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ABSTRACT In recent years, Wireless Sensor Networks (WSNs) have benefitted from their integration
with Internet of Things (IoT) applications. WSN usage for monitoring and tracing applications shows
massive acceleration, whether indoors or outdoors. WSN is constructed from interconnected sensors, limited
resource (battery), which requires considerable importance on deployment and routing strategies, to improve
the performance of Quality of Service (QoS) in WSNs. Many of the existing strategies are based on
metaheuristics algorithms such as Genetic Algorithms to resolve the problem. This research proposes a
new algorithm, Enhanced Non-Dominated Sorting Genetic Routing Algorithm (ENSGRA), to improve the
QoS in WSNs. The proposed algorithm relies on Non-Dominated Sorting Genetic Algorithm 3 (NSGA-III),
but adjusts reference points through the use of a dynamic weighted clustered scheduled vector to obtain
new solutions. Moreover, ENSGRA can be used to find an integration between two parents crossover with
multi-parent crossover (MPX), to produce multiple children and improve new offspring to obtain the optimal
Pareto Fronts (PF). This algorithm excels when compared with the lagged multi-objective jumping particle
swarm optimization, Non-dominated Sorting Genetic Algorithm–II andNSGA-III in terms of the QoSmodel
(31% optimization percentage). Results show that the proposed ENSGRA is superior over other algorithms
in evaluation measures for multi-objective algorithms.

INDEX TERMS Quality of service, wireless sensor networks, multi-objective algorithms, clustering,
scheduling, pareto front.

I. INTRODUCTION
The importance of Wireless Sensor Networks (WSNs) come
from using them in different applications, including monitor-
ing various kinds of conditions such as temperature, humidity,
pressure, vehicular movements and soil makeup. A WSN
consists of a large number of low power wireless sensor
nodes, which have limited transmission range and thus cannot
directly send data to sink nodes that need multi-hop commu-
nication. Several communication techniques are used to con-
nect sensor nodes with sink nodes, such as direct propagation,
chain formation and cluster creation [1].

WSNs applications can be classified into two types; first
for monitoring by analyzing or supervising a real-time system
and second for tracking event change on a person or animal.
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A new important example of applications, known as IoT
application based on WSNs, is a method used to extract big
data from things, then mining the data to extract necessary
information [2]. Hence, integrating WSNs with the Internet
of Things (IoT) is considered an important and essential issue
in the future.

Routing and deployment are crucial processes to con-
sider in WSNs, especially when dealing with the perfor-
mance of multiple Quality of Service (QoS) routing and
deployment metrics [3]. Optimization problems are classi-
fied into two types, Single–Objective Problems (SOP) and
Multi-Objective Problems (MOP). SOP aims to minimize or
maximize one objective under various constraints. Select-
ing the most conspicuous performance metric to be opti-
mized, SOP therefore may be improper and unreasonable
for real WSN applications [2]. In MOP, the objects often
conflict and clash, and the solution presents the best trade-off.
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This result is true as conflicts and clashes can be solved using
two approaches, Classical and Multi-objective optimization
algorithms. The classical method aggregates the weighted
sums of all objectives [2] whilst multi-objective optimization
algorithms use approaches that are sub-divided into three
types: Aggregating functions, Population-based approaches
and Pareto-based approaches. Aggregating functions com-
bines all the objectives into one by any arithmetical opera-
tion. Population-based approaches use population to diversify
the search, in which each generation sub-populations are
generated by proportional selection. When using the Pareto
approach, multiple objects are simultaneously optimized to
find the non-dominated points of Pareto Front (PF).

The objectives are categorized into single ones by pre-
multiplying each objective with a user-supplied weight [4].
The second approach is a Multi-objective algorithm, which
is designed to solve black box objective optimization
problems. These algorithms contain parts of optimization
methods and Pareto search methods including: Strength
Pareto Evolutionary Algorithm (SPEA) [5]; Multi-
Objectives Particle Swarm Optimization (MOPSO) [6];
AMulti Objective Evolutionary Algorithm Based on Decom-
position (MOEA/D) [7]; Non-dominated Sorting Genetic
Algorithm–II (NSGA-II) [8]; and Non-dominated Sorting
Genetic Algorithm–III (NSGA-III) [9].

As evidenced by previous literature [10], multi-objective
algorithms are commonly used to optimize WSNs param-
eters. Limited research focus on multi-objective algorithms
such as NSGA-III (with the exception of one study that uses
NSGA-III at the deployment stage) [11]. Another weak point
in this field is that only a few papers previously consider
QoS and its metrics, such as coverage, reliability, delay and
packet delivery. Furthermore, only a small number of studies
employ performance indicators to evaluate PF solutions for
multi-objectives algorithms.

Hence, the contribution of this research is to present a new
algorithm named Enhanced Multi-objective Non-dominated
Sorting Genetic Routing Algorithm (ENSGRA) based on
NSGA-III with some changes in finding reference points, and
crossover operation, this algorithm avoids the weaknesses in
previous algorithms and improves the QoS in WSNs. This
improvement can be achieved by optimizing three objec-
tives in deployment and routing stage, namely, the number
of active sensor nodes, energy consumption and network
coverage. ENSGRA will work as a dynamic protocol in
WSNs environment, Finally, considering computation time
when comparing the proposed algorithmwith others is highly
important to avoid time complexity, so it taken in consid-
eration when the proposed algorithm compared with other
algorithms.

This paper is arranged as follows. In this Section 1, the
introduction is presented. Section 2 illustrates related con-
cepts of using multi-objective algorithms to improve per-
formance of QoS in WSNs, and related work in this field
In addition, this section describes the research problems.
Section 3 displays the proposed algorithm and its framework.

Section 4 discusses the results in comparison with other algo-
rithms alongside the evaluation. Finally, Section 5 presents
the conclusion and future works.

II. CONCEPTS, RELATED WORKS, AND PROBLEM
DESCRIPTION
The goal of this research is to solve the MOP to achieve
high performance in QoS for WSNs. Therefore, this section
introduces the most relevant and pertinent concepts to the
main ideas of the study.

A. QUALITY OF SERVICE (QoS)
Quality of Service (QoS) has no common or formal defi-
nition, but can be considered as the capability to provide
assurance that the service requirements of applications are
satisfied. However, this assurance depends on the type of
application targeted. QoS in WSNs can be recommended for
achieving reliability, timeliness, robustness, availability and
security. Several QoS parameters can be used to measure the
degree of satisfaction of these services, including throughput,
delay, jitter and packet loss rate [12]. Other parameters for
various applications, including optimizing energy consump-
tion, coverage and connectivity to measure QoS [13], are
factors being considered in this research.

B. PARETO FRONT (PF)
Pareto Front is generated by a specific set of solutions, where
no multiple objectives can be improved without sacrificing
the others [2]. The PF approach has the following goals [14]:

1. Convergence: To find a set of Pareto optimal solutions,
these solutions more relevant to each other.

2. Diversity: To find a set of diverse solutions to pre-
vent premature convergence and achieve a well-distributed
trade-off PF; Note that diversity is symmetric in a
two-dimensional space (two objectives) whilst more difficult
to obtain in three-dimensional space (three objectives) [15].

In satisfying multiple objectives, using a 3D space is more
realistic but it increases complexity [16], [17]. However Non-
dominated sorting, based on optimal PF as shown in Figure 1,
represents a number of optimal solutions, with each front
set between two objectives. Including several Pareto optimal
solutions in the evaluation generation is beneficial [18].

This figure illustrate that dominated solutions which are in
black dots are solutions that have other solution dominate on
it as the solutions in blue dots.

C. RELATED WORKS
In table 1 represent the recent ones related work that concern
in using multi-objective algorithms to optimize objectives
in WSNs.

D. PROBLEM DESCRIPTION AND OBJECTIVE FUNCTIONS
In MOP, several objective functions simultaneously need
optimisation (minimised or maximised). For example,
m objective functions require
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FIGURE 1. Non-dominated sorting of a population Pareto front [19].

TABLE 1. Literature review for related works.

Minimise or maximise:

F (x) = (F1 (x) , . . . ,Fm (x)), (1)

This research aims to solve MOP that contain three objec-
tive functions:
1. To minimise the number of active sensors
2. To minimise the intersection between sensor nodes to

reduce energy consumption
3. To maximise separation between sensor nodes to

increase network coverage.

1) NUMBER OF ACTIVE SENSOR NODES
A function that finds the sum of sensor status is necessary
to determine the minimum number of active sensors. This
function [21] uses the following equation,

f 1 (x) =
∑

i∈N
Statusi, (2)

where N is the number of sensors and f1 (x) provides the
minimum number of active sensors in WSN that is deployed
randomly in the area of interest.

2) ENERGY CONSUMPTION OBJECTIVE FUNCTION
The function that minimises the intersection between sensors
in its sensing area is used to conserve energy (As when den-
sity of sensors increase in some areas more than others. It will
consume energy so reducing intersection between sensors
will decrease energy consumption). This function [20] uses
the following equation:

f 2 (x) =
∑N

i=1

∑N

j=1
Rsi ∩ Rsj, (3)

where N is the number of sensors, Rs is sensing radius and
f2 (x) must be as minimised as possible. Without neglected
transferring and receiving the packets to support communi-
cation between sensor nodes.

3) NETWORK COVERAGE OBJECTIVE FUNCTION
The function that maximises the separation between nodes is
used to maximise network coverage. This function [1] uses
the following equations,

f 3 (x) = max(sep), (4)

sep =
∑N

i=1

∑N

j=1
d ij, (5)

where dij is the distance between any two nodes and should
be as maximised as possible.

III. ENHANCED NON-DOMINATED SORTING GENETIC
ROUTING ALGORITHM (ENSGRA)
With the aim to overcome performance problems in QoS for
WSNs, this research proposes an enhanced multi-objective
algorithm called ENSGRA, which is based on cluster-
ing and scheduling. This algorithm can help avoid previ-
ous multi-objective algorithm problems such as premature
convergence and negative effects of redundant solutions.
In addition, ENSGRA also achieves more convergent and
less divergent global solutions than other algorithms. The
improvement is achieved in the NSGA-III algorithm using
adjusted weighted clustered scheduled reference points, and
multi-parent crossover (MPX) operation.

A. ENSGRA PROPOSED FRAMEWORK
This algorithm is proposed to enhance the QoS performance
in WSNs. Figure 2 shows the framework block diagram of
the WSN architecture with the proposed ENSGRA. Nodes
are randomly deployed in the area of interest, then routing
is achieved by clustering and scheduling operations. Ini-
tially, the algorithm deploys nodes and randomly selects a
cluster head (the algorithm initialises the population). After
using NSGA-III and updating genetic operations recombina-
tion (crossover), two parents crossover are integrated with
multi-parent crossover (MPX). Then reference points are
updated by the adjusted weighted clustered scheduled refer-
ence points to enhance non-dominated PF solutions.

The fitness of each node is calculated based on the pro-
posed multi-objective fitness function to achieve enhanced
objectives, which include the number of active sensors,
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FIGURE 2. ENSGRA algorithm, framework block diagram of WSNs.

energy consumption and network coverage. Moreover, this
method maintains path reliability, which is based on clus-
tering, and node connectivity, which is grounded on radius,
as constraints. Finally, the final WSN routing solutions
(non-dominated PF solutions) are given to the decisionmaker.
In these solutions, the new cluster heads are selected based on
node energy, node sensing radius and node communication
radius. In addition, in the final solutions, several deployed
nodes turn off (become inactive) based on sensor scheduling,
which increase energy efficiency, network coverage and net-
work lifetime.

B. ORIGINAL INDIVIDUAL FORMATTED STRUCTURE
WITHOUT CLUSTERING
All individuals (chromosomes) are represented by m × 2
matrix, where m is the number of nodes. The number in the
first column of row i states to which cluster the node i belongs.
The elements of the second column of the chromosome are
selected randomly to determine if the node acts as a cluster
head or as a natural sensor node [22]. Figure 3 shows the
format of the original individual, which contains (k) as the
amount of active sensor nodes and (s) as the number of genes.
These two must be equal given that each sensor is consid-
ered as a gene that contains four parameters: x coordination,
y coordination, sensing radius and communication radius for
each sensor. In this case, sensors have two types of status,
active or non-active node, as shown in Equation (6).

Node status =

{
0, if node non active
1, if node active

(6)

FIGURE 3. Format of original individual.

FIGURE 4. Format of updated individual.

As an example let a total of 64 active sensors from 100 sen-
sors that are deployed in the area of interest are obtained after
using NSGA-III, whilst the other sensors will go to sleep
mode (inactive). Let the first sensor has id = 1, and the
four parameters are presented as follows: x1= 301, y1= 59,
Rs1= 110 and Rc1= 156.

C. UPDATED INDIVIDUAL FORMATTED STRUCTURE WITH
CLUSTERING
In the binary method [1], an individual (chromosome) is
represented as a string of 0s and 1s, where 0 indicates that
the node is a non-cluster head/member and a 1 indicates that
the node is a cluster head.

Figure 4 shows the format of an updated individual, which
contains (k) as the amount of sensor nodes and (s) as the
number of genes. The two must be equal given that each
sensor is considered as a gene that contains four parameters:
x coordination, y coordination, sensing radius and communi-
cation radius for each sensor (as in Section 3.2). In addition,
this format considers clustering by adding a number of cluster
heads, with (m) PF and each PF solution has a number of
cluster heads ci, then i = {1, . . . ,m} and ci is 2 ≤ ci ≤ k

10 .
For example, for (100) sensors, theminimal number of cluster
heads is (2) and themaximum number of cluster heads is (10).
In clustering, two additional parameters (Wc) are the sensor
node in any cluster and node status (Ns) that is a natural active
or non-active node or cluster head.

D. AN INTEGRATED CROSSOVER OPRATION IN ENSGRA
A new crossover operator, called Random Multi-point
Crossover Operator (RMX) [23], is proposed to solve the
variable ordering problem. RMX is used for probabilistic
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FIGURE 5. Recombination after using RIMX operator.

graphical models that have directed arcs. This operator can
avoid premature convergence to determine good solutions in
a reasonable number of generations.

In this research, the proposed algorithm uses the inte-
gration between two parents crossover with multi-parent
crossover (MPX).Moreover, a Random IntegratedMulti-point
Crossover (RIMX) is proposed. Figure 5 shows RIMX in
algorithm 1, how this operator works based on the RMX
algorithm and represents the integration operation between
two parents crossover with multi-parent crossover (MPX).

Let m represent the number of parents that are chosen
randomly, which may be two or four parents. When RIMX
receives two chromosomes (parents), p1 and p2 are recom-
bined to create two new chromosomes (child), ch1 and
ch2, based on p1 and p2 recombination. However, if RIMX
receives four chromosomes, p1, p2, p3 and p4 are recombined
and returns four new chromosomes, ch1, ch2, ch3 and ch4
based on p1, p2, p3 and p4 recombination. Random sets of
numbers n of cut points (cp) are to be used. Use n = 4,
as an example. Next, n positions of cut (cp1, cp2, . . . , cpn)
are randomly chosen. Then, the selected chromosomes are
recombined p1, p2, p3 and p4, according to positions selected
to generate ch1, ch2, ch3 and ch4. The recombination of genes
occurs as follows: specific gene sequences are exchanged
between four parents. The first sequence (from cp1 to cp2)
and the second (from cp2 to cp3), then the third (from
cp3 to cp4) and so on.

Figure 5 presents four individuals to be recombined: p1,
p2, p3 and p4. Consider that four cut points are randomly set:
cp1, cp2, cp3 and cp4, genes before cp1 without any changes.
The first sequence cp1 to cp2 is exchanged between p1 and
p2 and between p3 and p4. The second sequence cp2 to cp3
is exchanged between p1 and p3 and between p2 and p4. The
third sequence cp3 to cp4 is exchanged between p1 and p4
and between p2 and p3. The sequence after cp4 does not
change. These operations are repeated with other genes to
the end.

FIGURE 6. ENSGRA flowchart.

E. UPDATED REFERENCE POINTS IN ENSGRA
Based on weighted clustered scheduled vector adjustment,
ENSGRA is used to improve the convergence speed and
distribution of NSGA-III algorithm. ENSGRA increases the
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Algorithm 1 RIMX Procedure Based on RMX
Input: Parent p1, p2, p3, p4
Output: Child ch1, ch2, ch3, ch4
1: n = random (1, number of genes/2) /∗n is number of cut

points defined randomly
2: Positions= randomly Chosen Positions (n) /∗ positions of

cuts are randomly selected
3: m = random [2,4] /∗m is number of parents it may be

2 or 4
4: if m == 2
5: Select p1, p2 randomly
6: ch1 and ch2 = recombination (positions, p1, p2) /∗ two

parent crossover
7: else /∗m == 4
8: Select p1, p2, p3, and p4 randomly
9: ch1, ch2, ch3, and ch4 = recombination (positions, p1, p2,

p3, p4) /∗ multi parent crossover

TABLE 2. WSNs settings for experiments.

TABLE 3. Algorithms settings for experiments.

individual ability to evolve through new differential evolu-
tion strategies, while dynamically adjusting the weight vec-
tor [24]. The original structured reference point Z s with
Wvalue in generation procedure is replaced, followed by call
weight adjustment function as the following pseudo code
in algorithm 2.

The distribution of weighted vectors is important when all
individuals are indistinguishable from one other. The weight
vectors are adjusted by comparing the density of the entire
objective space and subspace [24], based on this principle

Algorithm 2 ENSGRA Based on Weighted Clustered
Scheduled Adjustment Procedure

Input: N structured reference points Wvlue, Pt
Output: Offspring population Pt+1
1: Initialization (Pt ,W value)
2: gen = 1
3: Select Number of clusters randomly based on number of

population (Nc)
4: Select cluster head for each cluster randomly (CH )
5: While gen ≤ gen_max do
6: Q_t = Crossover(using RIMX algorithm)

+Mutation(P_t)
7: Rt = Pt ∪ Qt
8: (F1, F2, . . . ) = Non-dominated-sort (Rt )
9: Repeat
10: St = St ∪ Fi and i = i+ 1
11: until |St | ≥ N
12: Last front to be included: Fl = Fi
13 if |St | = N then
14: Pt+1 = St , break,
15: Else
16: Pt+1 =

⋃l−1
j=1 Fj and K = N − |Pt+1|

17: Normalize-objectives Pt = Normalize(St ,Wvalue,Nc)
18: Associate each member s of St with a reference point:

[π (s) , d (s)] = Associate(St ,Wvalue,Nc)
19: Compute niche count of reference point j ∈ Wvalue,

ρj =
∑

S∈S t/Fl (π (s) = j?1 : 0):
20: Choose K members one at a time from Fl to construct:

Niching(K , ρj, π, d,Wvalue,Pt+1)
21: end if
22: Wvalue =Weighted−Clusterd−Scheduled_Adjustmen

(Wvalue,Nc)
23: gen++
24: Select individual scheduling randomly

(select active/inactive, individual)
25: Select cluster heads based on fitness functions
26: end While
27: return Pt+1

ENSGRA divided into two situations as the following
equations.

When the cluster density is less than the population den-
sity, whether the cluster density is too low must be deter-
mined. Then let tmin is the minimum threshold to adjust
cluster density. If the cluster density is less than the minimum
population density tmind0, then the cluster density is too low.
In this case, the weighted clustered scheduled vector should
be deleted, otherwise the two closest neighbour weighted
clustered scheduled vectors are adjusted using equations (7)
and (8),

Wvalue (m) = Wvalue (m)+ ((tmin × d i)− distmin)

×Wvalue
(
neigm

)
(7)

Wvalue (n) = Wvalue (n)+ ((tmin×d i)− distmin)

×Wvlue
(
neign

)
(8)

where:
tmin = 1.5 minimum threshold to give the best result

(proved by experiment).
d0 : density of population.
di : cluster density
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FIGURE 7. Pareto Optimal solutions for the algorithms for 100 sensor and 50 Population nodes using 25, 50, 75, 100 iteration.

Algorithm 3Weighted−Clustered−Scheduled_procedure
Input: Population weightWvalue(w1,w2, . . . ,wm)
Output: Offspring weightWvalue(w1,w2, . . . ,wm)
1: Normalize(Pt ,Wvalue,Nc)
2: Calculate all population density d0(pop)
3: Calculate each cluster density

{d1 (clus) , d2 (clus) , . . . , dk (clus)}
4: If di (clus) < d0 (pop)
5: If di (clus) < tmin × d0 (pop)
6: Delete a weighted clustered scheduled vector
7: else
8: Adjustment using weighted clustered scheduled

vectors by equations (7) and (8)
9: end If
10: else if di (clus) < tmix × d0 (pop)
11: Adjustment using weighted clustered scheduled

vectors by equations (9) and (10)
12: else
13: Add a weighted clustered scheduled vector
14: end if
15: end If
16: If i = m&& length(W ) 6= Number of population
17: Adjustment using weighted clustered scheduled

vectors for all population
18: end If

distmin :minimum distance between two closest neighbour
weighted clustered scheduled vectors.
Wvalue

(
neigm

)
andWvalue(neign): neighbour weights of the

respective weights.

2. When the cluster density is greater than the pop-
ulation density, whether the cluster density is too large
must be determined. Then let tmax is the maximum thresh-
old to adjust density. If the cluster density is greater than
the maximum population density tmaxd0, then the clus-
ter density is too high. In this case, the weighted clus-
tered scheduled vector should be considered, otherwise the
two furthest neighbour weighted clustered scheduled vec-
tors must be adjusted using the following equations (9)
and (10),

Wvalue (m) = Wvalue (m)+
(distmax − (tmax × di))

2
×Wvalue (n) (9)

Wvalue (n) = Wvalue (n)+
(distmax − (tmax×d i))

2
×Wvalue (m) (10)

where:
tmax = 2.5 maximum threshold to give the best result

(proved by experiment).
Wvalue(m) andWvalue(n): furthest weight vectors.
distmax : maximum distance between two furthest neigh-

bour weighted vectors.
Algorithm 3 illustrates the pseudo code for weighted clus-

tered scheduled adjustment procedure.
Figure 6 shows the flowchart of the proposed algorithm

ENSGRA as MPX is added to two-parent crossover and
integrated using RIMX. Then, the adjusted weighted clus-
tered scheduled vector is used to find Wvalue and increase
the number of reference points to find new associated
PF solutions.
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TABLE 4. Multi-objective algorithms optimization results and dynamic weights for 100 nodes.

IV. RESULTS AND DISCUSSION
A synthetic dataset [25] is used to conduct an experiment
of the proposed algorithm. The properties of this dataset are
represented as sensors and sink nodes that are placed on
the same 2D-surface of size Dx x Dy. Sensors regularly and
simultaneously capture information packets from its environ-
ment with a sensibility radius Rs on a basis. Sensors provided
by the dataset and sink node coordinates are provided by the
optimisation algorithm. Both devices (sink and sensors) can
communicate within a communication radius Rc. Assuming
it will be used MAC Centralized Routing Protocol (MCRP)
to avoid packet collision and wormhole attack problem [26].
Other assumption is the sensor nodes are deployed randomly
in the area of interest to ensure that, there are well in a
dynamic network environment.

Tables 2 and 3 show two types of assumed param-
eters, WSN and multi-objective algorithms, respectively.
This experiment is carried out using Windows 10 Operat-
ing System, Intel Core (TM) i5-6200U, 2.4 GHz processor,
8 GB memory (RAM) and MATLAB 2014 as software. The
code validated and verificated by programing each part alone
using MATLAB code, then testing these parts before do
integration between it to know if it give the exact result or
not, using different case studies from the synthetic dataset.

Table 3 represents parameters that are used to carry out
experiments through LMOJPSO, NSGA-II, NSGA-III and
ENSGRA. Several parameters are commonly used for all
algorithms, special parameters are exclusive for evolutionary
algorithms such as genetic algorithm and other parameters are
used for particle swarm algorithms.

A. CONFIGURATIONS RESULTS
Each algorithm is experimented upon with a different num-
ber of scenarios (configurations) and of iterations. In each
scenario, the number of solutions are changed to 10, 20,
30, 40, 50, 60, 70, 80, 90 and 100. The same is applied
for the different number of iterations, using 25, 50, 75 and
100 iterations. These experiments are repeated with different
numbers of sensor nodes, including 100, 200, 300, 400 and
500 sensor nodes, deployed in the region of interest.

Figure 7 shows the results of the density of final
PF solutions for each algorithm and its distribution in the
3D objective space. The X-axis shows the number of active
sensors, Y-axis shows percentage of node intersections (leads
to energy consumption) and the Z-axis shows node separa-
tion (leads to network coverage). This figure is concerned
with taking only one scenario (configuration) from 10, when
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FIGURE 8. The Resultant of Multi-objectives by Dynamic weights Vs Number of iteration, a) for 100 sensors in 1000 × 1000 m2, b) for 200 sensors in
1200 × 1200 m2, c) for 300 sensors in 1400 × 1400 m2, d) for 400 sensors in 1600 × 1600 m2, and e) for 500 sensors 1800 × 1800 m2.

using 100 sensor nodes and 50 population using 25, 50,
75 and 100 iterations.

Figures 7-a)–d) represent Pareto optimal solutions using
25, 50, 75 and 100 iterations for the implemented algorithms,
respectively. The following colours display the PF for various
algorithms.
1. Blue is PF for LMOJPSO algorithm.
2. Cyan is PF for NSGA-II algorithm.
3. Green is PF for NSGA-III algorithm.
4. Red is PF for the proposed algorithm ENSGRA.

Figure 7 shows that ENSGRA is in between LMOJPSO,
NSGA-II and NSGA-III. The PF obtained from ENSGRA
enables the decision maker to select the best compromise
solution. In turn, the best routing for sensing nodes can be
obtained after deployment to achieve QoS for WSN.

The QoS model is used to combine the three conflicting
objects, which are number of active sensors, energy con-
sumption, and network coverage. Therefore, at the start, each
objective is givenweight based on application and determined
based on experience about its importance [27], [28]. The
weight and coverage threshold are adjusted [29] to obtain the
optimum allocation of different business requirements.
The results prove that energy consumption and coverage
require consideration over (given a greater weight than) any
other parameters.

In the present research, the result of the objectives used for
each algorithm is calculated using dynamic weights (based on
the ranking for each objective, from 1 to 4, with 1 as the lowest
and 4 as the highest). Then, this ranking is converted to their
respective weights (0.1–0.4), which must be dynamic, based
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FIGURE 9. Average Hypervolume for four algorithms (methods): from (a-d) 100 sensors using 25, 50, 75, and 100 iteration. From (e-h) for
200 sensors using 25, 50, 75, and 100 iteration. From (i-l) for 300 sensors using 25, 50, 75, and 100 iteration. From(m-p) for 400 sensors
using 25, 50, 75, and 100 iteration. From (q-t) for 500 sensors using 25, 50, 75, and 100 iteration.
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FIGURE 9. (Continued.) Average Hypervolume for four algorithms (methods): from (a-d) 100 sensors using 25, 50, 75, and 100 iteration. From (e-h) for
200 sensors using 25, 50, 75, and 100 iteration. From (i-l) for 300 sensors using 25, 50, 75, and 100 iteration. From(m-p) for 400 sensors using 25, 50,
75, and 100 iteration. From (q-t) for 500 sensors using 25, 50, 75, and 100 iteration.
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FIGURE 9. (Continued.) Average Hypervolume for four algorithms (methods): from (a-d) 100 sensors using 25, 50, 75, and 100 iteration. From (e-h) for
200 sensors using 25, 50, 75, and 100 iteration. From (i-l) for 300 sensors using 25, 50, 75, and 100 iteration. From(m-p) for 400 sensors using 25, 50,
75, and 100 iteration. From (q-t) for 500 sensors using 25, 50, 75, and 100 iteration.

on an objective ranking value. Table 4 shows that, if energy
consumption in LMOJPSO algorithm has the lowest value,
then it takes a 0.4 weight value. If ENSGRA has the second
rank value, then it takes a 0.3 weight and so on. Computation
times are also used as a factor that affects the results for
each algorithm. Therefore, computation time is added and
given a weight as other parameters to avoid time complexity
for the proposed algorithm. Subsequently, the Resultant of
Multi-objectives by Dynamic Weights (RMDW) equations
are created for each algorithm.

• (EC) indicates Energy Consumption Percentage
• (NS) indicates Number of active Sensors
• (NC) indicates Network Coverage
• (CT) indicates Normalised Computation Time (take time
in hour)

• (EW, SW, CW and TW) indicate weights for Energy Con-
sumption, Number of Active Sensor, Network Coverage
and Computation Time, respectively

• (EDW, SDW, CDW and TDW) indicate Dynamic
Weights or Energy Consumption, Number of active
Sensor, Network Coverage and Computation Time,
respectively.

• Then let (i) indicate iterations number, which may
be (25, 50, 75, 100) each time increasing 25 steps.
In addition, let (j) stand for the number of objectives
from 1 to 4 given the four algorithms. Therefore, the

RMDW equation for any algorithm is:

RMDW =
∑100

i=25

∑4

j=1
EC ij × EW j × EDW ij + NS ij

×SW j × SDW ij + NC ij × CW j × CDW ij

+CT ij × TW j × TDW ij (11)

where the objective weights are supposed (EW = 0.3,
CW = 0.3, SW = 0.2, TW = 0.2).
Using an example from Table 4, the resultant
RMDW values of LMOJPSO, NSGA-II, NSGA-III and
ENSGRA when i = 25 for 100 sensor nodes are
calculated as follows.
LMOJPSO = (0.8160 X 0.3 X 0.4) + (27 X 0.2 X
0.4) + (5.4 X 0.3X 0.1) + (0.30 X 0.2 X 0.4) = 2.41.
NSGA-II= (0.8491 X 0.3 X 0.1)+ (52 X 0.2 X 0.2)+
(7.8 X 0.3 X 0.4) + (0.60 X 0.2 X 0.2) = 3.07.
NSGA-III = (0.8468 X 0.3 X 0.2) + (54 X 0.2 X
0.1) + (7.8 X 0.3 X 0.3) + (0.36 X 0.2 X 0.3) = 1.84.
ENSGRA = (0.8335 X 0.3 X0.3) + (54 X 0.2 X0.3) +
(7.3 X 0.3 X 0.2) + (0.264 X 0.2 X 0.1) = 3.36.

Figure 8 shows the calculated results for RMDW, where
ENSGRA overcomes other algorithms.

Figures 8-(a–(e represent the combination of the aver-
age results of 10 configurations, for the three objectives in
LMOJPSO, NSGA-II, NSGA-III and ENSGRA. In addition
to the objectives, computation time is added to avoid time
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FIGURE 10. Average NDS for four algorithms (methods): from (a-d) 100 sensors using 25, 50, 75, and 100 iteration. From (e-h) for 200 sensors
using 25, 50, 75, and 100 iteration. From (i-l) for 300 sensors using 25, 50, 75, and 100 iteration. From(m-p) for 400 sensors using 25, 50, 75,
and 100 iteration. From (q-t) for 500 sensors using 25, 50, 75, and 100 iteration.
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FIGURE 10. (Continued.) Average NDS for four algorithms (methods): from (a-d) 100 sensors using 25, 50, 75, and 100 iteration. From (e-h) for
200 sensors using 25, 50, 75, and 100 iteration. From (i-l) for 300 sensors using 25, 50, 75, and 100 iteration. From(m-p) for 400 sensors using 25, 50,
75, and 100 iteration. From (q-t) for 500 sensors using 25, 50, 75, and 100 iteration.
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FIGURE 10. (Continued.) Average NDS for four algorithms (methods): from (a-d) 100 sensors using 25, 50, 75, and 100 iteration. From (e-h) for
200 sensors using 25, 50, 75, and 100 iteration. From (i-l) for 300 sensors using 25, 50, 75, and 100 iteration. From(m-p) for 400 sensors using 25, 50, 75,
and 100 iteration. From (q-t) for 500 sensors using 25, 50, 75, and 100 iteration.

complexity in the proposed algorithm vs. number of itera-
tions, which are 25, 50, 75 and 100 iterations using 100,
200, 300, 400 and 500 sensing nodes in the RMDW combi-
nations. The calculated results show that the proposed algo-
rithm ENSGRA is superior over the other algorithms and
given the highest value, followed by NSGA-II, LMOJPSO
and NSGA-III in order. This finding signifies that ENSGRA
has the capability to overcome the other algorithms, even
though the computation time is added to the combination
model (QoS).

B. MULTI-OBJECTVE ALGORITHM EVALUATION
This research adopts the most used evaluation metrics, which
are Hyper Volume (HV), Delta (4) and Number of other
Non-dominated Solution (NDS) indicators. HV is used to
evaluate convergence and diversity (distribution). This indi-
cator is the volume of the objective space dominated by the
PF approximation and delimited from above by a reference
point. Computation requires a bounded space by the PF and
a user defined as a reference point [30], [31].

Whenever the Delta (4) Indicator is used to measure diver-
sity, by obtaining the distribution and spread of solutions,
the number of PF solutions is taken and sorted according
to the first fitness values. Subsequently, the Euclidean dis-
tance between consecutive solutions and the average of the

consecutive distances are calculated. Other calculations such
as Euclidean distance between the extreme solutions and
boundary solutions must be considered to find the diversity
metric. This value must be as small as possible because this
indicator specifies a uniform distribution [32].

The third indicator is NDS, which is considered a capac-
ity metric that finds the number of optimal solution sets
obtained by the optimiser. This indicator, also called Overall
Non-Dominated Vector Generation, is easy to use given its
low computational complexity [33].

Figure 9 represents the average evaluation of the HV indi-
cator for the used algorithms. The first row shows the HV
indicator for 100 nodes using 25, 50, 75 and 100 iterations.
The second row shows the HV for 200 nodes using the same
number of iterations as in the first row. The third row shows
the HV for 300 nodes. The fourth row shows the HV for
400 nodes and the fifth row shows the HV for 500 nodes.
Figure 10 represents the average evaluation for the NDS
indicator for 100, 200, 300, 400, 500 nodes in each row.

Figure 11 follows the above system to represent the average
evaluation of the Delta indicator for 100, 200, 300, 400,
500 nodes, respectively. But we use Delta to evaluate two
objectives (energy consumption, and network coverage) as
Delta is unsuitable in multi-objective problems with more
than two objectives. In these figures illustrate the evaluation
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FIGURE 11. Average Delta for four algorithms (methods): from (a-d) 100 sensors using 25, 50, 75, and 100 iteration. From (e-h) for 200 sensors using 25,
50, 75, and 100 iteration. From (i-l) for 300 sensors using 25, 50, 75, and 100 iteration. From(m-p) for 400 sensors using 25, 50, 75, and 100 iteration.
From (q-t) for 500 sensors using 25, 50, 75, and 100 iteration.
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FIGURE 11. (Continued.) Average Delta for four algorithms (methods): from (a-d) 100 sensors using 25, 50, 75, and 100 iteration. From (e-h) for
200 sensors using 25, 50, 75, and 100 iteration. From (i-l) for 300 sensors using 25, 50, 75, and 100 iteration. From(m-p) for 400 sensors using 25, 50, 75,
and 100 iteration. From (q-t) for 500 sensors using 25, 50, 75, and 100 iteration.
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FIGURE 11. (Continued.) Average Delta for four algorithms (methods): from (a-d) 100 sensors using 25, 50, 75, and 100 iteration. From (e-h) for
200 sensors using 25, 50, 75, and 100 iteration. From (i-l) for 300 sensors using 25, 50, 75, and 100 iteration. From(m-p) for 400 sensors
using 25, 50, 75, and 100 iteration. From (q-t) for 500 sensors using 25, 50, 75, and 100 iteration.

TABLE 5. Average value for hyper volume, NDS, and delta.
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TABLE 6. QoS model combination percentage (optimization percentage)
for the proposed scenarios.

for the four algorithms that are used to improve the QoS
in WSNs based in three well know indicators Hypervolume
(HV), Number of Solutions (NDS), and Delta.

Table 5 shows the average values for HV, NDS and
Delta for 100, 200, 300, 400 and 500 nodes using 25, 50,
75 and 100 iteration for ENSGRA, NSGA-III, LMOJPSO
and NSGA-II algorithms.

Figures 9 and 10 show that ENSGRA is superior over
LMOJPSO, NSGA-II andNSGA-III in terms of HV andNDS
in most of the evaluation results. This finding means that the
proposed algorithm ENSGRA provides greater convergence,
less diversity (distribution) for PF solutions and higher capac-
ity as represented by NDS.

Lastly, Figure 11 shows that the ENSGRA has lower
Delta in most of its subfigures than NSGA-II and
NSGA-III. However, LMOJPSO overcomes ENSGRA
in terms of low Delta. This finding indicates that
LMOJPSO provides the lowest distributed solutions. The sec-
ond in lowest diversity (distribution spread) is ENSGRA,
and this result relates to creating equilibrium between con-
vergence and diversity. Diverse solutions are needed to pre-
vent premature convergence and achieve a well-distributed
trade-off PF.

Table 5 shows this result that ENSGRAcomes first in terms
of HV and NDS but second in terms of Delta as illustrated in
bold font.

V. CONCLUSION AND FUTURE WORKS
Achieving QoS for WSNs applications, has evolved and
become an important and urgent issue to improve WSN
performance. Until now, due to the diverse differences in
WSN infrastructure, improving these network parameters
in deployment and routing have prevailed in most of rele-
vant literature. Nowadays, researches mainly aim to improve
multi-object parameters (two or more objects) and solve
the MOP, which are considered an NP-hard problem, using
meta-heuristic multi-objective optimization algorithms for
obtaining solutions for conflicting multi-objectives. In this
area, NSGA-II and NSGA-III are considered to be the most
popular algorithms to supply Pareto Fronts (PF) solutions,
which are provided to the decision maker to determine the
best decision.

The need to improve WNS performance is the catalyst
behind the idea of proposing an enhanced, non-dominated,

sorting genetic routing algorithm. ENSGRA achieves greater
convergence and less diversity (spread and distributed) solu-
tions than other algorithms, thereby providing more choices
for decision makers. This work proposed the ENSGRA algo-
rithm, which in principle, is based on the NSGA-III algo-
rithm. The ENSGRA allows the proposal of a newQoSmodel
to find a combination between WSNs parameters, followed
by adding the computation time. The results are proven
to be fruitful, as the proposed algorithm outperforms oth-
ers in terms of WSN performance metrics parameters with
computation time. The multi-objective algorithms evaluation
metrics indicate that when compared with NSGA-II and
NSGA-III, ENSGRA is superior in terms of Hyper Vol-
ume (HV) and Number of Non-Dominated Solution (NDS)
indicators. But when Delta (4) is considered, the ENSGRA
comes in second place after LMOJPSO; see Table 6 However,
when all parameters are combined together, the ENSGRA
comes first; Table 6 presents the details of these combina-
tion percentage (optimisation percentage) for the proposed
scenarios.

Also, observations reveal that most of the previous studies
depend on two or three objectives, whilst considering four or
more objectives are less likely occurred. Therefore, we plan
in the future to consider four-objective to study their per-
formance and add other indicators to evaluate the proposed
algorithm.
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