 16 × 16. Both the upsampling layer and
the residual-inception block are shown by a single block
(orange). Simultaneously, in the encoder, the output feature
maps of each dense block are resized to have a tensor shape
256 × 16 × 16 × 16. To resize them, several downsampling
and upsampling operations are used. Finally, the aggregate

feature map (denotes by the element-wise sum operation) is
given to the hierarchical block.

As shown in Figure 7, our hierarchical block in the pro-
posed work incorporates feature maps of multi-paths. Each
path’s feature maps have low-level spatial and high-level
semantic details of all numerous dilated convolution layers
using the feature re-usability property of dense networks. The
feature maps of every two receptive scales of multi-paths
are combined into a single feature map. The final step is
to concatenate all feature maps from every two receptive
scales to show the relevance of feature maps under multiple
scales for multi-organ segmentation. The most prominent
advantage of the hierarchical block is that it allows for an
increase in the receptive field scale of feature maps. A large
receptive field scale will be used with multi-scale contexts
to identify larger regions of interest. The hierarchical block
identifies local regions of interest while crucial multi-scale
features are shared amongst the decoder’s layers. As shown
in Figure 7, the hierarchical block has a component for
extracting multi-scale feature information.
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FIGURE 6. Idea of the proposed multi-scale hierarchical block in
the MH UNet. The numbers on every skip connection indicate
the output feature map of each dense block.

Given an output feature map FMout ∈ QOCout×H×W×D,
which is a combined output of the encoder’s all dense blocks
and decoder’s first upsampling layer and a residual-inception

block (see Figure 6), OCout denotes the output channels,
the symbols H , W , and D indicate the height, width, and
depth of the combined output features map. FMout (denotes
by an input predicted image) is initially fed into a 1 ×
1 × 1 convolution layer to reduce channel size. To avoid
overfitting, the reduced feature maps are fed into a spatial
dropout layer (red) with a rate of 0.2. The spatial dropout
layer’s features are then shared into two paths. Because of
the feature re-usability property of dense networks, each
convolution layer with various dilation rates in each path has
output feature maps of all previous layers. F12, for example,
is the combined output feature map of two separate receptive
scales’ featuremaps (denotes byF1, andF2, respectively) that
input into a dilated convolution layer (denotes by 2).

F12 = F1
F2 (5)

where 
 denotes the concatenation operation. Consider
another output feature map, F1123, which feeds into the
final dilated convolution layer (denotes by 3) and con-
tains output feature maps from the first part’s preceding
layers.

F1123 = F1
F12
F3 (6)

In the second part of the proposed hierarchical block,
we can observe similar output feature maps that feed into
several dilated convolution layers. The output feature maps

FIGURE 7. Overview of the hierarchical block. Each colour represents a different tumor: green for the tumor core, blue for the whole tumor, and yellow
for enhancing tumor.

148390 VOLUME 9, 2021



P. Ahmad et al.: MH UNet: Multi-Scale Hierarchical Based Architecture for Medical Image Segmentation

FIGURE 8. Overview of the deep supervision mechanism.

of each two parallel dilated convolution layers are then con-
catenated (denotes by F22, F33, F44, respectively) to extract
more efficient multi-scale contexts.

F22 = F2
F2 (7)

F33 = F3
F3 (8)

F44 = F4
F4 (9)

Finally, all parallel dilated convolution layers’ output fea-
ture maps, including the spatial dropout layers (denotes
by F11), are concatenated (denotes by F11223344) to include
features from all receptive scales.

F11223344 = F11
F22
F33
F44 (10)

This combined output feature map is then fed into
a 1 × 1 × 1 convolution layer for feature reduction (denotes
by an output predicted image) before the first fusion operation
(see Figure 6) to equal size output feature maps is performed.
The multi-scale features are further enhanced in the higher
layers of the proposed MH UNet.

D. DEEP SUPERVISION
In the decoder, we also propose a deep supervision
technique [34] on the output feature maps of several dense
blocks for faster convergence and superior segmentation
accuracy. To reduce the tensors’ features, all dense blocks’
output feature maps are fed into a 1×1×1 convolution layer,
as shown in Figure 8. The result is represented as segmenta-
tion maps (denoted by the blue squares). Meanwhile, we use
upsampling layers of varying sizes (denotes by 8, 4, and 2) to
make the size of segmentation maps equal to the input patch
size. The updated segmentation maps are then subjected to
an element-wise summation. As a result, the proposed deep
supervision strategy allows for more direct backpropagation

to the deep layers, potentially avoiding optimization issues.
Finally, we apply a sigmoid activation function to all aggre-
gate segmentation maps to densify the classification output.
As a result, in addition to the final layer’s (denotes by the
tensor of shape 32 × 128 × 128 × 128) segmentation map,
the proposed architecture has three more same-resolution
segmentation maps to improve the final segmentation
results.

Consider the output feature maps of dense blocks as
FMout ∈QOCout×H×W×D,OCout denotes the output channels,
the symbolsH ,W , andD indicate the height, width, and depth
of the dense blocks’ output features maps. FMout are then fed
into a 1× 1× 1 convolution layers to reduce the tensors’ fea-
tures. The resulting features (shown by a segmentationmap in
blue squares) are then fed into upsampling layers, which use
various sizes to increase the size of reduced features to equal
the network’s input resolution. As a result, the segmentation
maps F1, F2, F3, F4 can be summarised as follows:

F1 = Upsampling3D8

(
fone

(
yldecoder

128×163

))
(11)

F2 = Upsampling3D4

(
fone

(
yldecoder

64×323

))
(12)

F3 = Upsampling3D2

(
fone

(
yldecoder

32×643

))
(13)

F4 = fone
(
yldecoder

16×1283

)
(14)

where 8, 4, and 2 are upsample sizes of Upsampling3D layers.
FMout stands for 128× 163, 64× 323, 32× 643, 16× 1283

and refers to the dense blocks’ output feature maps.
fone (.) denotes a sequence of 1×1×1 Conv-IN-LeakyReLU.
Finally, to avoid optimization complications and improve
segmentation accuracy, we perform element-wise addi-
tion operations between each pair of segmentation
maps.

VOLUME 9, 2021 148391



P. Ahmad et al.: MH UNet: Multi-Scale Hierarchical Based Architecture for Medical Image Segmentation

IV. MICCAI BraTS CHALLENGES
A. DATASETS
The BraTS datasets for the years 2018, 2019, and 2020
[35], [36] were collected from 19 different medical insti-
tutions. These institutions used a variety of MRI scanners
and imaging procedures to obtain MRI scans. All of the
brain scans are co-registered, skull-stripped, and interpolated
in the meantime. The dimension of each MRI modality is
240×240×155. Each BraTS dataset (2018, 2019, and 2020)
is divided into two parts: training and validation. High-grade
glioma (HGG) and low-grade glioma (LGG) are the two types
of glioblastoma covered in the training part of BraTS 2018,
2019, and 2020. The HGG part of the BraTS 2018 training
dataset comprises 210 MRI patients, whereas the HGG parts
of the BraTS 2019 and 2020 training datasets have 259 and
293 patients, respectively. Meanwhile, the LGG part of the
BraTS 2018 training dataset has 75 patients, and the LGGpart
of the BraTS 2019, and 2020 training datasets has 76 patients.
The validation part of the BraTS 2018 dataset comprises
66 patients, whereas the BraTS 2019, and 2020 validation
parts have 125 patients. The four MRI modalities are T1,
T1ce, T2, and FLAIR for each patient. The training datasets
include a truth-label for each patient. Each predictedMRI has
three tumors:whole tumor orwhole orWT, tumor core or core
or TC, and enhancing tumor or enhancing or ET. Labels 1,
2, and 4 are used to evaluate a whole tumor. Labels 1 and 4
are combined to determine the tumor core. Label 4 is used
to determine whether a tumor is enhancing. The truth-label is
not provided for the BraTS validation datasets’ patients.

B. IMPLEMENTATION DETAILS
The training of our proposed model starts after normalizing
each MRI modality. After normalization, patches of size
128×128×128 are created from the BraTS training datasets.
During the training, we use Adam optimizer and set 1 as
the batch size. The initial learning rate during training is set
to 4 × 10−5, but if validation loss is not improved within
20 epochs, the rate is reduced by a factor of 0.5. The net-
work is trained for 300 epochs. Additionally, augmentation
techniques such as random rotation and flipping are used to
avoid the overfitting problem during the training.

During the training of the network, the following combined
loss function is used

L totalloss = − (LMDL − LBCL) (15)

where MDL is the multi-label dice loss function [8] and
BCL represents the binary cross-entropy loss. Mathemati-
cally, MDL, and BCL can be written as

LossMDL =
2
D

∑
d∈D

∑
predd truthd∑

predd +
∑
truthd

(16)

LossBCL = −
1
T

∑
d∈D

∑
(truthd . log (predd ))

+ (1− truthd ) . log (1− predd ) (17)

where predd and truthd is the prediction and ground truth of
class d , respectively.D is the total number of classes. T is the
number of voxels in output.

The proposed model is implemented in Keras, with 32 GB
GPU memory.

C. EVALUATION
We evaluate the predictions of the BraTS datasets. Sev-
eral metrics, such as the Dice Similarity Coefficient (DSC),
the Sensitivity, the Specificity, and theHausdroff95 distances,
are used to evaluate the predicted labels. In the BraTS public
benchmark dataset [36], each of the metrics is very thor-
oughly described. In all prior BraTS challenges, DSCwas the
deciding metric for winning teams; thus, we report the best
method based on the highest average DSC or dice scores.

D. POST-PROCESSING
There are no enhancing tumors in LGG cases of the BraTS
datasets. The absence of an enhancing tumor will have a sig-
nificant impact on overall segmentation accuracy. The issue
arose when small blood regions in the tumor core failed to
be predicted as necrosis or as the whole tumor. This concern
raises the issue of false-positives for the enhancing tumor.
To eliminate false-positives, we employ a post-processing
technique of this study [10]. For the BraTS 2018 and 2019
datasets, all predicted enhancing tumor regions are replaced
with necrosis when the threshold value is less than 450 voxels.
This reduces the number of false-positive voxels from the
predicted training and validation sets. Meanwhile, for the
BraTS 2020 datasets, a threshold value less than 575 voxels
works well.

The algorithmic details of the post-processing step are
shown inAlgorithm 1. Here, the enhancing tumor voxel (VET )
of each predicted MRI (PSi) is extracted (E). The next step
is to count (C) all tumor voxels that are enhancing. If the
total sum of enhancing tumor regions (TSET ) is less than
450 or 575 voxels (Th), the necrosis replaces (RWTC ) all of
the predicted enhancing regions. After the post-processing
step, the predicted MRI (

∑n
i=1 PPi) is aggregated and made

available as post-process predicted MRIs (PP).

Algorithm 1 Post-Processing Step
Input: Proposed architecture predicted MRI (PS)
Output: Post-process predicted MRIs (PP)
1: for PSi ∈ PS do
2: VET ← EET (PSi)
3: TSET ← C (VET )
4: if (TSET < Th) then
5: RWTC ← TSET (PSi)
6: PPi← RWTC
7: end if
8: end for
9: PP←

∑n
i=1 PPi

10: return PP
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FIGURE 9. Segmentation results on the BraTS 2018 training dataset. From (a) to (j): ground-truth, B + R, B + D + DS, B + D +
RI _Wo _ DR + DS, B + D + RI _W _DR _V1 + DS, B + D + RI _W _DR _V2 + DS, B + D + H _Wo _DR + DS, B + D + H _W _DR + DS,
B + D + RI + H + Wo _DS, and B + D + RI + H + W _DS results overlaid on T1ce modality; whole tumor (blue), tumor core (green),
and enhancing tumor (yellow). A white arrow denotes the mis-segmentations.

TABLE 1. Statistical analysis of ablation studies on the BraTS 2018 validation dataset. Each row is a method, where B denoted a baseline (MH UNet
without dense (D), residual-inception (RI), and hierarchical (H) blocks, and deep supervision mechanism), and R denoted the residual blocks.
Meanwhile, row numbers 4 to 5 denoted the multiple variants (denoted by V1 and V2) of dilation rates for RI blocks. In each variant,
the first bracket of dilation rate/s belongs to the encoder, while the second one indicates the dilation rates of the decoder’s
RI blocks. The best average dice score of three tumors (denoted by average) is highlighted in bold.

E. ABLATION STUDIES
We run various experiments to evaluate the efficacy of the
blocks that make up the MH UNet. After removing the
proposed dense (denoted by D), residual-inception (denoted
by RI), hierarchical (denoted by H) blocks, and deep super-
vision (denoted by DS), we use the resulting MH UNet as
a baseline (denoted by B). The visual and dice score com-
parisons for several blocks and DS are shown in Figure 9
and Table 1, respectively. The dense blocks, as described in
sub-section III-A, reduce the number of learnable parameters.
As a result, we test the efficacy of D connections (denoted by
‘‘B + D + DS’’) in lowering the learnable parameters. In the
meantime, enormous learnable parameters can be observed
when we use residual blocks with the baseline (denoted by
‘‘B+ R’’). The RI and H blocks extract multi-scale features,
as indicated in sub-sections III-B and III-C. As a result,
we run additional tests using standard (denoted by ‘‘B +
D + RI_Wo _DR + DS’’ and ‘‘B + D + H _Wo _DR +
DS’’) and dilated convolutions (denoted by ‘‘B + D + RI
_W _DR _V2 + DS’’ and ‘‘B + D + H _W _DR + DS’’)
to validate the efficacy of the multi-scale features. We also
conduct tests (denoted by ‘‘B + D + RI _W _DR _V1 +
DS’’, and ‘‘B + D + RI _W _DR _V2 + DS’’) to determine

the best dilation rates (denoted byDR) for RI blocks’ variants.
Finally, we conduct two trials (denoted by ‘‘B+ D+ RI+ H
+Wo _DS’’ and ‘‘B + D + RI + H +W _DS’’) to validate
the efficacy of deep supervision (denoted by DS).

First, we apply the proposed dense blocks and deep super-
vision technique (denoted by ‘‘B + D + DS’’) to the BraTS
2018 dataset. Figure 9 shows two typical brain tumor segmen-
tation results (see Figure 9b and Figure 9c), demonstrating
that our suggested dense blocks may successfully reduce
mis-segmentation outcomes that the baseline cannot manage
well with residual blocks (denoted by ‘‘B + R’’). As demon-
strated in Table 1, ‘‘B + D + DS’’ improves the average
performance of the DSC metric from 81.594% to 83.784%
compared to ‘‘B + R’’. Furthermore, dense blocks lower the
number of parameters from 8.2 M to 2.9 M when compared
to residual blocks.

Second, we investigate the effectiveness of the RI blocks.
As shown in Table 1, compared with ‘‘B + D + RI +
W_DR_V1 + DS’’ and ‘‘B + D + RI + W_DR_V2 +
DS’’, we can see that the average score of the DSC metric
of ‘‘B + D + RI + Wo_DR + DS’’ decreases first from
82.360% to 83.951% and then from 82.360% to 84.916%,
demonstrating that the multi-scale features can improve
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FIGURE 10. Segmentation results on the BraTS 2018 training dataset. From (a) to (j): ground-truth, Zhao et al. [BL + warmup + fuse +
psudo label] [37], McKinley et al. [Filtered Output] [38], Lachinov et al. [Res UNet] [39], Wang et al. [TransBTS] [11], Isensee et al. [Ensemble]
[10], Vu et al. [Ensemble (7 models)] [40], Fidon et al. [Ensemble] [41], Ghaffari et al. [Ensemble] [13], and MH UNet results overlaid on
T1ce modality; whole tumor (blue), tumor core (green), and enhancing tumor (yellow). A white arrow denotes the mis-segmentations.

segmentation accuracy. The effectiveness of multi-scale fea-
tures can be further justified with mis-segmentation out-
comes, which are maximum with non-dilation RI blocks
(Figure 9d) and minimum with dilated RI blocks
(see Figure 9e and Figure 9f). Compared with ‘‘B + D +
RI + W_DR_V1 + DS’’, we can see that the average score
is 84.916% when we employ dilation rates 2, 3, and 5 in
encoder’s RIB and dilation rates 2, and 3 in decoder’s RIBs
(denoted by ‘‘B+D+RI+W_DR_V2+DS’’). Predictions
are almost similar to ground truth, employing large dilation
rates in the RIBs of encoder-decoder, as shown in Figure 9f.
Third, we investigate the effectiveness of the hierarchi-

cal (denoted by H) block. As shown in Table 1, compared
with the ‘‘B + D + H _Wo _DR + DS’’, the proposed
H block (denoted by ‘‘B + D + H _W _DR + DS’’)
increases the average DSC scores by 10.6% (from 82.442%
to 83.500%). Figure 9h shows a typical example of a
brain tumor segmentation result, which demonstrates that
the multi-scale features of proposed H block can effectively
minimize the mis-segmentation outcomes, which the fixed
receptive scales cannot well handle (denoted by ‘‘B + D +
H _Wo _DR + DS’’).

MH UNet’s deep supervision mechanism (denoted by DS)
is also examined. ‘‘B+ D+ RI+ H+W _DS’’ achieves the
highest average DSC scores when compared to ‘‘B + D +
RI + H + Wo _DS’’, even without increasing the extra
parameters. The multi-scale outputs of the DS allow ‘‘B +
D + RI + H +W _DS’’ (our model) achieve more accurate
segmentation results than ‘‘B + D + RI + H +Wo _DS’’ as
shown in Figure 9j. As shown in Table 1, our model improves
average DSC scores by 38% compared to ‘‘B+ R’’. By com-
bining D, RI, and H blocks and deep supervision (denoted
by DS) in a seamless manner, we can see that our method
makes tremendous improvements. This indicates the efficacy
ofMHUNet in dealingwith the large-scale variations of brain
tumors.

TABLE 2. The comparison of different approaches’ performances on the
BraTS 2018 training dataset. The dice scores are reported as a mean. The
best value of the dice scores is highlighted in bold.

F. COMPARISON WITH THE BASELINE APPROACHES
In this sub-section, our proposed work is compared
with the following baseline approaches: Zhao et al.
[BL + warmup + fuse + psudo label] [37], McKinley et al.
[Filtered Output] [38], Lachinov et al. [Res UNet] [39],
Wang et al. [TransBTS] [11], Isensee et al. [Ensemble] [10],
Vu et al. [Ensemble (7 models)] [40], Fidon et al. [Ensemble]
[41], and Ghaffari et al. [Ensemble] [13]. These approaches
are discussed in the subsequent sub-sections.

These approaches, including our proposed MH UNet,
use the BraTS 2018 training dataset for training. For each
approach, 228 patients are used for training, and the remain-
ing patients are used for validation. The average DSC score
of each approach is shown in Table 2. Our proposed approach
secures the best mean dice scores for the tumor core and
enhancing tumor as shown in Table 2. Meanwhile, the results
show that the proposed work obtains a lower whole tumor
score than Vu et al. [Ensemble (7 models)] [40].
Figure 10 shows a comparison between the predictions of

different approaches. The predictions of multiple approaches
are overlaid on T1ce modalities. The lack of multi-scale
features increases mis-segmentations (denoted by a white
arrow) on baseline approaches. Meanwhile, the proposed
work exactly matches the ground-truth.
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TABLE 3. The comparison of different approaches’ performances on the BraTS 2019 validation dataset. The metrics’ scores are reported as a mean. The
best value of the scores is highlighted in bold.

G. RESULTS OF MICCAI BraTS CHALLENGES
1) MICCAI BRATS 2019 CHALLENGE
A comparison of the proposed model and state-of-the-art
techniques is shown in Table 3. We find that the dice score
of the enhancing tumor with the presented work is superior
to that of other methods, including the top-ranked approaches
(denotes by first six rows of Table 3). Meanwhile, the aver-
age dice score of the whole tumor is lower than the top
techniques [37], [38]. At the same time, the tumor core’s
mean dice score is nearly identical to the method of
Lachinov et al. [UNet] [39].

Zhao et al. [BL+warmup+ fuse+ psudo label] [37] used
a range of patch strategies, network ensembling architectures,
and learning design approaches to achieve the best score of
the whole tumor. In all forms of Zhao et al. [37], large input
patch sizes have improved contextual information. Zhao et al.
[BL] [37] uses an ensemble technique to analyze the five
predicted sets of 3D UNet. Furthermore, Zhao et al. [BL +
warmup] [37] has claimed the best score of the whole tumor,
which is enhanced further by performing an ensembling tech-
nique on six different 3D UNet variations, as reported in
Zhao et al. [BL + warmup + fuse] [37]. In contrast, our
single proposed work, which did not use a complex ensem-
bling strategy, has a lower score for the whole tumor while
achieving the highest scores for the tumor core and enhancing
tumor. At the same time, McKinley et al. [RawOutput] [38]
used a weight ensemble approach to obtain the optimal value
for the whole tumor. For individual directions of the 3D
MRI, a shallow variation of 2D UNet with multiple dense
blocks is proposed. An attention mechanism has been used
between the dense blocks to retain the important features.
Finally, on combining the multiple directions’ 2D UNets,
the best score of the whole tumor is reported. Furthermore,
using an uncertainty filtering strategy to ensemble predic-
tions, McKinley et al. [FilteredOutput] [38] reports improved

scores for the tumor core and enhancing tumor. Compared to
multiple McKinley [38] variants, our single proposed method
receives the highest values for the tumor core and enhanc-
ing tumor. Lachinov et al. [39] proposes two distinct 3D
UNet variations. The first form of UNet, Lachinov et al.
[UNet] [39], uses 32 initial channels for the best score of
the tumor core. In contrast, we achieve an almost similar
score for the tumor core using exactly half of the initial
channels. As a result, our proposed method yields the highest
scores for the whole tumor and the enhancing tumor with
fewer parameters. In addition, Lachinov et al. [Res UNet]
[39] has been reported as a 3D Unet variation. For better
feature use, this variation makes use of residual connections.
However, the residual-based variation has lower scores for
the tumor core with the largest input patch sizes. Wang et al.
[Ensemble] [28] revealed the final scores of all tumors after
merging multiple 3D UNet variations. Multiple loss func-
tions, including weight hyper-parameter tuning-based losses,
were used to train these variations. In addition, an attention
technique was used to extract only the most significant fea-
tures. Our single proposed deepest approach, which is trained
without any weight hyper-parameter tuning, has improved
all tumors’ final scores. Chen et al. [42] proposed two 3D
UNet variants. Chen et al. [AMPNet][32 Channels] [42]
uses 32 initial channels to train a deep supervision-based 3D
variant. However, because of the limited depth, the reported
scores are lower. Even with a test-time augmentation strategy,
the shallow depth of the 3D UNet variation (Chen et al.
[AMPNet + TTA][32 Channels] [42]) has little effect on the
final scores. To improve the multi-scale features of current
UNet variations, Wang et al. [TransBTS] [11] presented a
transformer approach using 3D UNet. The transformer tech-
nique is used to improve the contextual information of the
higher layers. The current transformer methodology, how-
ever, is trained on many GPUs. The transformer approach’s

VOLUME 9, 2021 148395



P. Ahmad et al.: MH UNet: Multi-Scale Hierarchical Based Architecture for Medical Image Segmentation

TABLE 4. The comparison of different approaches’ performances on the BraTS 2018 validation dataset. The metrics’ scores are reported as a mean. The
best value of the scores is highlighted in bold.

potential for medical image segmentation is limited due to its
high processing resource requirements. Our proposed work,
on the other hand, is trained on a single GPU. Furthermore,
the best results from our proposed work have shown the
efficacy of superior multi-scale features. Vu et al. [Ensemble
(9 Models)] [15] proposed a cascaded approach of 3D UNets.
Residual learning and squeeze and excitation concepts are
all incorporated into each 3D UNet. Several 3D UNets are
used in the current cascaded technique. The number of 3D
UNets is the same as the number of available labels. That
is, each 3D UNet is utilized to segment individual labels.
Three 3D UNets, for example, are used for three labels of
BraTS datasets. The final results are computed by merging
the individual segmented labels of 3D UNets. As a result,
the 3D UNets’ cascaded technique increases the difficulty
of solving the segmentation problem. In addition, nine of
these cascaded approaches are subjected to an ensemble
approach. When compared to existing techniques, our pro-
posed work has the best mean value of the enhancing tumor.
It also provides competitive mean scores for the whole tumor
and the tumor core without complex ensemble approaches,
weight-loss functions, or bigger patch sizes. Furthermore,
all of the techniques in Table 3 used either the attention
mechanism or the ensembling operation to average training
and validation predictions or a combination of both attention
and ensembling operations with encoder-decoder architec-
tures. Furthermore, these techniques learn a high number
of parameters since their initial learning channels are large.
We only consider DSC metric scores because they were the
top model’s only criterion in previous BraTS competitions.
Nonetheless, for the Hausdorff95 distances, our proposed
technique provides the best mean score of the enhancing
tumor.

2) MICCAI BRATS 2018 CHALLENGE
In terms of metrics, DSC, and Hausdroff95 distances, Table 4
presents a comparison between the proposed model and

state-of-the-art approaches. Only the mean DSC scores are
taken into account for the best techniques. In the ensemble
methodology of Isensee et al. [10], we can see the best mean
dice scores of the whole tumor and tumor core in Table 4.
Meanwhile, compared to all ensemble approaches like [10],
[27], [43], [46], our single model has the best mean score of
the enhancing tumor.

Isensee et al. [10] provided the final scores using a
variation of the original 3D UNet model after conducting
the ensemble and a post-processing step. The aggregate
weights of multiple trained 3D UNet variations are employed
to evaluate the various BraTS 2018 datasets. Finally,
false-positive voxels in predicted MRIs are removed using a
post-processing approach. McKinley [43] proposed a CNN
ensemble method. For individual directions of the 3D MRI,
two shallow variations of 2D UNet that utilize numer-
ous dense blocks are proposed. The dense blocks contain
numerous densely connected convolution layers with varying
dilation rates to expand the receptive field sizes. Finally,
the improved score of the tumor core is presented when
the three directions’ shallow 2D UNets are merged. While
both approaches (denotes by the top two rows of Table 4)
produce the best scores for whole and tumor core, they do
so at the expense of either complexity (McKinley [43]) or a
large number of parameters (about 52M in Isensee et al. [10]).
In contrast to our proposed study, Zhou et al. [27] found
that using a range of attention mechanisms, network ensem-
bling architectures, and a post-processing step has resulted
in improved scores of the whole tumor and tumor core. The
combined approaches solved the complex difficulties of cas-
cadedUNet. However, the ensembling strategy has demanded
massive computing storage resources for storing the 3Dmed-
ical datasets. As a result, a single best architecture, such
as ours, would be desired in such high-demand computing
situations. Kermi et al. [44] presented a residual-based 2D
UNet variant. The current network has been trained with a
weight loss function to balancemajority andminority classes.
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TABLE 5. The comparison of different approaches’ performances on the BraTS 2020 validation dataset. The metrics’ scores are reported as a mean. The
best value of the scores is highlighted in bold.

Compared to 2D technique (10 M) of Kermi et al. [44], our
proposed approach with the non-weight loss functions learns
fewer parameters (3.7 M) for the best scores. Albiol et al.
[Ensemble] [45] describes a method for ensembling differ-
ent 3D CNN architectures. The 3D convolutions replace
the 2D convolutions of several architectures such as VGG
(Albiol et al. [VGG-like] [45]), inception versions 2 and 3
(Albiol et al. [Inception2, Inception3] [45]), densely con-
nected networks (Albiol et al. [Densely Connected] [45]).
However, in terms of mean dice scores for all tumors, our
proposed method outperformed all single 3D and ensem-
ble techniques. Furthermore, Feng et al. [Ensemble] [46]
describes an ensemble technique. The average function is
used for six different 3DUNet versions that have been trained
with both weight and non-weight loss functions. All of the
aforementioned techniques made use of more initial training
channels. On the other hand, our proposed model is the
lightest, most in-depth, and can achieve competitive scores.
Our method has a drawback for metric Hausdroff95 distances
since the average scores of the three tumors are not decreased.
In addition, Figure 11 depicts the proposed architecture’s
segmentation results.

3) MICCAI BRATS 2020 CHALLENGE
In terms of metrics, like DSC, and Hausdroff95 distances,
Table 5 presents a comparison between the proposed model
and state-of-the-art approaches. Only the mean DSC scores
are taken into account for the best techniques. Table 5 shows
the best mean dice score of the whole tumor using ensemble
technique of Henry et al. [Ensemble] [48]. Meanwhile, after
executing an ensemble operation on five models, a cascaded
technique [47] delivers the best mean value of the tumor core.
At the same time, our proposed single model has the highest
value of the enhancing tumor.

Jia et al. [47] achieved the best mean value of the tumor
core by combining diverse strategies in a 3D UNet architec-
ture, including residual networks for better feature utilization,
numerous local and global context fusion blocks, and an
attention block. Jia et al. [Cascaded Ensemble] [47] provided
a multi-step approach. The output of the first step is merged
with input modalities as the input for the second step in the
multi-step solution. The existing two-step method requires a

FIGURE 11. Instance segmentation results on the BraTS 2018 training
dataset. From left to right: truth-label and proposed model predictions
overlaid on T1ce modality, whole tumor (blue), tumor core (green), and
enhancing tumor (yellow).

large amount of memory. Additionally, the two-step solution
has learned approximately 26 M parameters. Furthermore,
an ensemble process is applied to the ten two-step approaches
for the best score of the tumor core. In contrast, our single
proposed approach learns only 3.7 M parameters for the best
score of the enhancing tumor. For the best score of the whole
tumor, an ensemble technique (Henry et al. [Ensemble] [48])
is used on the five models of the original 3D UNet variant.
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FIGURE 12. DSC comparison. From a to c , individual tumors of MH UNet with attention strategies (denoted by WT_AT, TC_AT,
and ET_AT) and MH UNet (denoted by WT_P, TC_P, and ET_P) are compared. The numbers at the boxes are mean average DSC
values.

This variation, however, is trained with 48 initial channels.
In contrast, our proposed merely trains with 16 initial chan-
nels for the best score of the enhancing tumor. Vu et al.
[Ensemble (7 models)] [40] describes a cascaded technique
that comprises many UNets. The current cascaded technique
is a 3D UNet variant in itself. This variant, like regular 3D
UNet, has an encoder and decoder. The decoder, however,
comprises three distinct 3D UNets. Each 3D UNet is used
to segment the individual tumors. Finally, the final scores
are reported by combining the segmented tumors of three
3D UNets. Furthermore, the predicted MRIs of seven such
cascaded approaches are subjected to an ensemble operation.
As a result, the cascaded approaches increase the complexity
of solving the segmentation problem. Fidon et al. [Ensemble]
[41] describes an ensemble approach for 3D UNets. The
original 3D UNet is trained with different loss functions,
including the sophisticated weight hyper-parameter tuning
loss function and optimizers. Finally, the predictions of sev-
eral 3D UNets are combined. Ghaffari et al. [Ensemble] [13]
alsomentions an ensembling approach. The original 3DUNet
is modified by incorporating residual learning, dense net-
works, and deep supervision. The current method employs
a single 3D UNet and a cascade of 3D UNets to segment
the tumors. Finally, the predictions of single 3D UNet and

cascaded 3D UNets are combined for the final scores. Com-
pared to ensembles of various models such as Vu et al.
[Ensemble (7 models)] [40] and Ghaffari et al. [Ensemble]
[13], our proposed technique achieves the best mean scores
for all tumors. When compared to all other techniques, our
proposed architecture, in particular, can secure the best mean
score for at least one tumor. Furthermore, the Hausdorff95
distances for the whole tumor have the best mean score for
our proposed architecture. One disadvantage of our proposed
work is that it has a lower score for tumor core. However,
the ensemble approaches outlined in contemporary tech-
niques may improve the lower score of the tumor core.

We will, however, use the single proposed architecture
to improve the lower score of tumor core by including
numerous attention strategies [49]. As shown in Figure 12b,
the average DSC score of the tumor core increases by 19.89%
using the scales, channels, and positions attention strategies
in MH UNet. Meanwhile, numerous attention strategies
enable MH UNet to learn only essential foreground features
for improved whole tumor score (see Figure 12a). However,
we observe a 6.7% lower score in the enhancing tumor than
the proposed MH UNet (see Figure 12c). Therefore, novel
attention strategies should be investigated appropriately to
improve the mean DSC scores of all brain tumors.
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FIGURE 13. Graphical representation of DSC. In the graph, X-axis
represents the 66 patients of the BraTS 2018 validation dataset, while
Y-axis shows DSC (post-processed) values.

To eliminate false-positive voxels in all BraTS competi-
tions, we implement a post-processing step to the training and
validation predictions. For the BraTS 2018 validation dataset,
we plot the mean dice scores of all tumors. The graph of
the post-process DSC metric is shown in Figure 13. In LGG
cases, we still witness a zero dice score for the enhancing
tumor (denotes by black) (see patients between 40 to 55 on the
X-axis). Better post-processing techniques [27], [28], [38],
[50] are therefore necessary to reduce these false-positive
voxels.

As shown in Figure 11, our proposed MH UNet seg-
ments the whole tumor area accurately. MH UNet also finds
the enhancing tumor and tumor core, which are small and
difficult to detect. Due to the small size of the enhancing
tumor and tumor core and the varied locations of tumors,
MH UNet still generates some false-positives (white arrow)
and false-negatives (black-arrows), as shown in Figure 14c.
Meanwhile, by incorporating some strategies in MH
UNet, the problem of false-positives and false-negatives
can minimize. To minimize over-fitting during training,
we use augmentation techniques, including random rotation
and flipping. However, augmentation techniques can also
help improve segmentation accuracy during testing [10],
as shown in Figure 14d. Despite the superiority of test-time
augmentation in removing the false-positives and false-
negatives, still, we observe false-positives in the top image
of Figure 14d. These false-positives are further minimized
when we train the MH UNet with the higher image resolu-
tions and more initial channels (24), as shown in Figure 14e.
However, false-positives exist in the top image of Figure 14e.
On ensemble the test-time augmented predictions of the pro-
posed model, the results perfectly match the ground-truths,
as shown in Figure 14f. However, the ensembling of several
models raises storage issues and increases the complexity
of solving the segmentation tasks. In the future, we will try
to remove the false-positives and false-negatives from all
predicted cases without ensemble approaches.

V. ISLES 2018 CHALLENGE
We also use our MH UNet to segment stroke lesions using
challenging ISLES 2018 training and test sets.

A. DATASET
Normal functioning of the brain relies on the sufficient
supply of blood oxygen through arteries and veins. Often
blood flow is obstructed, causing tissue death. The dead
tissue with an area is known as a stroke lesion. Stroke is a
life-threatening condition, often called cerebrovascular dis-
ease. Segmented stroke lesion diagnosis may assist with eval-
uation and treatment planning. Thus, automated segmentation
of stroke lesions is an optimal practice for accurate details.

Although neurologists use the computed tomography (CT)
technique to obtain precise brain stroke, CT scans of patients
with indistinct information are not suitable for automated
methods. Our work provides an automatic, lightest method
for accurately segmenting stroke lesions using CT perfu-
sion images. Ischemic Stroke Lesion Segmentation (ISLES)
2018 challenge has training and testing datasets for com-
petition. We used 94 cases of training dataset and 62
cases of testing dataset [51], [52] for our proposed work.
Each case includes many CT perfusion modalities such as
cerebral blood volume (CBV), cerebral blood flow (CBF),
residue peak time (Tmax), mean transit time (MTT) and CT.
The input is created from these 5 modalities. Furthermore,
the truth-labels (generated using MRI Diffusion-Weighted
Imaging (DWI)) are given with the training dataset, while
there is no truth-label for test cases. The predictions of the
training and the testing sets are submitted for the final evalu-
ation.

B. DATA PRE-PROCESSING
A bias correction step is performed on each case of the
training and testing dataset. We also normalized each case
of the training dataset. We extracted the patches of size
128× 128× 32 from modalities.

C. IMPLEMENTATION DETAILS
The training set (total cases 94) is divided into five parts. Thus
the MH UNet is trained and tested five times. Every time,
there are 76 cases for training and the remaining patients for
the validation. During the training, we use optimizer Adam
with a batch size of 4. The MH UNet is trained with an initial
learning rate of 5 × 10−4, which drops by 50% if validation
loss is not improved within 30 epochs. The MH UNet is
trained for 300 epochs. In addition, augmentation techniques
such as random rotation and flipping are used to avoid over-
fitting during training. During the networks’ training, we use
the loss function of Equation (15). However, the combined
binary loss function for the ISLES 2018 training set replaces
this multi-label loss function.

D. EVALUATION
We evaluate the predictions of the ISLES dataset. Dice Simi-
larity Coefficient (DSC) or Dice, Accuracy, Recall, Hausdorff
Distance, AverageDistance, andAbsolute VolumeDifference
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FIGURE 14. Illustration of BraTS 2018 dataset’s segmentation results. Each column from (a) to (f ) shows images and their enlarged versions. (a) and
(b) respectively show the T1ce modalities (M) and ground-truths (G). (c) shows the worst results of the proposed model (P). (d ) - (f ) show possible
improvements of the proposed model. The false-positives (denoted by a white arrow) and false-negatives (denoted by the black arrows) of P minimize
when a test-time augmentation strategy applies to the predictions of the proposed model (TP). The predictions are further improved when P is trained
with larger input resolutions and more initial channels (DIP). The larger input resolutions are possible by reducing the depth (D). As a result,
the number of initial channels (I) increases to train the modified P. On ensemble (E), the test-time augmented predictions (T) from the five variations
of the proposed model (P), the outcomes (EPT) exactly match the ground-truths (G). Each colour represents a different tumor: green for the tumor
core, blue for the whole tumor, and yellow for enhancing the tumor.

TABLE 6. The comparison of different approaches’ performances on the ISLES 2018 training dataset. The scores are provided as mean. The average scores
in bold are written from the organizer’s verification.

or AVD are used in the evaluation of the predicted labels.
Each metric is defined properly in Taha and Hanbury [53].

E. COMPARISON WITH THE BASELINE APPROACHES
In this sub-section, our proposed work is compared with
the following baseline approaches: Bertels et al. [21],
Islam et al. [22], and Tureckova and Rodríguez-Sánchez [24].
These approaches are discussed in the subsequent sub-
sections. We use ISLES 2018 training dataset (94 cases) for
all approaches. For each approach, 76 ISLES patients are
available for training and 18 for validation. Each approach
is then used to evaluate all ISLES training cases (94) once it
has been trained. Table 6 shows the mean scores of all metrics
for each approach. The depth and multi-scale aspects of the
proposed work allow it to acquire the best mean scores of all
metrics.

The proposed work has precisely segmented the stroke
lesion when the predictions of several approaches are
visualized, as seen in the first row of Figure 15. Mean-
while, Tureckova and Rodríguez-Sánchez [24] gener-
ate a mis-segmentation outcome (a green arrow), while
Bertels et al. [21] and Islam et al. [22] have incorrectly
predicted stroke lesions. A drawback of our proposed work is
a mis-segmentation result, as seen in the last row of Figure 15.
The mis-segmentation outcomes highlight the difficulty that
different architectures face when attempting to obtain exact

segmentation results. Nevertheless, based on the highest
mean scores of several metrics, our proposed work is better
than the Bertels et al. [21], Islam et al. [22], and Tureckova
and Rodríguez-Sánchez [24].

F. RESULTS OF MICCAI ISLES 2018 CHALLENGE
1) RESULTS OF MICCAI ISLES 2018 TRAINING DATASET
Table 7 shows the mean scores for each metric from var-
ious users, including our MH UNet. After comparing MH
UNet with other ISLES 2018 training users (see section
Leaderboard: Training 1), the mean scores for each metric are
reported. In Table 7, our proposed work outperformed state-
of-the-art approaches in terms of DSC, Average Distance,
and Recall metrics. Meanwhile, the mean scores of Haus-
dorff Distance, Precision, and AVD in our proposed work are
lower. Some post-processing techniques, such as uncertainty
filtering [54], may boost the mean scores of these metrics.
Figure 16 shows the segmentation results of the proposed
model.

Nonetheless, the DSC metric, a decisive metric for the
best approaches, reports the best mean scores in our pro-
posed work. We also give the mean DSC scores of various
approaches [20]–[24] in addition to the training users of
Table 7. A GAN technique based on the 2D variant of UNet

1(https://www.smir.ch/ISLES/Start2018)
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FIGURE 15. On the ISLES 2018 dataset, a visual comparison of the different approaches for ischemic stroke lesion
segmentation. Truth values and predictions respectively show by blue and red curves. Lesion shows in yellow. Green
arrows denote mis-segmentations.

TABLE 7. The comparison of different training users’ performances on the ISLES 2018 training dataset. The scores are presented as mean (standard
deviation). The best mean scores are highlighted in bold and are written from the organizer’s verification.

was developed by Liu [20]. The mean dice score for this
GAN technique was 61. For the mean dice score of 42,
Islam et al. [22] proposes an alternative GAN technique
based on multiple 2D UNets. Bertels et al. [21] proposed a
shallow encoder-decoder design that was similar to original
UNet [7] for the mean dice score of 49 and included a weight
loss function. Dolz et al. [19] demonstrated a 2D densely
equipped UNet architecture that took inputs from several
modalities. Using numerous fusion procedures, the features
of different modalities can be represented in meaningful
ways. Finally, the densely equipped UNet has achieved a
64 average dice score. Most 2D variants of UNet are
employed in the following methodologies. However, for
stroke lesion segmentation, some 3D variants of UNet have
been proposed. Pinheiro et al. [23] proposed a 3D variation
of UNet [7]. The network, though, is shallow. The resid-
ual connections added to the encoder of the 3D UNet [24]
improve this shallow network. As an element-wise addition
operation is conducted to the previous and next layer features,
residual connections can (1) increase the depth to existing
encoder-decoder architectures and (2) improve representa-
tions. The residual-based variations of UNet, on the other
hand, learn more parameters than the dense-based UNet.

Existing UNet variants have limited depth and multi-scale
capabilities. This difficulty can be mitigated by adhering to
our architecture’s design. Furthermore, contemporary UNet
techniques solve the high-class imbalance issue by using
appropriate weight factors that are manually selected for dis-
tinct weight loss functions. On the other hand, the time spent
manually searching for the most critical weight factors is
crucial. Non-weight loss functions, such as those we propose
in our paper, can further minimise the problem.

2) RESULTS OF MICCAI ISLES 2018 TESTING DATASET
All ISLES 2018 testing (62) cases are evaluated using the
MHUNet. All predicted labels are submitted online2 for final
assessment. Table 8 shows a comparison of our work to state-
of-the-art techniques [21], [22], [24] in terms of performance.
Our work resulted in the highest average DSC score. At the
same time, a 2D variant of UNet [22] reports the same mean
DSC score as ours. However, Islam et al. [22] adopted a GAN
technique based on several UNets. That is, the given GAN
technique is utilized to segment the ISLES dataset in more
than one step. Meanwhile, the stroke lesions are segmented

2(https:/www.smir.ch/ISLES/)
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TABLE 8. The comparison of different approaches’ performances on the ISLES 2018 testing dataset. The scores are presented as mean (standard
deviation). The best mean value of each metric is highlighted in bold.

FIGURE 16. Instance segmentation results on the ISLES 2018 training
dataset. From left to right: truth-label, proposed model predictions
overlaid on MTT modality. Lesion is shown in yellow.

in a single step using our proposed method. Simultaneously,
a 3D variant of UNet [24] obtained the best mean recall score,
albeit with 2.2 times the number of parameters as our work.
Furthermore, we are able to secure the best position in haus-
dorff and average distances. The incorrect number of slices
for the third dimension is a key flaw in the ISLES training
dataset. In the z dimension, case number 8 in the ISLES
training dataset, for example, comprises just eight slices. As a
result, creating any variant of UNet that can achieve the best
mean scores for all metrics on the testing dataset remains
difficult. We will be concentrating on this rugged design in
the future. In addition, with our proposed work, we will try
test-time augmentations to eliminate false-positive voxels.
In addition, we will test the majority ensembling technique
on numerous different UNet architectural modifications to
improve test scores.

VI. CONCLUSION
This paper proposes a variant form of a 3D UNet for med-
ical image segmentation. To reduce the training parameters
and efficient gradient flow, we implemented densely con-
nected blocks in the proposed MH UNet. Simultaneously,
dense connections used the minimal growth-rate value to

remove unnecessary convolution layer features. As a result,
we addressed the issue of huge learnable parameters. TheMH
UNet also used residual-inception blocks to learn multi-scale
contexts. In encoder-decoder, we proposed two variations of
residual-inception blocks. Furthermore, we proposed a hier-
archical block that incorporates the various parallel dilated
convolution layers to expand the size of the limited receptive
field in the feature maps of the dense blocks at the encoder.
Additionally, we employed a deep supervision approach
for faster convergence and superior segmentation accuracy.
Simultaneously, the deep supervision approach enhances seg-
mentation accuracy by combining various depths’ segmen-
tation maps. The MICCAI BraTS and ISLES datasets are
used to check the performances of the MH UNet. The pro-
posed MH UNet achieved considerable segmentation scores
on the BraTS dataset. Meanwhile, our MH UNet achieved
competitive segmentation scores on the ISLES 2018 testing
dataset. In the future, we will apply effective post-processing
algorithms to improve the performance of medical datasets.
In conclusion, we believe that our proposed approach would
achieve state-of-the-art performance on other challenging
medical datasets.

VII. SUPPLEMENTARY MATERIALS
A. MH UNet’s LAYERS’ VISUALIZATION AND MH UNet’s
DETAILS
We visualize some layers of our proposed work in this part.
Individual tumors for a single layer are visualized in each
row of Tables 9, 10, 11. In each row of the table, from left
to right: truth-labels and single layer’s predictions (of BraTS
2018 dataset) overlaid on T1ce modality, enhancing tumor
(yellow), tumor core (green), and whole tumor (blue).

The same BraTS 2018 patient is visualized for the different
layers in Table 9. The output feature maps of ten 3D convo-
lution layers are:16× 1283, 16× 1283, 2× 1283, 2× 1283,
2 × 1283, 16 × 1283, 16 × 1283, 16 × 1283, 2 × 1283, and
2 × 1283. Except for rows 4 and 5, all layers indicate
0 mean dice scores for the whole tumor. The tumor core
has a similar scenario but for the different layers. Mean-
while, in every layer except row 1, the small size of an
enhancing tumor is quite accurately predicted. At least one
tumor can be predicted by row numbers 4 to 6. The proposed
residual-inception block, in which dense networks further
enhance output features of several dilated layers, supports
this.
Table 10 depicts different BraTS 2018 patients in com-

parison to Table 9. Each row represents a separate layer.
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TABLE 9. On the BraTS 2018 dataset, a visualization of the various layers for brain tumor segmentation. In each row, from left to right: truth-labels and
single layer’s predictions are overlaid on T1ce modality, enhancing tumor (yellow), tumor core (green), and whole tumor (blue).
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TABLE 10. On the BraTS 2018 dataset, a visualization of the various layers for brain tumor segmentation. In each row, from left to right: truth-labels and
single layer’s predictions are overlaid on T1ce modality, enhancing tumor (yellow), tumor core (green), and whole tumor (blue).

148404 VOLUME 9, 2021



P. Ahmad et al.: MH UNet: Multi-Scale Hierarchical Based Architecture for Medical Image Segmentation

TABLE 11. On the BraTS 2018 dataset, a visualization of the various layers for brain tumor segmentation. In each row, from left to right: truth-labels and
single layer’s predictions are overlaid on T1ce modality, enhancing tumor (yellow), tumor core (green), and whole tumor (blue).

The encoder’s dense blocks 2, 3, and 4 are used to pick
these layers. In the maximum number of rows, the mean dice
score of the whole tumor for the BraTS 2018 patients is zero.
Similarly, row numbers 6 and 10 accurately predict the whole
tumor. In the meantime, the enhancing tumor with zero dice

scores for rows 1 and 2 can be seen. A similar scenario can
be seen in the tumor core, albeit on different rows. Table 10
shows how the location, shape, and size of the various tumors
differ. Nonetheless, each tumor type can be predicted by the
layers of our proposed model.
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FIGURE 17. MH UNet in details.

In Table 11, we select layers of the hierarchical and decoder
blocks for the visualization. In comparison to Table 9 and
Table 10, we have chosen a variety of BraTS 2018 patients.
The purpose of choosing different patients is to assess the
potential of the proposed architecture when the tumor’s loca-
tion, shape, and size varies. Table 11 shows accurate pre-
dictions of the whole tumor. However, in some instances,
a zero dice score for the whole tumor still exists. In the
case of the tumor core, the scenario is similar. Meanwhile,
larger receptive field sizes of the deeper layers in terms of the
accurate predictions of the enhancing tumor for most rows
have been observed.

We have depicted some layers of our proposed archi-
tecture in each of the tables above. At least one predicted
tumor should be assumed for the best results of each layer.
The worst-case scenario, in which each layer has only one
predicted tumor, should be assumed. However, the poten-
tial of each layer for each BraTS 2018 patient cannot be
exhibited because of space constraints. Nonetheless, for
all BraTS datasets, our proposed architecture has the best
mean dice scores of the enhancing tumor. Meanwhile, our
proposed architecture has nearly similar dice scores for
the tumor core and the whole tumor, like state-of-the-art
techniques.
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