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ABSTRACT The performance of multi-exposure image fusion (MEF) has been recently improved with
deep learning techniques but there are still a couple of problems to be overcome. In this paper, we propose a
novel MEF network based on recurrent neural network (RNN). Multi-exposure images have different useful
information depending on their exposure levels, and in order to fuse them complementarily, we first extract
the local detail and global context features of input source images, and both features are separately combined.
A weight map is learned from the local features for effectively fusing according to the importance of each
source image. Adopting RNN as a backbone network enables gradual fusion, where more inputs result in
further improvement of the fusion gradually. Also, information can be transferred to the deeper level of the
network. Experimental results show that the proposed method achieves the reduction of fusion artifacts and
improves detail restoration performance, compared to conventional methods.

INDEX TERMS Multi-exposure image fusion, recurrent convolutional network, dilated convolution filter,
gradual fusion.

I. INTRODUCTION
Multi-exposure fusion (MEF) has been a popular approach
for HDR image generation. It is a method to fuse a couple
of low dynamic range images obtained by taking the same
scene at different exposure levels. Due to the limited dynamic
range of digital camera sensors, some regions of the scene
may be under-exposed or over-exposed (even leading to sat-
uration), depending on exposure time. Thus, multi-exposure
images can be complementarily combined for generating a
single HDR image, which contains the whole dynamic range
of the scene. In general, over/under-exposure images lose
detailed information, which leads to low contrast and quality.
Therefore, MEF aims to fuse a high-quality image with better
brightness and detailed information restoration.

Since MEF was proposed by Mertens et al. [1], vari-
ous researches have been conducted in literature. The con-
ventional MEF approach can be divided into spatial and
transform domain based methods. The spatial domain based
methods fuse multi-exposure images on the spatial domain.
The weights for their fusion are calculated by analyzing
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MEF images from various perspectives such as contrast ratio,
saturation [1], image block [2], and gradient [3]. In con-
trast, in the case of the transform domain approach, source
images are first transformed into another domain and fusion
is proceeded. A variety of the relevant methods have been
proposed, including Wavelet [4], [16], multi-scale decompo-
sition [6], [15], and sparse representation [7], [8]. However,
the performances of bothMEF approaches are fundamentally
limited in that they mainly rely on hand-crafted features for
image fusion. For further performance improvement, we need
well-designed feature extraction and fusion rules, which are
a challenging task.

Recently, convolutional neural networks (CNNs) have
been popularly used for image fusion [9], [12], [23]. While
this CNN-based fusion approach achieves better performance
than non-deep learning, there are still some challenges to
be overcome. First, a deep learning framework is used only
in the limited part of MEF such as feature extraction, and
conventional fusion strategies such as weighted sum are
used identically. In addition, the image quality of the fused
image is deteriorated by using features extracted only limited
information (e.g., Y channel) from the source image. As a
result, detail restoration performance is degraded in the over/
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under-exposure region. Finally, it was observed through
experiments that artifacts such as local dark region often
occur in fused images in particular on the regions whose
brightness between multi-exposure images is significantly
different.

In this paper, we propose a novel CNN-based MEF
architecture, which is called Deep Gradual Multi-Exposure
Fusion via Recurrent Convolutional Network (DGMEF-
RNN). In general, deep learning based MEF methods go
through the processes such as feature extraction, fusion,
and reconstruction. In the proposed network, features are
extracted in both global context and local detail using a
dilated convolution filter. Fusion and reconstruction are done
through RNN and a residual network, respectively. Unlike the
conventional methods where auto-encoder is mainly adopted
as a backbone, we propose a novel RNN-based fusion model.
RNN builds a connection between the output and the next
input of the network. As shown in Fig. 1, the stepwise fusion
process of the proposed RNN-based network allows long-
range dependency so that each source image information is
transmitted to a deeper level in the network to generate a
high-quality fusion image. The fusion module consists of two
blocks: The global context fusion block naturally fuses global
components such as color and style of source images. And
the local detail fusion block preserves the detail components
of source images by learning appropriate weights for fusion.
The experimental result of the proposed method is richer in
color and contains better illumination for all regions, thus
more fully revealing the details of source images with higher
saturation. The contributions of the paper are summarized as
the followings:

(1) We propose a novel RNN-based MEF architecture,
which sequentially transmits global context informa-
tion to the entire network. As far as we know, this is
the first work to implement the sequential fusion of
multiple exposed images with RNN.

(2) The proposed method strengthens the detail feature
fusion of source images through the learned weight
map and effectively restores the local detail compo-
nents of the fused image.

(3) From the experimental results, it could be confirmed
that the proposed method reduces the local dark
region artifact by global context fusion and RNN-based
architecture.

The rest of the paper is organized as follows. Section II
introduces related works on CNN-based multi-exposure
image fusion. Section III describes our RNN-based multi-
exposure image fusion architecture. Section IV verifies the
effectiveness of our proposed MEF method visually and
quantitatively. Finally, Section V provides the concluding
statements.

II. RELATED WORKS
Deep neural networks have been recently applied to various
image fusion problems. Liu et al. [9] studied convolutional

sparse representation (CSR) for image fusion, where a fusion
weight map is learned to distinguish the focus and unfocus
regions of the source image. Liu et al. [10] proposed amedical
image fusionmethod based on CNNwhich is used to generate
a weighted map to represent the extent of pixel activity in
the source image. They also introduced a local similarity-
based strategy to adaptively adjust the fusion rules through
decomposed coefficients. In the above methods, CNN is only
adopted to generate a weighted map that incorporates pixel
activity information, and the entire fusion process is still
performed in a traditional way ofmulti-scale image pyramids.

Li and Wu [11] proposed DenseFuse for the fusion of
infrared and visible images. Dense blocks are used in the
encoder and it proposes a new fusion strategy to fuse feature
maps. The feature maps of source images in the fusion layer
are combined into two manually designed fusion strategies
(additional and 1-norm). And it uses a non-referential met-
ric (structural similarity index measurement and Euclidean
distance) as a loss function for unsupervised learning.
Li et al. [12] decomposed source images into base parts and
detail content. Then, the base parts are fused by weighted-
averaging. For detail content, deep learning networks are used
to extract multi-layered features. These features are used to
generate multiple candidates of fused detail content using
l1-norm and weighted average strategies. Finally, the two
parts are combined for reconstruction. Due to availability
and effectiveness of generative adversarial network (GAN),
Ma et al. proposed FusionGAN [13] to fuse infrared and
visible images. The fused image generated by the genera-
tor is forced to restore more details existing in the visible
image by applying the discriminator to distinguish differ-
ences between them. Kalantari and Ramamoorthi [14] pro-
posed to obtain tone-mapped and ghost-free fused images
from multi-exposure images through CNN. They collected a
static set of low dynamic range (LDR) images, and then fused
them into a high dynamic range (HDR) image using a simple
triangle weighting scheme. In this way, fusion research is
being conducted in various fields. Recently, a study was
proposed by Xu et al. [25] to solve the fusion problem of sev-
eral cases including multi-modal, multi-exposure, and multi-
focus at once.

Deep learning was first introduced into the field of multi-
exposure image fusion by DeepFuse [23]. It was designed as
an encoder-decoder based image fusion architecture. Deep-
Fuse uses the MEF-SSIM [33] metric as a loss function and
trains the network through unsupervised learning. In Deep-
Fuse [23], CNN is used only to Y channels for feature
extraction and reconstruction, and the fusion rules of the
chrominance channels are still designed manually. However,
this manual fusion of chrominance channels may fail to
restore color information accurately. Recently, MEF-NET
was proposed by Ma et al. [24]. It trains a high resolution
weight map from source images using a context aggregation
network based on dilated convolution filter and a guided filter.
Although it exhibits a very high performance, artifacts are
often observed on a region whose brightness is significantly
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FIGURE 1. The concept of the proposed RNN-based progressive multi-exposure fusion.

distinct among source images. This performance degradation
is highly improved in the proposed RNN-based MEF method
as demonstrated in experimental results.

III. THE PROPOSED METHOD
This section describes the overall network architecture and
fusion modules of the proposed method in detail.

A. NETWORK ARCHITECTURE
RNN has a characteristic that the connection between units
has a recursive structure. It is distinguished by its hidden
state (memory) as it takes information from prior inputs to
influence the current input and output. This structure makes
it possible to store a current state inside a neural network so
that time-varying dynamic features can be modeled. In the
proposed method, we design a multi-exposure fusion archi-
tecture to utilize the characteristics of RNN. The reason
for using the RNN structure as a backbone network in the
proposed method is that it is suitable for MEF, considering
the characteristics of multi-exposure images. Multi-exposure
images have different brightness for the same scene, and
accordingly, each image contains different information (e.g.,
brightness, detail, and color). We observed that the behavior
of the increasing brightness along multi-exposure images is
similar to information changes over time in time series data.
In addition, in order to generate a high-quality fused image, it
is important to naturally fuse multi-exposure images. To this
end, we propose an RNN-based step-by-step fusion structure.
Whenmulti-exposure source imageswith different brightness
are fed as inputs, the fusion process is made step by step
by leveraging the features of the fused result in the previous
step. As a result, the current output can be used as the next
input, and then it is continuously fused with the next new

TABLE 1. Specification of CAN in DGMEF-RNN for DEB.

input, consequently leading to natural fusion and gradual
enhancement. Fig. 2. illustrates the entire architecture of the
proposed method. Four multi-exposure source images were
used as the input of the RNN network. A set of four given
source images is denoted by In (n=0, 1, 2, 3), and they
are arranged so that the brightness of the image increases
sequentially as shown in Fig. 2.

The proposed RNN fusion network generates a fused
image through three processes; Initial feature extraction
(Dilated encoding block: DEB), fusion module, and recon-
struction. In DEB, the global context feature and local detail
feature of the source image are extracted. The extracted
features are fused through both the global context fusion
block (GCFB) and the local detail fusion block (LDFB),
and then, the fused feature is transferred to the next fusion
module. Finally, the fused features generated in each fusion
module are concatenated and reconstructed. Each process is
described later in order.

B. DILATED ENCODING BLOCK
In order to generate a high-quality multi-exposure fusion
image, it is important to acquire and restore detail infor-
mation from each source image. In addition, a process of
naturally fusing context information such as color and style
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FIGURE 2. The overall network structure of the proposed DGMEF-RNN.

FIGURE 3. Dilated encoding block (DEB) structure.

of source images is also required. Therefore, in this paper,
dilated encoding block (DEB) is adopted to extract the local
detail feature and the global context feature of the source
image. As shown in Fig. 3, DEB uses the context aggrega-
tion network (CAN) proposed by Yu and Koltun [37]. The
CAN structure to utilize the characteristics of the dilated
convolution filter gradually expands the receptive field of the
convolution filter. In this paper, we construct a convolution
filter for each step, as shown in Table 1. We employ adap-
tive normalization and leaky rectified linear unit (LReLu)
right after convolution. The local detail feature (Ln) of the
source image was generated by concatenation of the fea-
tures in steps 1 and 2 extracted from the small receptive
field. The feature extracted from the relatively wide recep-
tive field in the last step is defined as a global context
feature (Gn).

C. FUSION MODULE
The proposed fusion module consists of the local detail
fusion block (LDFB) and the global context fusion block
(GCFB). LDFB and GCFB fuse local detail features (Ln)

FIGURE 4. Local detail fusion block (LDFB) structure.

FIGURE 5. Global context fusion block (GCFB) structure.

and global context features (Gn) extracted from DEB, respec-
tively. And the fused global context and local detail fea-
tures are sequentially transferred to the next RNN fusion
module.

The LDFB is structured as shown in Fig. 4. In the con-
ventional method, it was difficult to reconstruct the detail of
the fused image in too saturation and dark areas. In addition,
the restoration performance of texture details can be further
improved. In order to improve the detail reconstruction per-
formance of the fused image, we generate a weight map to
reinforce the local details of source images, and the local
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FIGURE 6. Qualitative comparison on scene 1. Images on the far upper left column are source images and the corresponding ground truth. Fused results
of the eight existing methods (Mertens [1], GFF [19], GGIF [20], SPD-MEF [21], MEF-Opt [22], DeepFuse [23], MEF-Net [24] and U2Fusion [25]) and the
proposed DGMEF-RNN are shown on the upper right. The bottom rows are the highlighted regions corresponding to the marked boxes in the ground truth.

detail features are fused by a weighted sum. As shown in
Fig. 4, each weight map is generated using the local detail
feature (Ln+1) extracted from the newly source image at each
stage of the RNN and the MLn transferred from the fusion
module at the previous stage.

The GCFB for global context fusion is designed as shown
in Fig. 5. Like LDFB, GCFB concatenates the global context
feature (Gn+1) extracted from a newly arrived source image at
each stage of the RNN andMGn transferred from the previous
stage of the fusion module and then, they passed through the
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FIGURE 7. Qualitative comparison on scene 2. For more information, refer to the caption in Fig. 6.

four convolution filters to generate a fused global context
feature.

D. RECONSTRUCTION
The reconstruction network for the restoration of a fusion
image consists of five ResBlocks and one convolution filter.
It is fed with the concatenation of the output features (Fn) of
the RNN fusion module as shown in Fig. 2. Note that Fn is
the fusion ofMGn and MLn.

E. LOSS FUNCTION
The loss function L used in the proposed method is given by

L = Lssim + λLmef + LL1 (1)

which is a combination of l1 loss LL1, structural similarity
index (SSIM) [35] loss Lssim and MEF-SSIM [34] loss Lmef
with a weight λ. LL1, Lssim, and Lmef are losses between the
fused image and groundtruth. As described above, the above
loss equation is used to reinforce the local detail information
of the fusion image and for natural fusion of the global context
information.

IV. EXPERIMENTAL RESULTS
In this section, we first compare the proposed DGMEF-RNN
with conventional and recent MEF methods in qualitative
and quantitative ways. We then conduct a series of abla-
tion experiments diversely to demonstrate the usefulness of
DGMEF-RNN.
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FIGURE 8. Qualitative comparison on scene 3. For more information, refer to the caption in Fig. 6.

A. TRAINING
1) DATASET
To validate the performance of the proposed
DGMEF-RNN, we perform qualitative and quantitative
experiments on the publicly available dataset provided
by [53] and [54], with multi-exposure sequences including
indoor and outdoor, human-life, day and night scenes and the
corresponding high-quality reference images (ground truth).
We use a sequence of multi-exposure images under differ-
ent exposure settings which have been accurately aligned.
In each scene, dataset was constructed by selecting four
multi-exposure images with different brightness, and total
of 270 scenes dataset was obtained. We train DGMEF-RNN
on 227 scenes and use the remaining 43 scenes for testing.
During training, the resolution of the training dataset was
reduced to 1/5∼1/7 for the reduction of the GPU memory
cost while maintaining the aspect ratio. The resolution of the
image is kept from 500 to 700 pixels at least. 227 scenes
of multi-exposure images, and corresponding ground truth

images are cropped into 10000+ patches for the training data.
All patches are of size 160 × 160.

2) IMPLEMENTATION
To train our network, we used a sequence of four multi-
exposure source images and the corresponding groundtruth
images with a batch size of 8. It is implemented using the
PyTorch framework on a PC with 2 NVIDIA RTX 2080ti
GPUs. For loss optimization, we adopted the Adam optimizer
with a learning rate of 10−4 which is divided by 10 for every
500 iterations. Finally, DGMEF-RNN is evaluated at a full
resolution during testing

B. QUALITATVE COMPARISON
The proposed DGMEF-RNN is compared with the eight
state-of-the-art methods, including Metens09 [1], GFF [19],
GGIF [20], SPD-MEF [21], MEF-Opt [22], DeepFuse [23],
MEF-Net [24] and U2Fusion [25]. Mertens09 [1] is one of
the representative methods for MEF. GFF [19] is a guided
filter-based fusion method, and GGIF [20] extends it to
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FIGURE 9. Qualitative comparison on scene 4. For more information, refer to the caption in Fig. 6.

the gradient domain. SPD-MEF [21], MEF-Opt [22], and
MEF-Net [24] are inspired by the MEF-SSIM proposed by
Ma et al. DeepFuse [23] is the first work to propose a deep
learning-based MEF and has been used as a reference in so
many papers. U2Fusion [25] is for solving three fusion tasks
at once: multi-modal, multi-exposure, and multi-focus. For
all the comparison methods, we used the code and setting
provided by the original authors. However, in case of Deep-
Fuse [23], it accepts only two images of under-over exposure,
and for a fair comparison, its input is expanded to accept
four source images. In addition, the MEF-Net [24] is also
trained using four source images. U2Fusion [25] conducted
an experiment using the author-provided code and model. For
fair comparison, four multi-exposure images were used, and
as described in the U2Fusion [25] paper, two multi-exposure
images were fused step by step.

Subjective comparisons were made with 43 image scenes,
some of which are shown in Figs. 6-9. We analyzed the
visual quality factors of the fused image such as brightness,
color and detail restoration. Through these analyses, we can
confirm the usefulness of LDFB and GCFB modules in the
proposed network, and the merit of the RNN structure.

In terms of subjective image quality, it can be confirmed
from the fused images of Figs. 6-9, that the proposed method
achieves high performances by restoring sufficient bright-
ness and color. In particular, for DeepFuse [23], its fused
image is generally grayish and suffers from insufficient color
saturation. In U2Fusion [25], the color saturation of the
fusion image is not sufficient, and as shown in Fig. 6, the
restoration performance of dark areas is deteriorated.
Also, for SPD-MEF [21], color artifact occurs in several
experimental images. But the proposed method achieves
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FIGURE 10. Illustration of the trained weight map of MEF-Net and the
proposed method. (a) MEF-Net weight map (b) the proposed LDFB weight
map.

a superior performance in terms of color distortion. Fur-
thermore, as shown in Fig. 8, the proposed method nat-
urally restores the original luminance without local dark
region artifact observed from GFF [19], MEF-Opt [22], and
MEF-Net [24], leading to the improvement of texture detail.
In GGIF [20], the detail reconstruction ability is good and
there are few artifacts, but the global contrast decreases as
shown in Fig. 7.

As shown in Figs. 8 and 9, GFF [19], MEF-Opt [22],
and MEF-NET [24] suffer from local dark region arti-
fact. Consequently, the fused image is deteriorated by
artificial and uncomfortable appearances. This is caused
by inaccurate weight determination for each input image

FIGURE 11. The fused results (a) without LDFB and (b) with LDFB.

when the brightness of the local region among source
multi-exposure images is significantly different. For example,
looking at Fig. 10, (a) and (b) are the weight maps trained
by MEF-Net [24] and the proposed method for the experi-
mental image in Fig. 8, respectively. MEF-Net [24] surely
determines the weight of each source image according to its
important information, but the weight is heavily placed on a
specific source image for some local regions. As a result, it is
not naturally fused in the boundary region. For this reason,
local dark region or halo artifact occurs when multi-exposure
images with a large brightness difference are fused. In the
proposed method, this phenomenon is highly minimized by
the global context fusion block GCFB and RNN-based fusion
architecture.

Figs. 6-9 show the local detail restoration performance of
the proposed method. It can be seen that the texture detail
is preserved in the glass of Fig. 6, the walls and leaves of
Fig. 7 and the windows of Fig. 9. The detail restoration per-
formance of SPD-MEF [21] is also good, but it suffers from
color distortion and halo artifacts. In addition, the proposed
method has excellent restoration performances in very bright
and dark regions such as the windows of Fig. 9 and the vases
of Fig. 6.

C. QUANTITATIVE COMPARISON
We conducted quantitative evaluation using peak signal-to-
noise ratio (PSNR), SSIM, and MEF-SSIM metrics, and the
results are shown in Table 2. Red indicates the best perform-
ingMEFmethod, and blue represents the second one. We can
see that the proposed method shows the highest performance
on SSIM and PSNR scores. The MEF-SSIM score is slightly
inferior to that of GGIF [20] and MEF-Net [24], but visual
artifacts occur in both methods as described above. Through
experimental results, it can be confirmed that the proposed
method generally achieves a superior performance compared
to the conventional methods.
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FIGURE 12. The fused results obtained by changing the number of source images and the order of the source images in the proposed RNN network.

TABLE 2. Quantitative comparison. Red indicates the best result, and
blue indicates the second best.

Table 3 is the result of the running time comparison.
We compared the running times of DeepFuse [23], MEF-
Net [24], U2Fusion [25], and the proposed method. The
experiments were conducted in an i7-8700 CPU and NVIDIA
TITAN RTX pc environment. Running time was measured
using 42 test images of various resolutions. The contents
of Table 3 measure the average running time to process
1 million pixels. On average, the DeepFuse [23] method is
the fastest. However, the DeepFuse [23] network structure
is relatively simple compared to the other methods, and thus
the fused image quality is deteriorated. The proposed method
takes relatively less running time than the existing methods.

TABLE 3. Running time comparison.

Considering the fused image quality and running time,
we believe that the proposed method surely has merits over
the existing methods.

D. ABLATION STUDY
A number of ablation studies are conducted to verify the
importance of each component in the proposed deep network.
The fusion module of the proposed method is composed of
GCFB and LDFB, and LDFB is a module to strengthen local
details in the fused image. To verify the effect of LDFB,
an experiment is performed without it. The results of this
experiment are shown in Fig. 11 (a). Compared with the pro-
posed method DGMEF-RNN in Fig. 11 (b), the fused image
is blurred on the whole and the reconstruction performance is
degraded in texture details. Through this experiment, it can be
conformed that LDFB is effective in enhancing local details.
The quantitative comparison is shown in Table 4. In addition,
when the experimental results in Fig. 11 (a) and (b) are com-
pared, local dark region artifact does not occur yet even if
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TABLE 4. Quantitative comparison results on ablation study note that the
summation indicates the order of fusion in the proposed RNN.

LDFB is excluded. That is, we can see that the aforemen-
tioned gradual fusion using GCFB and RNN-based proposed
network architecture is effective for natural image fusion.

Next, some experiments were conducted by changing the
number of source images and the order of the source images
in the RNN network input (note that the input images are
originally fed with the network in the order of increasing
exposure level). Fig. 12 illustrates the results of the ablation
study. The proposed method basically accepts four source
images. We evaluate the performance of the proposed net-
work when the number of source images is two and three.
As the number of source images decreases, the number
of fusion modules configured in RNN should be reduced
accordingly. Multi-exposure images have different informa-
tion depending on the exposure level. As shown in Fig. 12 (a),
the source images I0 and I1 (which are excessive dark)
have little information, so their contributions to the image
fusion is marginal. Even though the source image informa-
tion is insufficient, the entire structure of the fused image
is correctly restored in the proposed method, but the color
and detail restoration performances can be further improved.
Fig. 12 (b) and (c) are the fusion result by adding the source
image one by one. As confirmed in Fig. 12 (a), (b) and (c),
the color and detail restoration performances are gradually
improved as the source image is added. This can be confirmed
that the proposed network progressively enhances the fusion
according to the number of input images. Fig. 12 (d) and (e)
are the experimental results by changing the order of the
input source images. In (d), the inputs are changed in the
reverse order from (4) to (1). In (e), the order is taken ran-
domly (I1-I3-I2-I0). From the results (c), (d) and (e), it can
be seen that there is no significant difference in color and
detail restoration performances of the fused image. It can be
thought that the DEB, which is used for feature extraction in
the proposed method, accurately extracts important informa-
tion of each source image and transfers it to the deep level
of the RNN-based network. Through such experiments, the
RNN-based proposed network can be easily extended with
inputs and the fusion can be improved accordingly.

V. CONCLUSION
We propose a novel multi-exposure image fusion method
based on RNN so called DGMEF-RNN. The goal of

DGMEF-RNN is to transfer source image information to the
entire network to maintain long-range dependency, and to
generate a fused image with artifact reduction. Moreover,
we attempted to accomplish the good performance of detail
restoration in the fused image. For this, we designed both
GCFB and LDFB modules and demonstrated their superior
performances through experimental results when compared
with the conventional MEF methods. Our proposed network
is trained with four multi-exposure images. Through compar-
isons with 7 state-of-the-art MEF methods, it was confirmed
that the proposed method outperforms from both qualitative
and quantitative perspectives.
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