
Received September 12, 2021, accepted October 18, 2021, date of publication October 22, 2021, date of current version November 2, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3122112

A Principal Component Analysis-Boosted
Dynamic Gaussian Mixture Clustering Model for
Ignition Factors of Brazil’s Rainforests
MAOFA WANG 1, GUANGDA GAO2, HONGLIANG HUANG 3, ALI ASGHAR HEIDARI 4,
QIAN ZHANG5, HUILING CHEN 6, (Associate Member, IEEE), AND WEIYU TANG 7
1Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin 541004, China
2School of Information Engineering, China University of Geosciences (Beijing), Beijing 100000, China
3School of Public Foundation and Applied Statistics, Zhuhai College of Jilin University, Zhuhai 519041, China
4School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran 1439957131, Iran
5School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou 325035, China
6College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China
7School of Computer, Zhuhai College of Jilin University, Zhuhai 519041, China

Corresponding authors: Qian Zhang (20200420@wzu.edu.cn) and Huiling Chen (chenhuiling.jlu@gmail.com)

This work was supported in part by the Youth Fund Project of National Natural Science Foundation of China under Grant 41504037,
and in part by the research on key algorithms and system development of vectorization of simulated seismic monitoring waveform
records (National level, presided over, done, from January 2016 to December 2018) under Grant RMB 230000.

(Maofa Wang, Guangda Gao, Hongliang Huang are co-first authors.)

ABSTRACT Analysis of Brazil’s rainforest fires caused by various factors has become a hot topic nowadays,.
Mining of rainforest fire data through learning unlabeled training samples can reveal inherent properties
and patterns, providing a clue for fire prevention. Among commonly used mining approaches, clustering
algorithms based on density estimation can relatively effectively capture the potential ignition features
through probability calculation, while the Gaussian mixture model (GMM) based on Expectation-Maximum
(EM) can effectively quantify fire distribution curves and decompose a fire object into different shape
clustering problems based on the actual distribution characteristics of fires data, and thus cluster fires more
accurately. However, when the discrimination of probability density is not apparent, the clustering effect is
susceptible to both the number of parameters used in clustering and the shape of the clustering problem.
Therefore, in the present paper, based on a new strategy of selecting and updating the parameters in the
GMM, a new hybrid clustering model called Principal Component Analysis-boosted Dynamic Gaussian
Mixture Clustering model (PCA-DGM) is developed. Specifically, Principal Component Analysis (PCA)
reduces the dimension of fire samples and strengthens key ignition features. Furthermore, a new dynamic
distance loss function is developed by dynamically selecting density parameters or distance parameters,
whose computing value is utilized as one important parameter of the clustering shape decision of the GMM.
Using the PCA-DGM, which can effectively solve clustering problems with various shapes, the causes of
forest fires in Brazil are analyzed at both the temporal and geographical levels, and the experimental results
demonstrate that the proposed PCA-DGM in this paper has a better clustering effect than the other traditional
clustering algorithms.

INDEX TERMS Forest fire, ignition factor, PCA-DGM, principal component analysis, Gaussian mixture.

I. INTRODUCTION
Hazard analysis is one of the crucial stages of advance for
developing countries with a growing population toward sus-
tainable development [1]–[3]. Forest fires [4], [5], which usu-
ally occur in the forest, are challenging to prevent and control.

The associate editor coordinating the review of this manuscript and

approving it for publication was Binit Lukose .

Although forest fires are typically instigated by lightning,
they can also be caused by human carelessness, deliberate
arson, volcanic outbreak and pyroclastic clouds. Moreover,
heatwaves, drought, and periodic climate change [6]–[9],
such as the El Niño phenomenon, can dramatically increase
mountain fire risks. Greenpeace announced in 2018 that ‘‘the
total global emission of carbon dioxide from wildfires is as
high as 7.7 billion metric tons per year’’ [10].
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Brazil is one of the countries most seriously affected
by forest fires [11]. The Amazon Forest in Brazil, which
accounts for half of the world’s rainforest area and 20% of
the forest area, holds the world’s largest and most tropical
rainforest species [12]. Known as the ‘‘lung of the earth’’,
it significantly influences the whole earth’s environment. Due
to forest fires, forest area diminished quickly in the tropical
rainforests of multiple states such as Rondonia State, Maton
Grosso State, and Para State [11]. Therefore, the study of
forest fires’ characteristics in Brazil can help to protect the
country’s environment [13] and reduce economic losses [14]
by planning and implementing relevant policies.

In this paper, to help the government to make decisions
and intervene in the occurrence of forest fires, the factors
responsible for the occurrence of forest fires in Brazil are
identified by studying the temporal and geographical char-
acteristics of Brazilian states. To this end, a new, improved
Gaussian mixture clustering model (GMM) called PCA-
DGM is established based on Principal component analysis
(PCA), the expectation-maximization (EM) algorithm, and
the loss function of distance clustering.

PCA, proposed by Karl Pearson in 1901 [15], [16], is used
to analyze and obtain the main components of data using
eigenmatrix transformation. PCA is a simple method for ana-
lyzing multivariate statistical distribution with characteristic
quantity [17]. The results can be interpreted as an explanation
of the variance in the original data. In other words, PCA
provides an effective way to reduce data dimension.

Expectation-maximization (EM) was developed by Arthur
P. Dempster, Nan laird, and Donald Rubin in their classic
paper published in 1977 [18]. The EM algorithm [19]–[21]
can be employed in statistical studies to explore themaximum
likelihood approximation of parameters in probability mod-
els that rely on unobservable unknown variables. In statis-
tical calculation, the maximum expectation (EM) algorithm
is used to achieve the maximum likelihood approximation
or the probability model parameters’ maximum posterior
approximation.The probability model rests on the hidden
variables that cannot be detected. The EM algorithm is often
used in machine learning and data clustering of computer
vision.

Cluster analysis [22], [23], also known as clustering,
is widely used in many fields as a technology for statistical
data analysis. In many potential applications, clustering can
be a key component within the system. The notion of clus-
tering is based on the fact that splitting similar objects into
different collections or more subsets by static classification
results in the member objects in the same subset having
some similar characteristics, such as shorter spatial distance
in a specific coordinate system. Data clustering is generally
classified as unsupervised learning.

GMM [24] can be used in clustering and probability den-
sity estimation. The clustering algorithm based on density
was developed for mining classes with arbitrary shape. In this
algorithm, a category is regarded as an area in the dataset that
is greater than a certain threshold. The advantage of GMM

is that the probability of each class is obtained instead of a
definite classification mark.

In this study, based on GMM, a density-based clustering
algorithm, a new dimension reduction clustering algorithm
is proposed. On the Brazilian government’s official website,
our research team obtained a dataset report of the num-
ber of forest fires in Brazil divided by states (1998-2017).
Using geographic data, time information, and the number
of forest fires in each state of Brazil, a Gaussian mixture
model (GMM)was optimized to adjust parameters by cluster-
ing so as to obtain forest fire characteristics in different states
of Brazil [25], [26]. Given that the calculation cost ratio of
each iteration of GMM is based on the EM algorithm [24],
it may fall into the local extreme. Therefore, the selection of
the initial value is critical. In this paper, the number of GMM
clustering parameters was optimized.

To sum up, the main contributions of this paper are as
follows:

(1) Aiming to discover the features of forest fire using geo-
graphical and temporal data, this study proposes a dynamic
clustering model framework named PCA-DGM, which is
based on PCA, GMM, and a new advanced distance loss
function. The innovative framework has more advantages
and excellent performance in terms of clustering stability,
feasibility, authenticity, accuracy, and integrity.

(2) This study designs a research method based on geo-
graphical location and time factors. We prove that the pro-
posed research method is practical.

(3) Extensive experimental results based on synthetic and
real-world datasets demonstrate that the proposed integrated
clustering model is more competitive and balanced and better
than other similar clustering models.

II. RELATED WORK
At present, there are few reports on the optimization of
clustering results by improving clustering parameters, and
there are few studies focusing on the feature extraction of
rainforest fire factors. In 2009, Christos et al. used the results
of sensitivity analysis of the BP neural network (BPN) to
distinguish the influence of each variable in the develop-
ment of fire risk scheme [27]. In 2011, DG Woolford et al.
used a logistic generalized additive mixture model to study
ignition factors [28]. In 2012, N. Phillip Cheney et al. [29]
established an empirical model to predict fire behavior.
In 2013, N Arndt et al. explored the relationship between for-
est ignition factors by studying independent socio-economic
variables [30]. In 2014, M. Rodrigues et al. [31] used the
logistic regression technology within the framework of the
geographicallyi weighted regression model (GWR) to ana-
lyze the spatial variation of man-made wildfire explanatory
factors in mainland Spain. In 2015, Bianchi et al. studied
the effects of live fuel moisture content (LFMC) and blade
ignition on forest fires [32]. In 2016, Futao Guo et al. [33]
used Ripley’s K-function and logistic regression (LR) model
to predict the possibility of fire based on forest wildfires
in Southeast China. In 2017, Mortimer M. m ü ller and
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Harald vacik [34] studied forest fires from the perspective
of lightning. In 2018, J Ruffault and F Mouillot studied the
ignition factor of fire by using enhanced regression tree and
a set of seven explanatory variables [35]. And what is more,
Nicholas read et al. [36] introduced a method to decompose
ignition prediction into single covariate contribution based
on lightning. In 2019, Volkan Sevic et al. [37] introduced
the Bayesian network model to predict possible forest fire
causes and analyze the multilateral interaction between them.
In addition, Molina J.R. et al. [38] found that there was
a significant correlation between fire intensity and biomass
consumption. In 2020, Flavio Tiago coutoa et al. [39] eval-
uated the applicability of the current meso NH electrical
scheme (cells) in forest fire ignition investigation. And Neetu
Verma and Dinesh Singh [40] identified climatic factors and
their interrelationships that can be used to detect fires using
cost-effective sensors. In 2021, Artan Hysa [41] proposed a
fast and cost-free method for forest fire susceptibility assess-
ment within the wildland urban interface (WUI) in develop-
ing metropolitan areas. And Meriame mohajaneab et al. [42]
developed five new hybrid machine learning algorithms for
a forest fire susceptibility map. It can be seen that previous
workstudied the characteristics of forest fire by establishing
physical mechanism model, geographic statistical model and
regression prediction model, but there are also shortcomings.
While the previous research results either only capture one
or several ignition factors or predict and simulate forest fires,
the clustering model established in this paper focuses on the
characteristics of ignition factors and captures and analyzes
most ignition factors based on reliable data and parameter
optimization.

The main goal of cluster analysis is to collect data by
classifying based on similarity to yield more critical features.
The most recent clustering algorithms can be divided into
three categories: distance-based clustering [22], [23], density-
based clustering [24], and model-based clustering [19]–[21].
Among them, the density-based clustering method has been
increasingly used because it can process data with multiple
shapes at the same time. By contrast, distance clustering can
only deal with spherical data. In this work, we focus on a clus-
tering method based on density and model. Therefore, there
are three main directions: dimension reduction, selection of
critical data, and improvement of model parameters.

In order to solve the impact of high-dimensional data on
clustering, we used PCA dimension reduction as a technology
to strengthen critical data [15], [16]. Furthermore, to solve
the clustering bias caused by a large amount of information,
we introduced and improved the loss function of distance
clustering as one of the crucial parameters of GMM cluster-
ing. Therefore, we proposed a new dynamicGaussianmixture
clustering model. In order to evaluate the performance of
the model, we extracted the features of the ignition factors
of Brazilian rainforests [11], and the results demonstrate the
efficacy of the clustering model.

III. EXPLORATORY DATA ANALYSIS (EDA)
A. GENERAL DESCRIPTION OF THE STUDY REGION
(GEOGRAPHICAL FEATURES)
The chosen country is Brazil, which has more forests in South
America [43]. On the Brazilian government’s official web-
site, we obtained a dataset report on the number of Brazilian
forest fires divided by 26 states per month for each year from
1998 to 2017. However, some data in this dataset is missing
and has reporting errors. Therefore, through data processing
and data cleaning, 22 states were selected in the data set.

To study the features of Brazil’s forest fires, geopan-
das [44], [45] and Database of Global Administrative
Areas (GADM) were used to obtain the latitude and lon-
gitude of each state in Brazil and buildgeographic charts
(see Fig.1) [45]. We also used the Geographic Information
System (GIS) visualization rules to display the data [46], [47].
Compared with other states, Bahia, Mato Grosso, and Sao
Paulo were the three states with more forest fires between
1998 and 2017. Although Amazon state’s rainforest accounts
for half of the world’s rainforest area, it was not the state with
the largest number of forest fires between 1998 and 2017.
According to historical records, most forest fires were caused
by persons who live around them. To access more land for
grazing or farming, people destroy rainforests and clear-out
the site by scorching tree trunks, branches, and greeneries.
However, whether different states, seasons, and historical
factors further influence the occurrence of firesremains to be
determined.

B. ANALYSIS OF OUTLIERS OF THE NUMBER OF FOREST
FIRES
The study aims to find out what are the critical factors con-
tributing to forest fires in Brazil. To this end a box diagram
was established based on the dataset report on the number
of Brazil’s forest fires of the 26 states from 1998 to 2017
(see Fig.2). In the top pannel, the abscissa is the year, and the
longitudinal axis is the number of forest fires in Brazil; In the
bottom pannel, the abscissa is the state, and the longitudinal
axis is the number of forest fires in Brazil;

As shown in Fig.2, some abnormal values deviate from
the box. When the abscissa is the year, the number of forest
fires in each year was relatively stable from 1998 to 2017.
However, when the abscissa is the state, the change in the
number of forest fires in Bahia, Mato Grosso, Sao Paulo,
Goias, and Piaui is relatively significant, and the number of
forest fires in other states changed slightly. What is more,
Bahia, Mato Grosso, Sao Paulo are also high-risk areas of
forest fires according to the above analysis. Whether the links
between states affect forest fires is worth further studying.
It makes sense to retain these data to ensure a sufficient
sample size to explore the causes of forest fires in Brazil.
Besides, it is necessary to continue data exploration and
establish mathematical models for research.
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FIGURE 1. Median number of fires.

C. DATA EXPLORATION BASED ON TEMPORAL
CHARACTERISTICS
According to Brazil’s geographical characteristics analyzed
in section 2.1, it is known that forest fires are affected by
geographical factors. Therefore, the clusteringmodels used in
this work need to be built on geographical factors. At the same
time, this paper also explores the influence of time factors
such as seasonal features on the number of forest fires.

Based on time data (year and month), a heatmap of forest
fire numberis established with abscissa as month and ordinate
as year (see Figure.3).

As shown in Fig.3, numbers of forest fires in spring and
winter weremuch less than those in autumn and summer from
the year 1998 to 2017 (see Fig.3), indicating that time is also
one pivotal factor that may affect forest fires.

To explore the influence of geographical features and time
factors on forest fires in Brazil in detail, a machine learning
model is further established for cluster analysis in our work.

IV. RESEARCH METHOD
In this paper, an improved clustering algorithm, named
Principal component analysis boosted-Dynamic Gaussian
mixture clustering model, is proposed, based on principal
component analysis, the dynamic Gaussian mixture model,
and an improved loss function of distance clustering. There-
fore, in the following, the PCA and GMM as well as their
corresponding improved algorithms are introduced in detail.

A. PRINCIPAL COMPONENT ANALYSIS (PCA)
PCA is a technique for statistical analysis and simplifica-
tion of datasets. Besides, it is generally used to reduce the

dimension of datasets while preserving the features that con-
tribute the most to the square difference. In brief, it utilizes an
orthogonal transformation to linearly transform the experien-
tial values of a series of perhaps correlated variables to project
the values of a series of linearly uncorrelated variables.
These uncorrelated variables that readers can see are named
principal components. Specifically, the principal component
can be regarded as a linear equation containing a series of
linear coefficients to indicate the projection direction. The
primary method is to decompose the covariance matrix to
obtain principal components [48] (i.e., eigenvectors) and their
weights (i.e., eigenvalues) through eigen decomposition of
the covariance matrix. The schematic diagram of the model
is as follows in Fig.4.

The basic notion of PCA is to transfer the midpoint of
the coordinate axis to the center of the information (gens
or data) and at that juncture rotate the axis to exploit the
variance of the records on the new axis, i.e., the pro-
jection of all N data individuals in this direction is the
most scattered. It means more information will be retained.
In this paper, PCA will reduce the dimension of five-
dimensional data to two-dimensional data, as described in the
following.

X = (X1, . . . ,X5)T is a 5-dimensional random vector.
Mean is E(X) = µ, and covariance is D(X) =

∑
. Linear

transformation of X is considered as the following:

Z1 = a
′

1X = a11X1 + a21X2 + . . .+ a51X5

Z2 = a
′

2X = a12X1 + a22X2 + . . .+ a52X5

. . .

Z5 = a
′

5X = a15X1 + a25X2 + . . .+ a55X5 (1)
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FIGURE 2. The box diagram of forest fires about year and state.

FIGURE 3. Heatmap of forest fire number about month and year.

Obviously, it is can be seen:

Var (Zi) = a
′

i6ai, i = 1, . . . , 5 (2)

Cov
(
Zi,Zj

)
= a

′

i6aj, i, j = 1, . . . , 5 (3)

If:
(1)

a
′

iai = 1, i = 1, . . . , 5;

(2)

Cov
(
Zi,Zj

)
= 0(j = 1, . . . , i− 1) when i > 1;

(3)

Var (Zi) = max
aiai=1,Cov(ZiZj)=0(j=1,...,i−1)

Var
(
a′X

)
where Zi = a′iX, i.e., the ith principal component of X.
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FIGURE 4. The brief general structure of Principal component analysis (PCA) in this research.

Given a sample set, it is Xt = (xt1, . . . , xt5)T from X.

X =

 xt1 . . . x15
. . . . . . . . .

xn1 . . . xn5

 =
X1

′

. . .

X5
′

 (4)

Therefore, the sample covariance matrix S is:

S =
1

n− 1

∑n

t=1

(
Xt − X̄

) (
Xt − X̄

)T def
= (sij)5×5 (5)

Among:

X̄ =
1
n

∑n

t=1
Xt (6)

sij =
1

n− 1

∑n

t=1
(xti − x̄i)

(
xtj − x̄j

)
(7)

The covariance matrix
∑

Æ is approximately replaced
by S. The eigenvalues of S are λ1≥ . . . ≥λ5≥ 0, ai(i = 1,
2, . . . , 5) is the corresponding unit orthogonal eigenvector,
so that the principal component i of X is:

Zi = a
′

iX (8)

B. GAUSSIAN MIXTURE MODEL (GMM)
To understand GMM, the EM algorithm needs to be intro-
duced first. Expectation-Maximization (EM) [18], [20], [21]
is a kind of maximum likelihood estimation (MLE) [49], [50].
The MLE optimization algorithm, which is usually used as
an alternative to the Newton Raphson method, estimates the
parameters of probability models containing latent variables
or incomplete data.

The standard computing framework of the EM procedure
includes the E-step andM-step. Therefore, the convergence of
the EM approach can guarantee that the iteration approaches
at least the local extreme extremum.

EM is an iterative technique for estimating unknown vari-
ables when some related variables are known, and its algo-
rithm flow is as follows:

(1) Initialize distribution parameters.
(2) Repeat until convergence is achieved:
1) E Step: according to the parameters’ assumed values,

the unknown variables’ expected estimates are given and
applied to the missing values.

2) M Step: according to the estimated values of unknown
variables, the maximum likelihood estimation of current
parameters is given.

Based on the EM algorithm, the Gaussian mixture model is
built, which is a math model composed of K number ofsingle
Gaussian models. Besides, the K number of sub-

models are hidden variables of the mixture model. There-
fore, much clustering information can be obtained by GMM.
The schematic diagram of the algorithm is shown in Fig. 5.

Given a set of observation data generated by the Gaussian
mixture model [51], [52], the following equation [53] can be
satisfied.

p (X | θ) =
∑k

c=1
πcN (X |µc, σ 2

c ),
∑k

c=1
πc = 1 (9)

θ = {π1, . . . , πk , µ1, . . . , µk , σ
2
1 , . . . , σ

2
k } (10)

According to the dimension of the data, where N(µ,σ 2)
shows that normal distribution with means µ and variance
σ 2. π are the mixing ratio of normal distribution. k is the
total number of distributions participating in mixing. The
hidden variables related to the observation data are defined as
Z→ X, and the Hidden distribution q(Z) represents the soft
assignment of GMM clustering. In other words, the proba-
bility that each data comes from c ∈ {1, . . . , k} distribution.
Then the hidden variable has outliers Z ={Z1, . . . ,Zk}.

Combined with the definition of GMM, it is brought into
the calculation framework of the EM algorithm. The deriva-
tion process of the E step is as follows.

qt (Zc) = p
(
Zc |X , θ (t−1)

)
=

p (X |Zc, θ) p (Zc | θ)∑k
c=1 p (X |Zc, θ)p (Zc | θ)

(11)

For GMM contents: the calculation of the E step is as
follows.

qt (Zc) = p
(
Zc |X , θ (t−1)

)
=

πcN (X |µc, σ 2
c )∑k

c=1 πcN (X |µc, σ 2
c )

(12)

Next, the M step calculates the model parameters’ hidden
variables through the E step. The calculation of the M step
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FIGURE 5. The general structure of the Gaussian mixture model (GMM) in this research. Structure of the
Gaussian mixture model (GMM): First, train single Gaussian model about ignition; Second, determine
parameters by multiple Gaussian mixture models; Third, do clustering and mining characteristics of
ignition factor. Finally, expand to Gaussian mixture models.

solves parameter optimization. The derivation process of the
M step is as follows.

Eq(t)
[
log p (X ,Z | θ)

]
=

N∑
i=1

k∑
c=1

q (Zc) log p (Xi,Zc | θ)

=

N∑
i=1

k∑
c=1

q (Zc) log [πN
(
Xi |µc, σ 2

c

)
] (13)

It can perform the M step’s computational procedure by
introducing the analytic form of univariate normal distri-
bution and gaining partial derivation of model parameters
in (14), as shown at the bottom of the next page.

Through PCA dimension reduction, GMM clustering was
used to study ignition factors of Brazil’s rainforest. Next,
the detailed improved strategies and experimental results will
be described and discussed.

C. THE PROPOSED PRINCIPAL COMPONENT
ANALYSIS-BOOSTED DYNAMIC GAUSSIAN MIXTURE
CLUSTERING MODEL (PCA-DGM)
Firstly, according to the forest fires report in Brazil in the
dataset, the records were divided into different groups by state
between 1998 and 2017. Then, all the 6215 lines of records
were preprocessed through fault elimination, de-duplication,
and outlier analysis. Finally, 6183 lines were obtained.

Secondly, in this paper, the year and month data were
used to reflect the influence of time, the longitude and lat-
itude data were used to reflect geographical influence, and
the forest fires report in Brazil was used to reflect fire
severity. We integrated the data into a five-dimensional vec-
tor. By using the Brazilian states’ longitudes and latitudes

and the number of forest fires reported in Brazil divided
by state, a five-dimensional vector U = (year,month,
number, latitude, longitude) is constructed for this study. For
simplicity, it uses x as latitude and y as longitude and we can
get U = (year,month, number,x, y). Finally, this paper uses
PCA described in section 3.1 to reduce the five-dimensional
vector group into two dimensions and influences each ele-
ment in the vector group on the two principal components.
Thus, the two principal components can replace the vector
group.

According to the results in Table 1, the following linear
expression is obtained.

Z1 = 0.od1046year+ 0.3788month

+0.5136number− 0.5744x + 0.5019y (15)

Z2 = 0.1614year+ 0.5608month

+0.4960number+ 0.4099x − 0.4954y (16)

It can be seen that, for the first principal component, the
primary influence is latitude, longitude, and the number of
fires; and for the second principal component, the primary
influence is month, longitude, and the number of fires. This
shows that the number of forest fires, seasonal factors, and
geographical environments significantly influence the two
principal components.

Next, a clustering model called Principal components
analysis-boosted Dynamic Gaussian mixture clustering
model (PCA-DGM) was proposed, which is the above
principal component data after dimension reduction. Using
dynamically selected density parameters or distance param-
eters, the proposed optimized GMM clustering analysis was
then carried out. Generally, these records are considered to
obey Gaussian distribution. Therefore, it is crucial to select
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TABLE 1. Coefficient of principal component.

feasible and accurate metrics for testing and efficacy model-
ing [3], [54], [55].

The output result can be obtained by Eq. (17):

f = p (Z | θ) =
∑k

c=1
πcN(X|µc, σ

2
c ) (17)

where f is the probability of each principal component data
aggregating in the same class. According to f values to
the cluster, the model is called the principal component
analysis-Gaussian mixture clustering model (PCA-GMM),
i.e., the clustering model of GMM will be performed after
dimension reduction of the records.

In the paper, the loss function of the distance clustering
model (such as theK-Meansmodel [56], [57]) was introduced
into our work. Its establishment process and properties are as
follows.

The loss function of the K-Means clustering model is:

J
(
c1, . . . ,cm, u1, . . . ,us

)
=

1
m

∑m

i=1

∥∥Z−uci∥∥2 (18)

where uci is the nearest cluster center to Z. The objective
function of distance clustering is:

J′ = min
ciεc1,...,cm

1
m

∑m

i=1

∥∥Z−uci∥∥2 (19)

The objective function can gain optimal ci and uci .
So the distance from a data point to a cluster point is:

Q =
∥∥Z−uci∥∥2 (20)

Obtaining the distance between the two principal compo-
nents data is:

D =
∥∥∥Z(k)

− Z(t)
∥∥∥2 , k 6= t (21)

where Z(k),Z(t) are principal component data.
Based on the above proposed f, the model adds an essential

parameter D, so the output f is changed to F:

F = p (Zi | θ) and D (22)

According to F, it is stipulated that:
(1) If PCA-GMM determines that the clustering probabil-

ity in one class for two samples is less than 50% and D < Q,
it will output D as the determining parameter of clustering,
i.e., the two data are clustered by distance.

(2) If PCA-GMM determines that the clustering proba-
bility in one class for two samples is less than 50%, and
D ≥ Q, it will output p (Zi | θ) as the determining parameter
of clustering, i.e., the two data are clustered by probability.

(3) If PCA-GMM determines that the probability of two
data clustering in one class is more than 50%, and D ≥ Q,
it will output p (Zi | θ) as the determining parameter of clus-
tering, i.e., the two data are clustered by probability.

(4) If PCA-GMM determines that the probability of two
data clustering in one class is more than 50%, and D < Q,
it will output p (Zi | θ) as the determining parameter of clus-
tering, i.e., the two data are clustered by probability.

max
θ

Eq(t)
[
log p (X ,Z | θ)

]
⇐⇒ max

θ

k∑
c=1

N∑
i=1

[q (Zc) logπc −
Xi − µc
2σ 2

c
]

⇒
∂

∂µc

N∑
i=1

[
q (Zc) logπc −

Xi − µc
2σ 2

c

]
= 0⇒ µc =

∑N
i=1 q (Zc)Xi∑N
i=1 q (Zc)

⇒
∂

∂σc

N∑
i=1

[
q (Zc) logπc −

Xi − µc
2σ 2

c

]
= 0⇒ σ 2

c =

∑N
i=1 q (Zc) (Xi − µc)

2∑N
i=1 q (Zc)

⇒
∂

∂πc

N∑
i=1

[
q (Zc) logπc −

Xi − µc
2σ 2

c

]
= 0⇒ πc =

∑N
i=1 q (Zc)
N

(14)
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FIGURE 6. Dynamic Gaussian mixture clustering model based on PCA
enhancement.

PCA-GMM is also based on EM algorithm for parame-
ter estimation. If there is no stop threshold, the EM algo-
rithm will infinitely optimize the cluster allocation to achieve
infinite accuracy. Therefore, the theoretical running time of
EM is infinite. However, once there is a stop condition, its
complexity should be O(MN∧3), where M is the number of
iterations and N is the number of parameters. Pca-dgm adds
new parameters, but its computational complexity is not high.
Therefore, the complexity of this method is close to that of
EM algorithm.

According to the above four rules, PCA-DGM can dynam-
ically select better parameters for clustering by comparing
the output probability with the distance value. The proposed
PCA-DGM model flow is shown in detail in Fig. 6.

V. EXPERIMENTS AND RESULTS
Cluster experiments were carried out on the data of prin-
cipal components using PCA-DGM. The parameter selec-
tion of PCA-DGM is related to the likelihood function.
In order to ensure clustering effect, Akaike Information Cri-
terion (AIC) [58], [59] and Bayesian Information Criterion
(BIC) [60] were used to determine the number of parameters
of the GMM clustering model. That is, K is solved by AIC
and BIC. The calculation formula of AIC and BIC are as
follows.

AIC = 2k− 2 ln (L) (23)

BIC = k ln (n)− 2 ln (L) (24)

where k is the number of parameters, and L is the likelihood
function.

FIGURE 7. Parameter adjustment curve based on AIC and BIC.

TABLE 2. Number of clusters per class.

Small values of AIC and BIC [58], [60] indicate that the
number of clusters is better because they can gain better
parameters. sklearn was used to obtain the values of AIC and
BIC (see Fig. 7). As can be seen from Fig.7, when the number
of clusters was greater than 2, AIC and BIC decreased. How-
ever, if the number of clusters was set to greater than 10, it led
to the situation that the categories were not clear enough. The
number of clusters was determined to be in the range of 4-10,
and it is clear that AIC and BIC values are relatively stable in
this range. In addition, It was found that AIC and BIC values
of 4-10 were stable, and thus the optimal number of clusters
was set as 4.

To sum up, we determine that the number of K-values
of the GMM model is 4 using the EM algorithm, and that
the distance value is taken as an essential parameter. Finally,
PCA-DGM was established to study the ignition factors of
Brazilian rainforests.

Subsequently, PCA-DGMwas built for clustering analysis
using the obtained optimal number of clusters. In the experi-
ment, two principal component data were clustered into four
categories (see Fig. 8 (a)). To gather the clustering categories
more clearly, some evenly distributed data were randomly
generated, and the cluster shape was ovalized by dot product
with principal component data (see Fig. 8 (b)).

Specifically, the four clusters of PCA-DGM were called
class 0, class 1, class 2, and class 3. PCA-DGM separated the
four clusters. There was no data mixing. Two charts show that
the clustering effect of the improved GMM is excellent and
achieves the expected results.

Table 2 shows the number of clusters in each class. As can
be seen from the table, class 3 ranks first, followed by class 1.
Therefore, these clusters should be focused on..

Next, based on numbers of clusters, a histogramwas gener-
ated with month, year, and the state as abscissa and quantity
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FIGURE 8. Clustering results of the PCA-DGM model: (a) Normal results of the PCA-DGM
clustering model and (b) the results of the PCA-DGM clustering model are ovalized.

FIGURE 9. Clustering result bar charts based on principal component data: (a) month and (b) year.

as ordinate (see Figs. 9 and 10). In these bar charts, much
information can be gained.

(1) In the bar chart about the month, in October and
December, most of the data is in cluster 1, indicating that the
states in class 1 were more likely to have forest fires during
this period (October and December). Also, it showed that
states in class 3 were more likely to have forest fires in other
months.

(2) In the bar chart about the year, principal component
data clustered in classes 1 and 3 between 1998 and 2017.
Therefore, we focused on these two classes to study the
relations between fires and the geographical and temporal
characteristics of the states.

(3) In the bar chart about the state, what kind of class each
state belongs to can be seen. For example, Acre, Alagoas,
and Amapa all belong to class 3, whereas Rio de Janeiro
and Rondonia belong to class 0, 1, 2. In addition, clustering
results of 22 states with principal components can be calcu-
lated. The histogram (In Fig.10) can be used to study which
class has the most fires in each state. That is, the clustering
results can show the differences of each state. Moreover,

the geographical and temporal influence on forest fires in
each state can be mined through specific data.

In the following, the specific data of month, year, and state
histogram were output and presented in a table (see Table 3).

(1) For the state, it can be found that in the same class, the
state with more forest fires and the states closes to it also have
more forest fires. For example, Bahia is near Distrito Federal,
and they are both in class 1 and class 3. Amazonas is near
Acre and Amapa, and most of them are in class 3. Notably,
most of Tocantins’ information is clustered in class 2, which
indicates that the characteristics of forest fires in Tocantins
are much different from those in other states, and it is less
affected by other states. Therefore, the study of one state in
the same category can help to study forest fires in other states
and other regions to a certain extent.

(2) For the year, the principal component data focus on
class 1 and class 3, so it is significant by focusing on forest
fires in classes 1 and 3. However, The number of classes 0
and 2 is small, and the amount of information contained is
also small. Therefore, the data of only recent 5-10 years were
considered.
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TABLE 3. The number of clusters in the four classes.

FIGURE 10. State clustering result bar chart based on principal
component data.

(3) For the month, it involves seasonal factors. Therefore,
according to the table’s specific data, this result can focus
on this category according to which category has the largest

number in each month At the same time, data mining was
performed with the specific data of each class. For example,
January’s principal component dataare concentrated in class 3
(209 in total), so researchers can study them according to the
specific data (year, month, number of forest fires, longitude,
and latitude).

VI. EXPERIMENTS AND RESULTS
PCA-DGM is an improved clustering model that combines
the density clustering model and the loss function of distance
clustering. In order to evaluate the clustering effect, the PCA-
DGM model was compared with PCA-GMM, the typical
density clustering models (the original GMM and DBSCAN)
and the distance clustering model (K-Means [25], [56]).
The results show that PCA-DGM is better than other clus-
tering algorithms in terms of clustering effect. Moreover,
PCA-DGM can obtain more forest fire characteristics in each
state (see Fig. 11).

The results show that PCA-DGM is excellent at sepa-
rating the four types of data, whereas K-means clustering
results are overlapped. The reason is that K-means cluster-
ing is a distance-based clustering algorithm that can only
deal with spherical data. DBSCAN clustering cannot solve
all the clustering problems of non-spherical structure (for
example, the Brazilian forest fire studied in this paper). When
the clustering problem is aspheric, the clustering algorithms
based on distance and DBSCAN have a poor clustering
effect. Although PCA-GMM clustering achieved a better
result, some discrete points were occurring for achieving a
better clustering result. By contrast, PCA-DGM can process
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FIGURE 11. Comparison of experimental results of five clustering models: (a) PCA-DGM
clustering model, (b) PCA-GGM clustering: Dimension reduction Gaussian mixture
clustering model based on probability clustering, (c) K-Means clustering: Distance
clustering Model, (d) DBSCAN clustering: Density clustering Model and (e) the original
GMM clustering: Gaussian mixture clustering model containing only the number of years
and records of forest fires in Brazil.

complex spherical data and cluster them. It perfectly solves
the problem of the ignition factor data of Brazilian rainforests
in this paper. The clustering results show that the reported
forest fire records are between spherical and non-spherical.
Because the proposed PCA-DGM algorithm is a dynamic
clustering algorithm based on density and distance that can
find clusters of arbitrary shapes, it is better than the distance
clustering and density clustering models in terms of cluster-
ing effect. From the above experiment results, it is believed
that PCA-DGM can better solve the clustering problem of
forest fires in Brazil. Moreover, deep learning approaches can
be introduced in the future to boost the model’s performance.

VII. CONCLUSION
In recent years, Brazil’s rainforests have been increasingly
damaged by natural disasters due to both climate changes
(such as seasonal factors) and human activities (such as defor-
estation). Therefore, it is a practical need to establish a set of
models to study the factors contributing to forest fire occur-
rence in Brazil. This study proposed a new hybrid machine
learning framework, which uses the PCA-enhanced GMM
model to achieve this goal. First, PCA was used to strengthen
the data, and it was added to the GMM structure. Numbers
of forest fires in Brazil from 1998 to 2017 and the longitude
and latitude data in the GADM database (shape: 6215× 5,

processed: 6183× 5) were used to form 5-Dimensional data.
Next, PCA was used to strengthen the data into 2-D prin-
cipal component data. Then, GMM clustering using PCA
was adjusted to improve the performance based on the EM
algorithm called the PCA-DGM model.

To test the performance of the proposed PCA-DGMmodel,
6183 lines principal component data after data processing
were used for clustering experiments, and PCA-DGM was
compared with PCA-GMM, the traditional clustering algo-
rithmK-Means clustering, the original GMM, and DBSCAN.
The experimental results show that PCA-DGM is better than
the K-Means benchmark model and can deal with clusters
with arbitrary shapes. Therefore, the newly developed PCA-
DGM can be used as a valuable tool for studying forest fires’
ignition factors in Brazilian states, including geographical
environment factors (interstate influence) and time charac-
teristics (seasonal factors), and thus help local authorities to
carry out forest fire prevention work more effectively. Fur-
thermore, due to the excellent clustering effect of PCA-DGM
in Brazil forest fires, the proposed enhanced machine learn-
ing model can be applied to other fields and data with
multi-shape outside the forest fire area. In the future, this
study’s extensions will include the use of more advanced fea-
ture selection [61]–[65] and the integration of multiple clus-
tering models to obtain more feature information. Moreover,
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the recently proposed metaheuristics [66]–[69] can also be
employed to optimize the model further.

DATA AND COMPUTER CODE AVAILABILITY
Brazilian government (http://dados.gov.br/dataset/sistema-
nacional-de-informacoes-florestais-snif) and Database of
Global Administrative Areas (https://gadm.org/download_
country_v3.html). Name of code: PCA-DGM, devel-
oper: Hongliang, telephone: +8618318217999, email:
huanghongliang2020@126.com, year first available: 2021,
hardware required: i5 CPU and 4G RAM, the software
required: win7 or win10, program language: Python, pro-
gram: 1.5M. Readers can access the code by check-
ing it through the website in GitHub (https://github.com/
JacksonHuang-yoo/PCA-DGM/tree/main).
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