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ABSTRACT This paper proposes an advanced frequency estimation algorithm, where the interference effect
of harmonic is effectively compensated by proposing and using a new ‘harmonics interference decomposition
model’. In the decomposition model, the interference effect of harmonic is represented as the sum of the
two separated components, i.e., a deviation bias and an oscillatory disturbance, where the deviation bias is
modeled to include only the uncoupled amplitude parameter terms and the oscillatory disturbance is modeled
to exclusively include all the phase parameter coupled terms in representing a power spectral peak location.
The separation and the independent compensation of the two interfering parameters significantly reduce
the nonlinearity associated difficulties in deriving analytic compensation equations. Frequency estimation
performance of the proposed algorithm is verified through computer simulations with diverse patterns
of power system signals. The proposed algorithm’s excellent estimation accuracy and rapid convergence
performance are confirmed by comparing the simulation results with those of other representative algorithms.

INDEX TERMS Decomposition model, frequency estimation, harmonic interference, spectrum peak
searching.

NOMENCLATURE
k Discrete time index.
off _I (k) An imaginary part of the first off-diagonal

autocorrelation value.
off _R(k) A real part of the first off-diagonal

autocorrelation value.
ωpeak (k) A spectral peak location.
RF (k) Fundamental waveform parameters

of off _R(k).
RH i (k) ith harmonic waveform parameters

of off _R (k).
RO(k) All the remaining coupled terms

of off _R(k).
IF (k) Fundamental waveform parameters

of off _I(k).
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IH i (k) ith harmonic waveform parameters
of off _I (k).

IO (k) All the remaining coupled terms of off _I(k).
M Highest order of harmonic.
r(k) Deviation bias caused by the effect of harmonics.
1(k) Oscillatory disturbance caused by the effect

of harmonics.
ωhc(k) Harmonics compensated decomposition model

of estimated frequency.
v (k) Complex voltage signal.
A1 Amplitude of the fundamental waveform.
φ1 Initial phase of the fundamental waveform.
φm Initial phase of mth harmonic waveform.
Am Amplitude of mth harmonic waveform,

where m = 2, 3, 4 . . ..
ω (k) Fundamental angular frequency.
C Autocorrelation matrix of v (k).
ω̂bc(k) Bias compensated frequency.
ω̂(k) Harmonics compensated frequency.
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ωest (k) Estimated frequency.
N Data window length used for pre-processing.
L Data window length used for iterative

frequency update.

I. INTRODUCTION
Recently, the importance of precise and rapid frequency
estimation is more emphasized as the complexity of power
systems increases along with the increased use of distributed
energy resources [1]–[5].Wide variations of transient and dis-
turbances are considered as inevitable characteristics shown
in future smart grids. Highly precise and fast frequency esti-
mation under the disturbing environment, typically interfered
with the intrusion of harmonics and unbalance, becomes an
important issue for rapid and reliable protection and control
of power systems [3]–[8]. Since harmonics disturbance is
considered as one of the major sources of performance dete-
rioration, successful harmonic compensation is an essential
task to achieve satisfactory performance level of frequency
estimation.

Majority of harmonics compensation methods can be
divided into two categories, i.e., analytic compensa-
tion approach [7]–[15] and stochastic modeling-based
approach [5], [16]–[25]. The frequency estimation algorithms
belonging to the analytic compensation approach are based
on analytic derivations of waveform parameters, such as
amplitudes, phases, and frequencies. With the derived wave-
form parameters, deviation of spectral peak location caused
by harmonics interference can be directly compensated. The
stochastic modeling-based approach, under the assumption of
quasi-stationarity with windowed data, is based on the repre-
sentation of harmonics interfering effects as stochastic model
parameters. Because of well-established principle of opti-
mization, the stochastic modeling-based method is widely
adopted with diverse variations of models including adaptive
filter [16], [22], [23], maximum likelihood model [4], [5],
Kalman filter [18]–[20], etc..

The analytic compensation approach can be very effec-
tive if explicit and analytic estimation of the time-domain
parameters are available, consequently allowing the direct
application of the time-domain parameters for the compen-
sation. However, the explicit and analytic estimation of the
time-domain parameters is generally considered as a difficult
task because of highly nonlinear couplings of the parameters
appearing in the harmonics-interfered frequency deviation.
Because of the difficulty associated with the nonlineari-
ties, instead of direct equation solving, certain constraints
and assumptions are usually adopted to limit the number
of waveform parameters and/or to employ simplified signal
models [13]–[15].

Based on the advantageous features of providing increased
frequency resolution and statistical stability against noise
and disturbance effects, the stochastic modeling-based
methods show significantly improved frequency estimation
performances for various harmonics included power sys-
tems [19], [24], [25]. However, in transients prevailing power

systems such as in future smart grids, the trade-off character-
istics between convergence rate and statistical stability of the
stochastic modeling-based method becomes a significant per-
formance limiting factor. In order to preserve high precision
level with statistical stability, long enough length of data win-
dow is generally required. Longer data window, on the other
hand, causes slow convergence rate, consequently resulting in
the trade-off of increased estimation error during transients.

This paper proposes an advanced frequency estimation
algorithm which is based on analytic compensation of effects
of dominant harmonic in power systems. A harmonics
decomposition model is newly proposed to mitigate the dif-
ficulty of direct equation solving required in the analytic
compensation method.

In the proposed decomposition model, the effects of har-
monics are separated into two components, i.e., a bias and an
oscillatory disturbance. The bias is exclusively determined by
the relative strength of harmonics, and the oscillatory distur-
bance is caused by the phase interference effect accompanied
with data window sliding. Since the waveform parameters
are effectively separated within the decomposition model,
the bias term can be analytically compensated by deriving
only the reduced number of parameters. The oscillatory com-
ponent is also independently compensated resulting in high
estimation precision. The issue of trade-off between conver-
gence rate and estimation precision is effectively avoided by
the application of a nonlinear filtering technique capitalizing
the periodic nature of the oscillatory component.

The originality and the superiority of the proposed
frequency estimation are inherited from the proposed decom-
position model where all the phase parameters of a power sig-
nal are separated from the bias term, consequently enabling
the independent compensation of the effect of the phase
parameters.

Superior frequency estimation performance of the pro-
posed algorithm is verified through several comparative sim-
ulations with the four representative frequency estimation
algorithms, i.e., the least square smart DFT (LS-SDFT)
algorithm [10], the DFT-based algorithm [9], the extended
complex Kalman filters (ECKF) [19], and the demodulation
algorithm [26]. It is confirmed that the proposed algorithm
shows the best estimation accuracy and convergence rate
among those of the frequency algorithms against various har-
monics and transient reflected signals including the signals
specified in the IEEE 60255-118-1: 2018 standard [27].

II. PROPOSED ANALYTIC COMPENSATION METHOD
BASED ON THE DECOMPOSITION OF
HARMONICS-EFFECTS
In spectral peak localization-based frequency estimation, it is
generally observed, as shown in Fig. 1, that the effects of
harmonics appear as distractions on the peak location having
a deviation bias and a spurious oscillatory disturbance. It is
shown with the analytic derivations in the following that the
bias exclusively depends on the relative power ratio of the har-
monics, and the oscillatory distraction is spuriously caused by
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FIGURE 1. Comparison of the true frequency and spectral peak location
contaminated by harmonic.

the phase interference effects associated with the time domain
sliding of a processing data block. Based on this property,
a ‘harmonics decomposition model’ is proposed, where the
deviation bias is modeled to include only the uncoupled
amplitude parameter terms and the oscillatory disturbance
is modeled to exclusively include all the phase parameter
coupled terms in representing a power spectral peak location.

When there exists no harmonic interference, the spectral
peak location ωpeak (k) can be simply interpreted as the ratio
of real and imaginary part of the first off-diagonal autocor-
relation component, i.e., the correlation value obtained with
one sample time lag, as shown in (1).

ωpeak (k) = tan−1
{
off _I(k)
off _R(k)

}
(1)

For harmonics included signal, the off-diagonal terms can
be expressed as the sum of a fundamental terms, uncou-
pled harmonic terms, and the remaining coupled terms,
as shown in (2).

off _I(k)
off _R(k)

=
IF (k)+

∑M
i=2 IHi (k)+ IO (k)

RF (k)+
∑M

i=2 RHi (k)+ RO (k)
(2)

The interference effects of the harmonic components can
be decomposed as a deviation bias r(k) and a spurious oscil-
latory disturbance 1(k) parameters. By reflecting the two
interfering parameters, (2) can be expressed as (3).

IF (k)+
∑M

i=2 IHi (k)+ IO (k)

RF (k)+
∑M

i=2 RHi (k)+ RO (k)
=

IF (k)
RF (k)

r(k)+1(k)

(3)

r(k) =
IF (k)+

∑M
i=2 IHi (k)

RF (k)+
∑M

i=2 RHi (k)
·
RF (k)
IF (k)

(4)

1(k) =
IF (k)+

∑M
i=2 IHi (k)+ IO (k)

RF (k)+
∑M

i=2 RHi (k)+ RO (k)

−
IF (k)+

∑M
i=2 IHi (k)

RF (k)+
∑M

i=2 RHi (k)
(5)

By applying (3) to (1), the proposed decomposition model
is represented as (6).

ωpeak (k) = tan−1
{
IF (k)
RF (k)

r(k)+1(k)
}
. (6)

Therefore, the harmonics compensated decomposition
model of the estimated frequency ωhc(k) can be represented
as (7).

ωhc(k) = tan−1
(
off _I(k)
off _R(k)

∗
1

r (k)
−
1(k)
r(k)

)
(7)

With the harmonics compensated decomposition model
of (7), the bias r(k) and the oscillatory disturbance 1(k) can
be compensated separately. The closed form equation of the
bias parameter r(k) is analytically derived. The derivation
becomes feasible because, in the decomposition model, all
the phase coupled terms are separated and included in the
oscillatory disturbance term1(k). The phase coupled terms,
which inherently involve highly nonlinear characteristics, are
considered as the major cause of the derivation difficulty. The
phase parameters coupled oscillatory disturbance 1(k) can
be compensated separately by estimating oscillatory peaks
and applying median filtering to the detected peaks. The
disturbance compensation capitalizes the cyclic nature of the
oscillatory behavior of 1(k) to achieve accurate frequency
estimation with fast convergence.

The detailed derivation process of the bias compensation
equation and the oscillatory disturbance compensation are
described in section III.

III. FREQUENCY ESTIMATION ALGORITHM BASED ON
THE DECOMPOSITION MODEL OF DOMINANT
HARMONIC INTERFERENCE
In this section, a new frequency estimation algorithm is
proposed in which the effect of harmonics interference is
compensated by using the decomposition model presented
in section II. This section describes the frequency estimation
algorithm and the derivation of the analytic equations which
are designed to compensate the effect of dominant harmonic.

The target signal model v (k), which is a complex voltage
signal consisting of a fundamental and mth harmonic compo-
nent, is shown in (8).

v (k) = A1(k)ej(ω(k)k+φ1) + Am(k)ej(mω(k)k+φm) (8)

The autocorrelation matrix C can be expressed as (9).

C =
[
c11 c12
c21 c22

]
=

[
E
[
v(k)v∗(k)

]
E
[
v(k)v∗(k − 1)

]
E
[
v(k − 1)v∗(k)

]
E
[
v(k − 1)v∗(k − 1)

] ] (9)

The first element of the autocorrelation matrix C, i.e., c11,
can be represented as follows.

c11=E
[
v(k)v∗(k)

]
=E

[
A21 (k)+A

2
m (k)+A1(k)Am(k)

(
ej(ω(k)k+φ1−mω(k)k−φm)

+ ej(mω(k)k+φm−ω(k)k−φ1)
)]
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During the period of ‘data processing window’, which is
set to the half cycle period, the frequencyω (k) and the ampli-
tude A (k) are considered as constant, i.e., time invariant. The
effect of phase angle variation is reflected to the frequency
parameterω (k). In view of generator dynamics at faults, such
assumption of quasi-stationarity is justified considering that
the time constant of transient state is generally much longer
than the duration of time window [28]. Then, c11 is obtained
as follow.

c11 = E
[
A21 + A

2
m + A1Am

(
ej(ωk+φ1−mωk−φm)

+ ej(mωk+φm−ωk−φ1)
)]

= A21 + A
2
m + β11 (10)

and similarly,

c22 = A21 + A
2
m + β22 (11)

c12 = A21e
jω
+ A2me

mjω
+ β12 (12)

c21 = c∗12. (13)

βij contains all the fundamental and harmonic coupled terms
of each element of C. The detailed expression of βij is shown
in Appendix A.

As shown in the following (14), the estimated peak location
of the power spectrum of v (k) can be obtained by applying
an off-diagonal autocorrelation matrix element to (1).

ωest_peak (k) = tan−1
(
I (c12)
R (c12)

)
, (14)

where, R(·) and I(·) denote the real and imaginary part
operators, respectively. By using the proposed harmonics
compensated decomposition model (7), the harmonics com-
pensated frequency ω̂(k) can be estimated using (15).

ω̂(k) = tan−1
(
I (c12)
R (c12)

∗
1

r (k)
−
1(k)
r(k)

)
(15)

According to (4) and (5), r(k) and1(k) can be represented
as follows.

r (k) =
A21 sin (ω)+ A

2
m sin (mω)

A21 cos (ω)+ A
2
m cos (mω)

·
cos (ω)
sin (ω)

(16)

1(k) =
est_I (c12)
est_R (c12)

−
A21 sin (ω)+ A

2
m sin (mω)

A21 cos (ω)+ A
2
m cos (mω)

, (17)

where, est_I (c12) and est_R (c12) are the estimated values
of I (c12) and R (c12), respectively.

From R (c12) and I (c12), all the fundamental and har-
monic coupled terms are subtracted as shown in (18) and (19).
The amplitude parameters of the fundamental and harmonic
components (i.e., A1 and Am) can be obtained by solving (18)
and (19). The analytic derivation of the amplitude param-
eters A1 and Am are shown in Appendix B. The derived
analytic equations for A1 and Am are shown in (26) and (27),
respectively.

The deviation bias r (k) can be directly computed by apply-
ing the amplitude parameters to (16). The bias compensated

decomposition model of the estimated frequency ω̂bc(k) is
represented as (20).

R (c12)−
1
2
(c11 + c22)

cos
(
(m+1)

2 ω
)

cos
(
(m−1)

2 ω
)

= A21

cos (ω)−
cos

(
(m+1)

2 ω
)

cos
(
(m−1)

2 ω
)


+ A2m

cos (mω)−
cos

(
(m+1)

2 ω
)

cos
(
(m−1)

2 ω
)
 (18)

I (c12)−
1
2
(c11 + c22)

sin
(
(m+1)

2 ω
)

cos
(
(m−1)

2 ω
)

= A21

sin (ω)−
sin
(
(m+1)

2 ω
)

cos
(
(m−1)

2 ω
)


+ A2m

sin (mω)−
sin
(
(m+1)

2 ω
)

cos
(
(m−1)

2 ω
)
 (19)

ω̂bc(k) = tan−1
(
I (c12)
R (c12)

∗
1

r (k)

)
(20)

The derivation of the phase parameters required in (17)
is not feasible because of the involved high nonlinearities.
Therefore, instead of using analytically derived equation (17),
the harmonics compensated frequency of (15) is achieved by
successively applying the bias compensation and the distur-
bance compensation using ω̂bc(k).

The oscillatory disturbance 1(k) is directly compensated
by measuring the oscillatory peaks. Because of the periodic
feature of the oscillatory disturbance 1(k), the disturbance
can be easily compensated by estimating the middle values
between the peaks. The middle values between positive and
negative peaks are estimated by applying median filtering.
Median filtering, which is robust to spike-like noises, is con-
sidered as very effective to apply to the periodic natured
oscillatory peaks, resulting in precise frequency estimation.

The above-described proposed frequency estimation algo-
rithm is summarized in the flow chart shown in Fig. 2.

In the pre-processing block, a complex voltage signal is
generated from a three-phase voltage signal. By using one
cycle data window, the autocorrelation of the complex voltage
signal is obtained, and its dominant harmonic frequency are
estimated by identifying a dominant peak appearing in the
DFT (discrete Fourier transform) of one cycle data.

The amplitudes of the fundamental and the harmonic fre-
quency are estimated by applying the autocorrelation data and
the previous step’s estimated frequency to the analytically
derived equations (26) and (27), respectively.

Harmonics compensation is achieved by successively
applying the deviation bias compensation and the oscillatory
disturbance compensation.
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FIGURE 2. A flowchart of the frequency estimation algorithm which is
based on the proposed harmonics-distraction decomposition model.

The deviation bias r(k) of the proposed decomposition
model, which exclusively reflects the effect of relative
strength of harmonics, is estimated by directly applying the
estimated values of the amplitude parameters to (16). The bias
compensation is achieved by multiplying the inverse of the
estimated deviation bias to the ratio of real and imaginary of
the first off-diagonal autocorrelation component, i.e., I(c12)

R(c12)
,

as shown in (20).
The phase parameters coupled oscillatory disturbance1(k)

is compensated separately by estimating the oscillatory peaks
and applying a median filtering to the detected peaks.

For noise and oscillatory disturbance suppression, the esti-
mated frequency ωest (k) is iteratively updated using (21).

ωest (k) = ωest (k − 1)+ a0ω̂ (k)− aL ω̂(k − L + 1), (21)

where, L is data window length for frequency compensation,
a0 and aL are weighting factors.

IV. PERFORMANCE SIMULATIONS
Performances of the proposed algorithm were evaluated
through computer simulations. Also, computational complex-
ity analysis and hardware implementation of the proposed
algorithm were performed to evaluate real-time application
feasibility of the algorithm.

Frequency estimation performance of the proposed algo-
rithm were compared with those of representative fre-
quency estimation algorithms, i.e., the LS-SDFT [10], the
DFT-based algorithm [9], the demodulation algorithm [26],
and the ECKF algorithm [19]. For the evaluation, both

60255-118-1:2018 standard [27] referenced signals and real-
istic waveforms obtained from a power system simulator
(EMTP-RV, CEATI Int.) were used as test signals.

In all simulation cases, the nominal frequency f0 and sam-
pling frequency fs were set to 60Hz and 1920Hz, respectively.
The sampling frequency is high enough, i.e., higher than
twice of the highest harmonic frequency used in the sim-
ulations, to guarantee the independence from performance
degradation. The length of processing data block (i.e., N )
was set to 32 samples, i.e., one cycle period of the funda-
mental frequency, and the data window length for frequency
compensation (i.e., L) was set to 16 samples, i.e., half cycle
period of the fundamental frequency. For the ECKF algo-
rithm, the dimension of the state-space model and the mea-
surement noise covariance were set to 2 and 1.0, respectively.
Also, the process noise covariance and the initial a posteriori
estimate error covariance were set to 10−5 I and I, respec-
tively, where I is the identity matrix. For the demodulation
algorithm, a third order lowpass Butterworth filter with cut-
off frequency of 25 Hz was used as a noise and harmonics
reducing filter. For the LS-SDFT algorithm, the number of
DFT samples and the length of the observation vector were
set to 32 and the length of the vector used for a least square
framework was set to 10. For the DFT-based algorithm, the
length of the data window was set to P/2-10, where P is the
number of sample points of a fundamental cycle.

A. SIMULATIONS WITH IEEE 60255-118-1:2018
STANDARD REFERENCED SIGNALS
The proposed algorithm was tested with the three IEEE
60255-118-1:2018 standard referenced signals (i.e., a ramp
signal, an amplitude modulated signal, and a phase step
change signal). The test results show that the proposed algo-
rithm tracks the reference frequency with the smallest |FE|
(absolute value of frequency error) for all the tested signals.
The detailed illustrations of the simulation results are shown
in the following subsections.

1) RAMP-CHANGING FREQUENCY SIGNAL WITH
VARIOUS SNR (SIGNAL-TO-NOISE RATIO)
The frequency of the ramp signal varies from 58 Hz to 62 Hz
with+1.0Hz/sec of ramp rate as specified in the IEEE 60255-
118-1:2018 standard. A fifth harmonic component having
the amplitude level as 10 % of the fundamental component
was applied to the voltage signal adopting the measurement
requirement of single harmonic distortion specified in the
IEEE 60255-118-1:2018.

For the ramp-changing signal, the proposed algorithm pre-
cisely follows the reference frequency and the precision level
is much higher than those of the other algorithms as shown
in Fig. 3. The demodulation algorithm also shows good per-
formance, but its estimation results fluctuate as the frequency
varies. The DFT-based algorithm shows the largest latency
since it needs relatively longer data window length of 4P to
estimate frequency [9].

The summary of the maximum |FE|, which is obtained
for the ramp-changing signal by varying the level of SNR
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FIGURE 3. Frequency estimation results for the ramp-changing frequency
signal with 10% fifth harmonic. (SNR: 80dB) (a) Results of frequency
estimation, (b) Magnified view of Fig. 3(a).

TABLE 1. Maximum |FE| values for the ramp-changing signal with 10%
level of fifth harmonic.

(i.e., 40dB, 50dB, 60dB, 70dB, and 80dB), is shown
in Table 1. The maximum |FE| is measured for the ramp
changing transient duration. From the Table 1, it is confirmed
that the proposed algorithm shows the best performance. The
level ofmaximum |FE| of the proposed algorithm ranges from
10% to 50% compared to those of other algorithms, i.e., the
ECKF, the LS-SDFT, and the DFT-based algorithm. When
comparedwith the demodulation algorithm,which is themost
comparable, the proposed algorithm shows lower level of
maximum |FE| ranging from 80% to 92%.

2) AMPLITUDE MODULATED SIGNAL
An amplitudemodulated signal and an added harmonic signal
are also generated according to the reference specified in

the 60255-118-1:2018 standard. A three-phase voltage signal
was modeled by modulating its amplitude with 0.1 per unit
sinusoidal variation of 1.0 Hz. The seventh harmonic com-
ponent was applied to the voltage signal and its amplitude
was set to 10% of the fundamental component. The system
frequency was set to 59.5 Hz. The generated amplitude mod-
ulated signal is shown in Fig. 4.

FIGURE 4. An amplitude modulated voltage signal used for performance
comparison.

FIGURE 5. Frequency estimation results for the amplitude modulated
signal with 10 % seventh harmonic (SNR: 60dB).

The frequency estimation results are illustrated in Fig. 5,
where the five different patterns of frequency deviation (from
the nominal frequency 59.5Hz) caused by the amplitudemod-
ulation can be well observed. From Fig. 5, it is confirmed
that the proposed algorithm shows considerably higher level
of robustness against the amplitude modulation compared to
those of the other algorithms. The robustness results from the
application of the analytically derived equations achieving
precise estimation of the amplitude parameters.

Values of maximum |FE| of the frequency estimation
algorithms are summarized in Table 2. It is noted that
the proposed algorithm shows significantly better maxi-
mum |FE| value, i.e., 0.0069 Hz, than the maximum |FE|
requirement for P-Class of the IEEE 60255-118-1 stan-
dard, i.e., 0.03 Hz, even under severer amplitude modulation
test case. Comparing with the other algorithms, the level of
the maximum |FE| of the proposed algorithm ranges from
6% to 51%.
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TABLE 2. Maximum |FE| values for the amplitude modulated signal with
10% seventh harmonic (SNR: 60db).

3) STEP CHANGE IN PHASE
A phase step change signal and an added harmonic signal
are also generated according to the reference specified in
the 60255-118-1:2018 standard. A three-phase voltage signal
having step change in phase by 1/18π was modeled for
evaluation of convergence performances of the frequency
estimation algorithms. The seventh harmonic component was
applied to the voltage signal and its amplitude was set to 10%
of the fundamental component. The system frequency was set
to 59.5 Hz.

FIGURE 6. Frequency estimation results for the phase step changing
signal with 10% seventh harmonic (SNR: 60dB).

Convergence patterns for the phase step change signal are
shown in Fig. 6, where the convergence period of each algo-
rithm is defined as the elapsed time from the rising moment
of the step change, i.e., 0.83 second, to the moment resulting
|FE| less than 0.05 Hz.

The convergence performances of each algorithm, i.e., the
response time and the maximum overshoot, are summarized
in Table 3. As shown in Table 3, it is confirmed that the
proposed algorithm also shows the best convergence perfor-
mance considering its fastest response time and significantly
smaller level of maximum overshoot.

B. PERFORMANCE EVALUATION WITH REALISTIC POWER
SIGNALS OBTAINED FROM A TRANSIENT SIMULATING
POWER SYSTEM MODEL
In this subsection, performance of the proposed algorithm is
tested with signals generated from a power system model.
The signals of two cases of power system transient (i.e., load
decrease by 20% and a single line-to-ground fault) were

obtained from a single power plant system model which
is shown in Fig. 7. For the modelling of power system,
the simplified excitation system (SEXS) model, the IEEE
type three-speed-Governing (IEEEG3) model, and the IEEE
Stabilizing (IEEEST) model were used.

The voltage signals used for the simulations were obtained
from a voltage meter (VM) module which is located at a
synchronous machine (SM) side. The true frequency was
obtained from rotor speed data provided by the EMTP’s
generator module.

FIGURE 7. A transient signal generating power system model used for
performance evaluation of the proposed algorithm.

TABLE 3. Convergence performance for the phase step changing signal
with 10% seventh harmonic (SNR: 60db).

1) DECREASING LOAD BY 20%
A test signal was generated by abruptly decreasing load by
20% at 1.5 second. The performance comparison of the algo-
rithms was conducted on transient duration to avoid the effect
of algorithm discontinuity at subtransient duration.

The superior performance of the proposed algorithm is
well-illustrated in the frequency estimation results shown
in Table 4 and Fig. 8. From Table 4, it is confirmed that
the proposed algorithm shows the best estimation accuracy
by showing the smallest values of maximum |FE|, |RFE|,
and RMSE which ranges from 14% ∼ 65%, 5% ∼ 17%,
and 18% ∼ 59% compared to those of the other algorithms,
respectively. The subtransient duration of the test signal was
excluded in calculating maximum |FE|, |RFE|, and RMSE.

2) SINGLE LINE-TO-GROUND FAULT
A single line-to-ground fault signal was generated by ground-
ing A-phase at 1.5 second and the fault was removed by
opening a switch at 1.8 second. In the samemanner as the load
decrease case, the performance comparison of the algorithms
was conducted on transient duration to avoid the effect of
algorithm discontinuity at subtransient duration.
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TABLE 4. Estimation accuracy for the transient power signal (20% abrupt
load decrease).

FIGURE 8. Frequency estimation results for the transient power signal
obtained by simulating abruptly decreasing load by 20%. (a) Frequency
estimation results, (b) Magnified view of Fig. 8(a).

Proposed algorithm’s excellent convergence behavior is
well observed from Fig. 9, where the proposed algorithm
simultaneously shows fast convergence and significantly
small fluctuations. Estimation accuracy of each algorithm is
summarized in Table 5. The values of the maximum |FE|,
|RFE|, and the RMSE of the proposed algorithm ranges from
8%∼ 56%, 4%∼ 64%, and 19%∼ 100% compared to those
of the other algorithms, respectively. The subtransient dura-
tion of the test signal was excluded in calculating maximum
|FE|, |RFE|, and RMSE.

FIGURE 9. Frequency estimation results for a transient power signal
obtained by simulating a single line-to-ground fault. (a) Frequency
estimation results, (b) Magnified view of Fig. 9(a).

C. COMPUTATIONAL COMPLEXITY AND HARDWARE
IMPLEMENTATION OF THE PROPOSED ALGORITHM
In this subsection, the computational complexity of the pro-
posed algorithm is analyzed, and its implementation result on
a MCU (microcontroller unit) system is shown.

The computational complexity of the proposed algorithm
is summarized in Table 6. The computational complexity of
the proposed algorithm is dominated by the process of FFT
computation. The computational costs of all the other har-
monic compensation processes, which are measured in terms
of the real-valued multiplications, additions, and divisions,
are constants and negligible when compared with that of the
preprocessing block.

The proposed algorithm was implemented on a low-profile
32-bit, 150MHzMCU evaluation board to show the real-time
application feasibility of the algorithm. The same algorithm
parameters, which were used in the computer simulations,
were applied to the implementation. The average of the pro-
cessing time required for the frequency estimation is mea-
sured as about 50 microseconds. This occupies only 10% of
sampling period when sampling frequency is set to typically
adopted 1920Hz (32 samples per cycle). Therefore, it is
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TABLE 5. Estimation accuracy for the transient power signal (single
line-to-ground fault).

TABLE 6. Computational complexity of harmonic compensation process
of the proposed algorithm.

confirmed that the proposed algorithm is feasible to imple-
ment on a low-profile embedded system for real-time
application.

V. CONCLUSION
This paper proposed an advanced frequency estimation algo-
rithm which is based on the newly introduced harmonics
decomposition model. With the harmonics decomposition
model, where the interference of harmonics is decomposed
into the deviation bias and the oscillatory disturbance, the two
interference components can be independently and separately
compensated. Precise frequency estimation is achieved by
applying the analytically derived harmonics compensation
equation, where the nonlinearity associated difficulties in
deriving the equation are significantly reduced by the sep-
aration of all the phase parameter-coupled terms into the
oscillatory disturbance in the decomposition model.

The superior performance of the proposed frequency esti-
mation algorithm is shown through the comparisons of the
simulation results with those of the representative algorithms,
i.e., the least square smart DFT (LS-SDFT) algorithm [10],
the DFT-based algorithm [9], the extended complex Kalman
filters (ECKF) [19], and the demodulation algorithm [26].
From the simulation results, it is concluded that the pro-
posed algorithm provides precise frequency estimation by
effectively compensating the interference effect of dominant
harmonic.

APPENDIX A
The fundamental and harmonic coupled terms β11, β12, β21,
and β22 are represented as follows.

β11 (k) =
A1Am
N

∑k

n=k−N+1

{2 cos ((1− m) ωn+ φ1 − φm)} (22)

β22(k) =
A1Am
N

∑k

n=k−N+1

{2 cos ((1− m) ωn− (1− m) ω + φ1 − φm)}

(23)

β12 (k) =
A1Am
N

k∑
n=k−N+1{

2cos
(
(1− m) ωn+ φ1 − φm +

(m− 1)
2

ω

)
cos

(
(m+ 1)

2
ω

)
+ j2 cos ((1−m) ωn+φ1−φm

+
(m+ 1)

2
ω

)
sin
(
(m+ 1)

2
ω

)}
(24)

β21 (k) = β∗12(k) (25)

N : processing data block length.

APPENDIX B
The solutions of simultaneous equations (18) and (19) (i.e.,
estimation of fundamental and harmonic amplitudes) can be
represented as follows.

A21 =


(
R (C12)−

1
2 (C11 + C22) (cos (ω)− cc)

)
csm

cc · csm − cs · ccm

−

(
I (C12)−

(C11+C22) sin (ω)−cs
2

)
ccm

cc · csm − cs · ccm

 (26)

A2m =


(
I (C12)−

(C11+C22)(sin (mω)−ccm)
2

)
cc

cc · csm − cs · ccm

−

(
R (C12)−

(C11+C22)(cos (mω)−ccm)
2

)
cs

cc · csmcs · ccm

 (27)

cc = cos (ω)−
cos

(
(m+1)

2 ω
)

cos
(
(m−1)

2 ω
) (28)

ccm = cos (mω)−
cos

(
(m+1)

2 ω
)

cos
(
(m−1)

2 ω
) (29)

cs = sin (ω)−
sin
(
(m+1)

2 ω
)

cos
(
(m−1)

2 ω
) (30)

csm = sin (mω)−
sin
(
(m+1)

2 ω
)

cos
(
(m−1)

2 ω
) (31)
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