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ABSTRACT In today’s global and volatile market, manufacturing enterprises are subjected to intense global
competition, increasingly shortened product lifecycles and increased product customization and tailoring
while being pressured to maintain a high degree of cost-efficiency. As a consequence, production organi-
zations are required to introduce more new product models and variants into existing production setups,
leading to more frequent ramp-up and ramp-down scenarios when transitioning from an outgoing product
to a new one. In order to cope with such as challenge, the setup of the production systems needs to shift
towards reconfigurable manufacturing systems (RMS), making production capable of changing its function
and capacity according to the product and customer demand. Consequently, this study presents a simulation-
based multi-objective optimization approach for system re-configuration of multi-part flow lines subjected
to scalable capacities, which addresses the assignment of the tasks to workstations and buffer allocation
for simultaneously maximizing throughput and minimizing total buffer capacity to cope with fluctuating
production volumes. To this extent, the results from the study demonstrate the benefits that decision-makers
could gain, particularly when they face trade-off decisions inherent in today’s manufacturing industry by
adopting a Simulation-Based Multi-Objective Optimization (SMO) approach.

INDEX TERMS Multi-objective optimization, reconfigurable manufacturing systems, simulation-based
optimization, genetic algorithm.

I. INTRODUCTION
In the current competitive manufacturing industry, companies
often face a dynamic market wherein fluctuating production
volumes need to be addressed to cope with demand vari-
ations. How rapidly can a manufacturing system react and
adjust its functionalities and capacity according to demand
and volume variations encompasses one of the most critical
considerations for manufacturing companies [1]–[3]. Recon-
figurable Manufacturing Systems (RMS) concept was first
introduced by Koren et al. [4] as an attempt to address, among
others, the challenges derived from such demand and volume
fluctuations. RMS are production systems capable of adding,
removing, and relocating components, e.g., machines, mate-
rial handling equipment, etc., to rapidly fulfill expected or
unexpected market shifts [5]. Recent studies imply that RMS
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may be crucial for addressing dynamic production volumes.
Therefore, they can help manufacturing companies attain
market demands while evading the large investment lost
related to non-operating machines [2], [6]. To this extent,
RMS are responsive manufacturing systems that provide the
capacity and functionality needed for several demand periods
by adding or reconfiguring the arrangement of machines and
the process plan in a cost-effective manner [1].

RMS consists of several workstations (WSs) where each
WS contains several parallels and identical machines [7].
In this study, the RMS configuration is determined by the
number of parallel machines and the task sequence to be
performed in every WS. The RMS configurations can be
classified according to the number of products they produce.
Single-part flow line (SPFL) configuration when a single
product is produced in the system, and the multi-part flow
line (MPFL) configuration when several products are made
in the system [8]–[10]. The use of MPFL configurations is
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becoming more and more common, especially in the auto-
motive industry where several parts are fabricated in the same
flow line [1]. Up to this time, prior studies focused on RMS
configuration analysis and task assignment for MPFL are
scarce [1], [11], [5]. Furthermore, studies that have treated
similar problems, such as the configuration analysis and task
assignment for RMS, have set interstation buffers to the same
constant capacity, practically ignoring the buffer allocation
problem.

Despite the advantages of RMS in handling demand fluc-
tuations and scalable capacities in comparison to traditional
manufacturing systems, designing and managing these sys-
tems involve complicated and combinatorial NP-hard prob-
lems that can be benefited from the use of simulation and
optimization techniques [6], [12]–[14]. Due to its betters
results in nearing the optimal solutions, metaheuristics meth-
ods such as Genetic Algorithms (GAs) have gained attention
from many researchers in the field [12]. However, regardless
of the successful applications shown by both techniques,
studies presented their deficiencies when employed sepa-
rately. For decades, simulation methods have been success-
fully employed for modeling and analyzing manufacturing
systems [15]. The complex and dynamic scenarios found in
manufacturing systems need to be analyzed, assessed, and
hence modeled in simulation technology. When a simula-
tion model is built, engineers and decision-makers obtain a
better understanding of real-life systems [16]. Simulation,
especially Discrete-Event Simulation (DES), is identified
as a practical approach to evaluate the uncertainty found
in complex manufacturing systems and can consider the
changes of the system over time [17]. Nonetheless, as the
complexity and the number of variables in the manufacturing
system increases, the use of simulation becomes computa-
tionally impractical. On the other hand, the use of optimiza-
tion methods such as metaheuristics can provide solutions to
bigger-scale NP-hard problems [12]. Still, in regards to RMS,
most of the studies simplified the problem by neglecting
the variability of the system and hence producing inaccurate
results. To overcome these shortcomings, Simulation-Based
Optimization (SBO) emerged to use the benefits of both,
i.e., combining the advantages of simulation and optimiza-
tion. SBO has been proven to be a successful method that
leads to improvements in manufacturing systems. Although
SBO has been previously used to optimize RMS, the use
of Simulation-BasedMulti-Objective Optimization (SMO) to
deal with the RMS configuration problem and task assign-
ments to WSs is sporadic. Accordingly, researchers identify
opportunities in the use of SMO techniques in real-scale RMS
problems [6], [18].

Against this backdrop, this study aims at contributing to
the RMS research domain by presenting an SMO approach
for the optimization of the system configuration of an MPFL
subjected to scalable capacities to cope with fluctuating pro-
duction volumes by addressing the assignment of the tasks to
WSs and buffer allocation for maximum throughput (THP)
and minimum total buffer capacity (TBC), simultaneously.

The remaining of the paper is organized as follows: In
section 2, a literature review of some of the most relevant
work in related areas is presented, and its shortcomings are
identified. In section 3, the current industrial need to use and
optimize RMS to tackle fluctuating production volumes for
dynamic market demand is explained. In section 4, the pro-
posed SMO approach is explained. Section 5 shows the
proposed approach applied and validated in an industrial-
inspired application. Lastly. Section 6 summarizes and con-
cludes this study.

II. LITERATURE REVIEW
An optimal RMS design needs to address three main areas:
the system configuration, the components of the system, and
the process planning [5]. The system configuration involves
the arrangement of machines in the systems [5]. This has a
great impact on the productivity, functionality and scalability
aspects of the system [19]. The majority of the research
focuses on machine assignment to WSs. The components of
the system deal with the type and number of machines or
components required to reach the desired production capac-
ity [5]. This is a critical area for capacity planning and scal-
ability. Most of the research concerning this area is devoted
to optimizing the number of machines in the system. Lastly,
the process planning includes how tasks are allocated to the
WS and balanced throughout the system. This area impacts
on the reconfiguration efficiency of the system in handling
the fluctuating production volumes [20], [21]. Research tends
to focus on optimizing the task allocation to WSs. Con-
sequently, during the lifecycle of an RMS, changes in the
production are accommodated through one or several recon-
figurations. For an RMS to scale the production capacity
or deal with demand fluctuations, the system is required to
efficiently change its configuration by adding, re-allocating,
or removing components and rebalancing the tasks in the
reconfigured system [2], [22]. Hence, most of the research
on RMS uses a range of different techniques to target one or
several aspects related to the mentioned areas. Some of the
most relevant studies are listed below.

When it comes to SPFL, Koren and Shpitalni introduced a
four stepsmathematical approach for determining the number
of machines required in a system and selecting the desired
RMS configuration to reach the desired production capac-
ity [3]. Another mathematical approach was presented by
Wang and Koren in [22] to either maximize the throughput
of the system or minimize the number of machines used
in the system. In this approach, the authors reconfigure the
system and rebalance the task assignment to meet a new
production demand in an RMS without buffers. In a later
study, Koren, Wang and Gu extended the previous study,
including three scenarios in which the in-between buffers
have the same constant buffers capacity and defined five
design-for-scalability principles. Studies such as [23]–[27]
have focused on the cost or profits aspects to find the optimal
SPFL configurations. Some other studies, such as [28]–[30],
targeted the task assignment and employed a GA to find the
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best task allocation for minimal reconfiguration cost or the
number of machines.

Contrary to the single-objective above studies, Goyal et al.
in [9] presented a GA-based approach to obtain the optimal
configuration in terms of cost, convertibility, and utiliza-
tion of machines. Goyal and Jain [31] presented another
multi-objective study, using a particle swarm optimization
in this case, to find a set of non-dominated SPFL also with
convertibility, utilization of machines, and cost as objec-
tives. Another multi-objective, in this case, simulation-based
approach, was presented by Barrera-Diaz et al. in [15], where
NSGA II was employed for the selection of the optimal con-
figuration in terms of maximum production rate, minimum
buffer capacity, and minimum lead time. Multi-objective
approaches for RMS process plan generation were studied by
Khezri et al. in [32], targeting sustainability, total production
time, and production cost as objectives.

In the case of MPFL, Saxena and Jain used a mathematical
approach to minimize RMS configuration design cost [33].
Two linear programming approaches for the configuration
design of scalable RMSwere illustrated in a hypothetical part
family example by Moghaddam et al. in [34]. Bortolini et al.
in [35] presented another linear programming approach for
the design of RMS, focusing on part routings with time cost
minimization as the objective. Hasan et al. present a method
in [36] to determine the optimal configuration and part family
sequence in an RMS. Youssef and ElMaraghy in [10] used a
GA to find the optimal MPFL configuration with minimal
cost. Minimal capital cost was again the objective in another
GA approach proposed by Dou et al. for the MPFL config-
uration problem in [8]. Dou et al. in [1], a multi-objective
particle swarm optimization was proposed to address the
MPFL configuration problem where minimal cost and tardi-
ness were set as the objectives. Some studies have applied
simulation-based methods to solve MPFL process plan gen-
eration problems. Musharavati et al. in [37] studied the pro-
cess plan generation in MPFL through a simulated annealing
approach. The authors considered a total cost single-objective
function. Completion time and cost were the objectives in
a study presented by Benyouced and Tiwari [38], where an
NSGA II was adopted for the process plan generation in the
MPFL. Bensmaine et al. [39] studied an SBO approach for
the process plan generation of MPFL in which NSGA II
is employed to optimize total time and cost. Another SBO
approach was studied by Touzout and Benyoucef [40] for
process plan generation of an MPFL with three objectives,
total time, total cost, and greenhouse gasses emissions. The
authors compared the use of three hybrid metaheuristics
algorithms.

Regardless of the purpose of the study, e.g., process plan
generation or configuration analysis, most of the SPFL or
MPFL studies have neglected important aspects such as
buffers consideration or system uncertainty and variability.
Besides, although SBO has been employed, its use is very
sporadic and has either focus on process plan or config-
uration analysis. None of the reviewed studies have used

FIGURE 1. Shortened lifecycles. Inspired by [42].

SBO to combine tasks and resource assignment with system
configuration analysis in a scalable MPFL for fluctuating
production volumes. This indicates a clear research gap in
the use of SMOmeta-heuristics techniques to simultaneously
address several RMS areas considering optimal buffer capac-
ities as additional decision variables and the unreliability of
the machines.

III. INDUSTRIAL NEEDS
Globalization has contributed to bringing the world closer.
People around the world are more connected than ever before,
information and financial flows are more rapid than ever and
products that are manufactured in other parts of the world are
seamlessly available to end-users as local products. Never-
theless, this transformation has also contributed to creating
a volatile and sometimes unknown landscape for the manu-
facturing industry. Manufacturing enterprises today are sub-
jected to intense global competition, increasingly shortened
product lifecycles and increased product customization and
tailoring while being pressured to maintain a high degree of
cost-efficiency [41].

The previous stable lifecycles of development and release
of new products were characterized by a smooth ramp-up
with a steady volume increase which generally was followed
by a maturity phase with stable demands and then a smooth
ramp-down. In today’s global and volatile market, these life-
cycles are not only becoming shorter and shorter, but they
also display new characteristics, as shown in Fig. 1, where
product volumes rise much faster to a first peak following a
decrease in demand after a period of time, which is mitigated
by promotions campaigns, minor product updates or facelifts
increasing the demand to a second peak before a sudden
decrease in demand of the product due to announcement
of a new product release These lifecycle characteristics are,
to a large extent, the results of the end user’s requirements
of increased customization and personalization of products
which is forcing manufacturing industry into a new man-
ufacturing paradigm shift from today’s mass customiza-
tion to mass personalization or individualization [5]. As a
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consequence of the shorter product lifecycles and customiza-
tion, production is required to manufacture an increasing
number of product models and variants [42]. It is estimated
that product lifecycles have been reduced by 25%, leading
to that product variety has more doubled in the last two
decades [43].

With the above-said trend, production organizations in
the future are most likely required to introduce more new
product models and variants into existing production setups,
leading to more frequent ramp-up and ramp-down scenarios
when transitioning from an outgoing product to a new one.
For instance, Fig. 1 depicts the interactions of the product
lifecycles of A1, A2 and A3 with overlapping ramp-up and
ramp-down period between one product to another. Some
industry domains are already today facing even more inter-
secting product lifecycles where the production organization
is required to ramp up both product A2 and A3 over a period
of time whilst still ramping down product A1. In order to
cope with the higher degree of new product models, the pro-
ductions system setups need to shift towards RMS, which,
as explained in the introduction, provide a higher degree of
modularity and reconfigurability, making production capable
of changing its function and capacity according to the product
and customer demand [44].

The RMS paradigm provides the manufacturing industry
and production organizations the ability to quickly adapt to
these market and product changes in a cost-effective manner,
in which the efficiency of a dedicated manufacturing system
with high throughput and the flexibility of a flexible manu-
facturing system is combined with the capability of adapting
to market requirements, both in terms of product and vol-
ume [3]. However, the question regarding how to optimally
configure the RMS through the transition phase, i.e., ramp-up
and ramp-down, from one product family to another, is still
an issue where production organizations and managers need
greater decision support. The case study in this paper, see
section 5, presents such a scenario taken from the automotive
industry. The company is currently producing a single set of
crankshafts, including some variants with the product family.
In parallel to this, they are currently initiating a production
ramp-up of a new product family of crankshafts, thus facing
the above-stated issue of how optimally configure the produc-
tion resources through this transition whilst still reaching the
production target levels, such as throughput, buffer capacity,
etc. Here, SMO is utilized to provide the decision support to
the production managers on how to reconfigure their produc-
tion resources whilst maximizing throughput and minimizing
buffer capacities for each possible production configuration
setup through the ramp-up and ramp-down of the two product
families.

IV. A SMO APPROACH
A. THE OVERALL METHODOLOGY: HOW TO USE SMO
FOR OPTIMIZING RMS RE-CONFIGURATIONS
Decision support using the SMO approach in manufacturing
systems design and improvement projects can be represented

FIGURE 2. SMO loop.

by four iterative loops consisted of four main activities,
as shown in Fig. 2. Loop (1) consists of the start phase when
the problem is analyzed and formulated into a simulation-
optimization problem. It is often overlooked that decision-
making activities, here referring to not only the final decision
for implementation but also any decisions involved during the
whole project, which would affect the final outcomes of the
analysis, results and the final decision. This is an important
point to note because deciding what decision variables to
be included, their ranges and other constraints as well as
which simulation outputs are included in the SMO as the
optimization objectives all directly affect the selection of
the abstraction level and simulation modeling represented as
Loop (2). These optimization settings, including objectives,
decision variables and constraints, are the inputs to ‘‘Multi-
Objective Optimization’’, see Loop (3). In return, the opti-
mization activity sends back the results from the SMO-loop
representing the outputs of the optimization, i.e., Loop 4,
in terms of Pareto-optimal solutions to ‘‘Decision Making’’
for choosing the final solution (Loop (3)). It is also possible
that the decision-maker can adjust the final solution, possibly
to be verifiedwith the simulation and comparewith the results
from the SMO run.

In terms of MOO, to the best of our knowledge, the SMO
approach in this specific study is the first that simultane-
ously maximizes THP and minimizes TBC while provid-
ing the optimal MPFL configuration and task allocation
for fluctuating production volumes and scalable capacities.
In other words, this approach determines how to obtain the
highest possible THP with the minimum number of buffers
considering different numbers of machines and production
volumes, including buffers and task allocation. This could
support not only individual product volume changes but
also the system scalability aspect (total production volumes),
providing the optimal way to add resources (machines and
buffers) or reconfigure existing ones to meet new demand
scenarios.
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The number of aspects simultaneously considered by this
approach increases the complexity of the problem exponen-
tially. The SMO consists of two main components, the sim-
ulation model and the optimization engine. The process
starts with a feasible solution is generated in the simulation
model. The simulation model enables the input parameters
combination and experimentation following the optimization
objectives and the system constraints to find the optimal
output solutions. This is an iterative process in which the
optimization engine processes the outputs of the simulation
as the values of the objective functions in order to assign a
new combination of input parameters so as to converge to
a set of near-optimal values for the decision variables over
time. The SMO approach and its mechanisms are graphically
illustrated in Fig. 3. Optimization methods can be classified
into exact and non-exact methods. Exact methods like math-
ematical programming or ε constraints and non-exact like
metaheuristics which include the trajectory and population-
based methods, have been previously applied to similar prob-
lems. However, when considering the RMS challenges in a
multi-objective optimization context, population-basedmeta-
heuristic methods have been identified as one of the most
powerful optimization methods and Genetic Algorithm (GA)
as the most efficient in nearing optimal solutions [12]. There-
fore, this approach employs the well-known fast elitism non-
dominated sorting genetic algorithm II (NSGA-II) [45] for
optimization due to its efficiency in handling multi-objective
problems with 2 or 3 objectives.

The optimization objectives in this study are defined in
Equations (1) to (3). The considered constraints are presented
in Equations (4) to (11).

List of symbols

j workstation index.
S number of workstations.
i, r tasks index.
N number of tasks.
k machines index.
M total number of machines in the RMS.
mmax maximum number of machines per workstation.
Mmin minimum number of machines in the RMS that

must be assigned for production.
Bmin minimum safety buffer.
Bmax maximum buffer capacity.
Bj buffer capacity for workstation j.
P Set of precedence relationships (r, i ∈ P if and

only if task r is an immediate predecessor of task
i).

xij 1 if task i is assigned to workstation j; 0 otherwise.
ykj 1 if machine k is assigned to workstation j; 0

otherwise.

Three conflicting optimization objectives are defined as
follows.

Maximize f 1 = THP : Throughput (jobs per hour)

(1)

Minimize f 2 =
∑S

j=2
Bj−1 : Total Buffer Capacity (2)

Minimize f 3 =
∑Kmax

k=1

∑J

j=1
ykj : Number of Machines

(3)

The following constraints have to be fulfilled when opti-
mizing the RMS.

Task allocation: each task can only be assigned to one
workstation:∑S

j=1
xij = 1, ∀i = 1, 2, . . . ,N (4)

Precedence relation: a task is assigned to a station only
if all its predecessors are assigned to the same or earlier
workstations:∑S

j=1
j
(
xrj − xij

)
≤ 0, ∀(r, i) ∈ P (5)

Machine allocation: each machine must only be assigned
to one workstation:∑S

j=1
ykj = 1, ∀k = 1, 2, . . . ,M (6)

Technological requirement - a task is allocated to a work-
station if it has the required machinery to execute the task:

Cik × xij ≤ ykj ∀k = 1, 2, . . . ,M; i = 1, 2, . . . ,N ;

j = 1, 2, . . . , S (7)

Workstation utilization: at least one machine should be
assigned to each workstation:∑M

k=1
yki ≥ 1, ∀j = 1, 2, . . . , S (8)

Floorspace limitation - each workstation cannot have more
than a certain number of machines:∑M

k=1
ykj ≤ mmax, ∀j = 1, 2, . . . , S (9)

Machine utilization- the assignedmachines toworkstations
cannot exceed the total number of available machines. More-
over, to ensure production, a minimum number of machines
should be assigned to workstations:

Mmin ≤
∑Kmax

k=1

∑J

j=1
ykj ≤ M (10)

Buffer capacity limitations- each inter- stations buffer
should not become less than a certain safety capacity and
should not exceed a maximum buffer size:

Bmin ≤ Bj−1 ≤ Bmax j = 2, . . . , S (11)

The applicability of this approach is demonstrated by an
illustrative example in Section 4.3 and then an industrial-
inspired case described in Section V.
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FIGURE 3. Graphical representation of the SMO.

B. OPTIMIZATION ALGORITHM DETAILS
Genetic algorithms have been extensively used to optimize
production and manufacturing systems [46]. NSGA-II is
one of the most used multi-objective evolutionary algo-
rithms (MOEA) [13]. The designed combination of the
fast non-dominated sorting approach and the crowding dis-
tance calculation to sort and rank the solutions stated
by their fitness value endow the well-balanced conver-
gence and spread required by any efficient MOEA [41].
When compared to its earlier version, the elitist mech-
anism of the NSGA-II combines the best parents with
the best offspring obtained from the genetic operations,
see Fig. 5.

1) FAST NON-DOMINATED SORTING
There are three major techniques that render the outstand-
ing performance of NSGA-II [47]: (1) a fast non-dominated
sorting approach that reduces the computational complexity
in other GA-based MOEA; (2) the elitism selection proce-
dure described above; and (3) the use of crowding distance,
as a measure for comparison and selection after the non-
dominated sorting, to preserve the diversity of the solutions
in the population. Fast non-dominated sorting is the proce-
dure to efficiently sort the solutions into multiple fronts with
different ranks based on their dominance relationships. For
each couple of solutions (S1, S2), three types of relationships
can be established: solution S1 dominates solution S2, solu-
tion S1 is dominated by solutions S2, and lastly, neither of
them dominates each other (i.e., they are non-dominated).
This dominance relationship is established by comparing
the objectives set by the values (fitnesses) of the objective
functions. When the comparison of all different solutions
in the population is made, the non-dominated solutions will
form the first front (rank 1) of solutions in the current

FIGURE 4. Fast non-dominated sorting and crowding distance calculation.

population. Then the same process will be repeated in the
same population, excluding the first front from the popula-
tion to find the second-best front (rank 2) of solutions. This
process is repeated iteratively until all solutions are classified
into different fronts, as shown in Fig. 4.

2) CROWDING DISTANCE
To ensure a good spread of solutions, it is important to deter-
mine the density of the solutions when selecting the solutions
to be preserved into the next generation. The crowding dis-
tance calculation procedure helps to determine the rank of
the solutions in the same front once the fast non-dominated
sorting is completed. This is attained by assigning to every
solution the average side distance of the cuboid (shown as
a dashed box) formed by the nearest solution points on the
same front with the same rank, see Fig. 4. Consequently, the
crowding distance calculation helps to determine the most
dispersed (i.e., less crowded) solutions of the front. These
solutions will have a preference to be preserved for the next
generation to ensure a more diverse population.
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FIGURE 5. NSGA II implementation. Inspired by [41].

3) CROSSOVER AND MUTATION OPERATORS OF NSGA II
For the generation of the new population, NSGA II uses
the crossover and mutation operators. The crossover operator
takes place between two solutions. This operator randomly
intersects the chromosome of two solutions and then com-
bines the genes from different parts of the chromosome of
each solution to generate two new solutions. As inspired by
the biologicalmutation, this operator occurs randomly in each
generation to maintain the diversity from one generation to
the next. This operator modifies one or several genes/points in
the solution/chromosome according to the mutation probabil-
ity. As the mutation probability increases, the more changes
the solution will occur. Therefore, with a high mutation prob-
ability, the solutionmay change completely from the previous
one.

The implementation of the NSGA II, according to [45],
is conceived as in Fig. 5. Applying the crossover and muta-
tion operators to a population Pt, Qt offspring of size N is
generated. Then a combined population is sorted applying the
previously explained fast non-dominated sorting and crowd-
ing distance comparison. To create the N best solutions that
become the next population Pt+1. F1, F2, and F3 represent
the best, second best, and third best non-dominated sets of
solutions in the new combined population. The combined
population is determined by Rt, the union of Pt, and the off-
spring Qt, so Rt = Qt∪Pt. Finally, the solutions from the set
F1 have the highest priority to remain, the solution in F2 the
second-highest priority, and so on. As a summary, the major
steps followed by the NSGA II algorithm are illustrated by
the flowchart in Fig. 6.

4) GENETIC REPRESENTATION AND CONSTRAINT
HANDLING
In this study, the chromosome of the problem is repre-
sented by a gene vector of integer numbers which is initially
randomly generated from concatenating different encoded
real-valued genes into one chromosome. Such a vector
consists of three sub-strings of genes. The first sub-string
represents the number of machines assigned to the recon-
figurable WSs. The second sub-string represents machining
task assignment to WSs regardless of the number of parts
considered in the problem and the third one represents the

FIGURE 6. NSGA II flowchart. Inspired by [41].

buffer capacities allocation. The length of the vector L is
equal to the sum of the lengths of these three sub-strings.

The first sub-string of the gene vector that represents the
number of machines per WS has a length determined by the
number of WSs that can add or remove machines to cope
with production changes. Then, each position in this part of
the vector represents a specific WS and receives an integer
with a value between 1 and mmax (i.e., the maximum number
of machines per workstation), which represents the number
of machines assigned to that specific WS. The total num-
ber of machines used in all WSs is bounded by Constraint (9).

The next sub-string of the vector, task assignment, repre-
sents whether the tasks are performed on the specific WSs
and its length is the number of reconfigurable WSs times the
number of manufacturing tasks to be assigned to the WSs.
As an example, if there are five tasks of part A and six tasks
of part B to be distributed in 2WSs, the length of this segment
of the vector becomes 22. This segment only receives binary
numbers: 1 if a task is performed in the considered WS and
0 if it is not. It is important to note that each task can only be
performed by a workstation and the precedence of the tasks
are ensured by Constraints (3) and (4) together.

The last gene of the vector represents the capacity of every
buffer in the manufacturing line and its length is equal to
the number of buffers in the line. In this part, integer values
are generated in a range between Bmin and Bmax , minimum
safety buffer and maximum buffer capacity as formulated in
Constraint (10).

Fig. 7 shows the solution representation for a simplified
example with two WSs, two tasks to be assigned, and one
inter-station buffer to allocate its capacity. In this example,
there are 3 machines in the firstWS, 2 machines in the second
WS, task 1 is performed in the first WS, task 2 in the second
WS, and the buffer has a capacity of 200.
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FIGURE 7. Solution representation simplified example.

FIGURE 8. Crossover operator.

In the case of this study, the genetic operators, crossover
andmutation, works independently in the three different parts
of the vector.

A uniform crossover operator is used to generate two
offspring from two parent solutions [48]. In this type of
crossover, every bit of the string in the offspring takes a value
from either of the parents. In this case, after the parents are
randomly selected, the bits of the offspring have the same
probability of taking a value from the same bit of either of the
parents. Fig. 8 illustrates the process of this crossover where
the arrows indicate fromwhich parent the bits of the offspring
have copied their values.

A uniform mutation operator was employed to maintain
diversity in future generations. This type of mutation ran-
domly selects one or several bits from the parent, which
will be mutated in the offspring. The non-mutated bits in
the offspring are maintained from the parent. The higher the
mutation probability, the more bits will be mutated in the
offspring. In the case of this study, the mutated bits have an
equal probability of taking any possible value according to
the defined constraints. Fig. 9 illustrates the uniformmutation
operator, where the dark positions in the offspring represent
the mutated bits from the parent. Considering that genetic
operators work independently in the different parts of the
vector, in the illustrated example of Fig. 9, the offspring has
one mutated bit in the machines per WS string, two mutated
bits in the task assignment string, and one mutated bit in the
buffer allocation string.

A repairing procedure is activated when no feasible solu-
tion has been reached with the genetic operators. In the
studied problem, the constraints ensure, among other aspects,
the limited number of machines per WS, the total number of
machines in the system, technological constraints, the prece-
dency of the tasks, and that buffers take a feasible capacity.
Therefore, this becomes a highly constrained combinatorial

FIGURE 9. Mutation operator.

FIGURE 10. Solution repair method example.

optimization problem that creates many unfeasible solutions
that need to be repaired.

The repairing method used consists of finding the nearest
feasible solution. This is achieved by solving a mixed-integer
programming (MIP) problem that aims at minimizing the
distance between the unfeasible solution and the closest feasi-
ble solution. When the minimum distance from an infeasible
solution to a feasible solution can be obtained with several
feasible solutions, then one of these feasible solutions is ran-
domly selected. If we consider the total number of machines
in the system to be constrained to be equal to 4, Fig. 10
represents the example of how an infeasible solution would
be repaired. In the shown example, two feasible alternatives
solutions have the same probability to be selected.

C. AN ILLUSTRATIVE EXAMPLE
This sub-section presents the SMO results from a hypothet-
ical RMS model to illustrate the applicability of the pro-
posed approach. In this illustrative example, all of the three
optimization objectives presented in equations (1)-(3) were
applied. Thismodel consists of amachining process that takes
960 seconds, divided into 36 tasks. Due to space limitations
and the technological constraints of the machining processes,
some tasks (i.e., 3, 17, and 33) need to be performed in three
different types of machines. The process is subject to realistic
disturbances wherein machine availability is considered to
be 90%, with a mean time to repair (MTTR) of 5 minutes.
The RMS consists of threeworkstationswith two inter-station
buffers. Machines in the same workstation perform the same
task sequence. There is space for up to 6 machines in each
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FIGURE 11. A simplified example.

TABLE 1. Throughput and buffers capacity.

workstation. A minimum of 12 machines (i.e., Mmin = 12)
can be used in the system. Within the context of RMS, it is
assumed that these installed machines can be moved around
the workstations or removed and then added back later in
future configurations, dependent on whether scaling down or
up of the system is needed Fig. 11 shows a system started
with four machines in each workstation and possesses extra
space for up to two extra machines in each workstation (i.e.,
mmax = 6). Therefore, the RMS taken into account can vary
from 12 to 18 machines distributed in three workstations,
hence,Mmax = 18.
The non-dominated solutions generated from SMO for this

simplified model are presented in TABLE 1. It lists the solu-
tion ranges for the THP whenM increases from 12 to 18 and
for the buffer capacities, B1 and B2, between the workstations
needed for achieving that THP. TBC is the second objective
in the optimization, which refers to the total buffer capac-
ity capacities in the RMS (B1 + B2). An important insight
elicited immediately by checking the results in TABLE 1 is
that the optimized average THP increase that can be gained
from every machine added to the system is approximately
2.97 JPH (Jobs Per Hour). This is important for the engineers
to consider when scaling up (or down) of the system to adjust
the production volume required.

TABLE 2 presents how the results for system configu-
ration and task allocation presented in TABLE 1 can be
achieved. WS1, WS2, and WS3 represent the number of

TABLE 2. Configuration and work tasks allocation.

parallel machines in workstations 1, 2, and 3, respectively.
The fifth column shows the number of tasks performed in
each workstation (i.e., no. of tasks assigned to workstation
1/no. of tasks to workstation 2/no. of tasks to workstation 3).

Note that the number and location of the machines pre-
sented in Table 2 cannot be implemented in a rigid sys-
tem wherein installed machines are not movable. Therefore,
in order to scale up a rigid system, the reconfiguration steps
need to consider the existing system architecture. Therefore,
for such a system, every new configuration needs to reuse
the previous layout to achieve the next level of configuration.
Considering this constraint, Fig. 12 presents the reconfigu-
ration steps if the system would be scaled up from 12 to
18 machines. Similarly, only the THP and TBC ranges of
the non-dominated solutions are presented here. In addition,
this figure also shows the number of tasks performed in each
workstation for the different configurations obtained from the
optimization in order to obtain the THP range presented.

Another directly visible result from Fig. 12 is how the
consideration of a rigid system changed the configuration
presented in TABLE 2 for the system with 12, 13, 14, and
15 machines. Therefore, instead of 2-4-6 for 12 machines,
2-6-5 for 13 machines, 2-6-6 for 14 machines, and 3-6-6
for 15 machines, they have been changed to 4-4-4, 5-4-4,
5-4-5, 6-4-5, respectively. Consequently, this represents a cer-
tain compromise in the THP for those configurations, as seen
when comparing the configurations in Fig. 12 with TABLE 1.

Essentially, Fig. 12 provides a helpful understanding and
view of the system, including the optimal location of addi-
tional machines if future capacity increases are needed.
Knowing where to add machines in advance can be conve-
nient and cost-effective when designing the system, espe-
cially when investing in the material handling system.

Another critical aspect of the design of manufacturing
systems is the buffer capacity consideration. Fig. 12 also
shows the optimized allocation of the buffer capacities for the
given configurations. Essentially, Fig. 12 provides a helpful
understanding and view of the system, including the optimal
location of additional machines if future capacity increases
are needed. Knowing where to add machines in advance can
be convenient and cost-effective when designing the system,
especially when investing in the material handling system.

TABLE 3 presents the total task time in seconds per work-
station for the seven configurations in Fig. 12.
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FIGURE 12. Reconfiguration steps, throughput (THP), total buffer capacity
(TBC), and work task allocation.

TABLE 3. Total task time in seconds per workstation per configuration.

However, there are many more factors that can affect the
decision-making tasks in manufacturing companies. The use
of tools like the parallel coordinate plot (PCP) in Fig. 13 can
support the knowledge elicitation and display which choices
are available according to different constraints. Decision-
makers can use this plot as a decision support tool and filter
the solutions according to different constraints. In this PCP
shown in Fig. 13, the columns from left to right represent
the THP, the total number of machines (M ), the number of
machines in every workstation and the two buffer capacities
(i.e., B1 and B2). In the current plot, solutions including 15,
16, and 17 machines have been colored in blue, red, and

green, respectively, to show the considerable overlapping pro-
duction rate and buffer capacity among the different numbers
of machines. Accordingly, the PCP can help decision-makers
visualize the optimized trade-offs between THP, the number
of machines and buffer capacity to facilitate well-informed
decision-making.

A concrete illustration of how decision-making can be sup-
ported is visualized in the throughput progression as the total
buffer capacity, TBC, increases between 0 and 35 for the
systems, presented in Fig. 14.

Fig. 14 shows that for this simplified manufacturing sys-
tem, the curves indicate THP levels saturate early on, with
respect to increasing TBC. On the other hand, different
machine availability and MTTR values could significantly
impact this relationship. Nonetheless, the red parallel dashed
lines revealed that M number of machines, for some TBC
values, can provide the same THP asM+ 1machines. Hence,
the PCP can support decision-makers with the visualization
and understanding of this trade-off situation in which the
capacity of the system can be increased, either by adding
machines or buffer capacity.

V. AN INDUSTRIAL APPLICATION
This section presents an industrial application study in an
automotive manufacturer to illustrate the proposed SMO
approach. The case is based on a 4-cylinder crankshaft pro-
duction line. A crankshaft is a key component of an engine.
It includes, in addition to several bearing surfaces, channels
for lubrication and a threaded stem for driving such genera-
tors and other external components in an engine. The number
of bearing surfaces is influenced by the size of the crankshaft,
which is controlled by the number of cylinders in the engine
and its configuration.

The production line manufactures two product families.
It consists of 18 WSs wherein processes including unpack-
ing, milling, mass balancing, turning, drilling, deburring,
grinding, washing and quality control are performed together
with 17 inter-station buffers. The company invested in recon-
figurable/modular CNC machines which are placed in the
bottleneck and most critical part of the line, WSs 90, 100
and 110. Unlike the rest of the machines used in the line,
the modular machines can be added to the reconfigurable
WSs and moved to be employed in other reconfigurable WSs
if needed due to production changes. The simulation model
is shown in Fig. 15 in which the dashed area represents
where the reconfigurable WSs of the line are placed. More-
over, this MPFL is subjected to uncertainty and variability -
all machines in the system consider a specific availability
and MTTR and setup time when switching product types.
When it comes to the three reconfigurable WSs, machine
availability is considered 87.41% of processing time with
MTTR = 3 hours and 1 min setup time when switching
between different part types. Each buffer has a minimum
safety buffer Bmin = 20 and a maximum buffer capacity
Bmax . The buffers employed use a rack system to adjust the
capacity. Each buffer fits up to 15 racks and each rack can fit
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FIGURE 13. Parallel coordinate plot relating THP with the decision variable.

FIGURE 14. Optimized total buffer capacity vs. throughput mapping.

up to 20 parts. Therefore, Bmax becomes 300. In addition, all
buffers consume 5 seconds as the material handling time that
should not be neglected in the simulation model.

Unlike the previous example presented in Section 4.3, the
reconfigurable WSs in this industrial case can add, remove
and relocate machines according to the production needs.
In each of these three WSs, there is space for up to 5 modules
(machines). Fig. 16 represents an example of the three recon-
figurable WSs when they have 7 machines, configured in a
4-1-2 setting, meaning 4 machines in WS90, 1 in WS100 and
2 in WS110. In this example, it remains space for 1, 4, and
3 extra machines inWS90,WS100, andWS110, respectively.

In this study, both parts in the considered MPFL need
to be produced at a certain volume to meet the customers’
demands. As such demands fluctuate and change over time,
the configuration of the WSs 90, 100, and 110 evolve accord-
ingly to meet the demand changes. The changes in the
WSs affect not only the layout and the total number of
machines needed in the aforementioned reconfigurable WSs,
but also the tasks assigned to them. Also, as the demand
changes, the reconfigurable configuration evolves, impacting
the capacity of the buffers needed for the line. Our company

has to investigate howmuch they could producewith an initial
investment of 7 reconfigurable machines in the aforemen-
tioned WSs for different proportions of part 1 and part 2,
80/20 (80 % part 1 and 20 % part 2), 60/40, 40/60, and 20/80.
Furthermore, it is also useful to know the production capacity
that can be gained from every machine added to the system,
including where to add it, according to the desired production
proportions and how the re-allocation of the machining tasks
of part 1 and part 2 can be optimized. This study aims at
attaining the maximum THP with the minimum TBC; apart
from the optimized TBC, the results have to tell the capacity
of every buffer in the line according to all the scenarios
studied.

The sequence and times of the machining tasks of the
produced parts are considerably different. The total machin-
ing times of the two parts for the reconfigurable WSs (90,
100, and 110) are 256 seconds divided into 15 tasks for
part 1 (4cylP), and 274 seconds divided into 10 tasks for
part 2 (4cylD). The task precedence for both parts is shown
in Fig. 17. The machining processes of these three WSs
involve milling, drilling of oil holes, and turning main bear-
ings and tap. Due to technological constraints, tasks 1, 2, and
11 for part 1, and 1, 9, and 10 for part 2 need to be performed
in different WSs.

VI. RESULTS AND ANALYSIS
This section presents the results of the optimization for the
previously explained scenarios, modifying the production
proportions from 80% of part 1 and 20 % of part 2 to the
opposite scenario 20% of part 1 and 80% of part 2, consider-
ing 20% steps changes in between the scenarios. Moreover,
each of the mentioned proportions was investigated with 7,
8, and 9 machines in the reconfigurable WSs. Consequently,
there are in total 12 scenarios to optimize.

Every scenario was optimized individually using NSGA
II with 15000 iterations. An SMO software called FACTS
Analyzer [49], in which a DES engine and various optimiza-
tion algorithms are tightly integrated, was used for model-
ing the studied manufacturing line and carrying out all the
optimization runs. This software allows to include almost
all model variables (e.g., processing times, times to repair
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FIGURE 15. Simulation model representation of the production line.

FIGURE 16. Reconfigurable workstations layout.

and buffer capacity), regardless of their nature (continuous
variables or integers), as decision variables and constraints
for the optimizations. In this way, the simulationmodel serves
for the iterative implementation for all possible combinations
of the input variables according to the objectives defined by
equations (1) and (2), and the constraints of the optimization
defined in section 4.

Fig. 18 illustrates the optimized configurations and the
required changes to cope with the studied scenarios in the
reconfigurable WSs of the line. Each quadrant in the fig-
ure represents a production proportion. The white machines
describe the machines included a 7-machine configuration,
the light and dark grey machines describe where to add a
machine for an 8 and 9 machines configuration, respectively.
Then, for the 7-machine scenarios, only white machines need
to be considered; for the 8-machine scenarios, white and
light grey need to be considered, and for the 9-machine
scenarios, all represented machines need to be considered.
NM represents the number of machines, so in each quadrant
of the figure is shown, the configuration and the THP range
obtained for every number of machines considered for the
different production proportions.

Considering the maximum THP in each of the studied
scenarios, as seen in Fig. 18, the average THP gained per

FIGURE 17. Precedency graphs.

machine added regardless of the production proportions
is 7.36. However, the results show an overlapping in THP as
the number of machines increases. For a better understanding
of this THP overlapping, Fig. 20 displays on the upper part
the THP ranges (minimum and maximum THP included in
the Pareto front depending on the TBC) for every scenario.
Furthermore, the lower part of the figure illustrates the THP
evolution as the TBC increases from 340 to 1100 for 7, 8 and
9machines when the volume proportions are considered to be
80% part 1 and 20% part 2. The figure displays how different
number machines in the reconfigure WSs can share the same
THP range. Every solution from the optimization presents
the required information for the production of a particular
volume in different proportions. This information includes,
for a determined THP, the required TBC and how they are
allocated among the buffers in the line, the assignment of
machines to the reconfigurable WSs, and tasks assigned to
them. When focusing on the conflicting optimization objec-
tives THP and TBC, the parallel coordinate plot can support
the interpretation of their relationship.
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FIGURE 18. Optimized configurations for the studied scenarios.

FIGURE 19. Parallel coordinate plot over THP, TBC, and buffers.

As an example, Fig. 19 displays, in the parallel coordinate
plot, the non-dominated solution for the scenario where the
reconfigurable WSs employ 8 machines and the line is pro-
ducing in a proportion of 40% of part 1 and 60% of part 2. The
columns represent the THP, TBC, and all individual buffers
of the system. In this scenario, the lowest THP included
in the Pareto front is 51.59 and is reached with a TBC
of 340, and the highest THP is 61.32 reached with a TBC
of 1660. This plot, besides revealing the trade-off between
the objectives, also includes details about every individual

buffer in the system. As an example of how this plot could
support decision-makers, specific filters or rules could be set
to simplify the understanding. In this case, the non-dominated
solutions which a THP higher than 60 are represented with
the purple lines and lower than 60 with the green line.
As indicated in the figure, the solutions with THP higher than
60 have a TBC range between 1400 and 1660. Moreover,
every solution includes information on the specific capacity
of each buffer in the system. Therefore, rules can be used
to reveal and simplify the understanding of how variables
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TABLE 4. Task assignment for maximum THP.

FIGURE 20. THP progression example.

affect the overall performance of the system. In the case
represented in the figure, the purple lines can show which
buffers are more important than others for getting THP over

60. Although all solutions included here are on the Pareto
front, the highlighted solutions displayed in the PCP can give
additional information about which buffers are more relevant
for different decision-making scenarios and their capacities
can be extracted and better understood with the graphical aid.
This type of additional insight resulting from applying SMO
enables a more confident decision-making process which is
one of the advantages of this approach.

Another core tenant of this approach is the task assigned
to WSs; TABLE 3 illustrates the task assignment to WSs
for the maximum obtained THP in the studied scenarios.
It presents the results from the optimization and provides
details about how to rebalance the tasks and reconfigure the
system as the production proportion and volume change. The
three groups of columns in the table represent the system
when there are 7, 8, or 9 machines in the reconfigurable WSs.
The first three rows of the table, from top to bottom, indicate
the total number of machines employed in the reconfigurable
WSs, the volume proportion, and the number of machines
per reconfigurable WS. In addition, the light, medium, and
dark grey symbolize whether a task is performed in WS90,
WS100, or WS110, respectively.

VII. CONCLUSION AND OUTLOOK
RMSs are acknowledged to possess the capabilities that
enable manufacturing companies to provide the required
production capacity when needed. However, the research in
real-scale industrial cases is still limited and often neglects the
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variability ofmanufacturing systems so that inaccurate results
can be produced. Furthermore, the use of SMO to deal with
the RMS configuration problem and task assignments toWSs
is sporadic. Against this backdrop and unlike other state-of-
the-art methods, this article presented an SMO approach that
simultaneously addresses the RMS configuration together
with the tasks and resource assignment in an industrial-
scalable MPFL for fluctuating production volumes. This
approach also considers the unreliability of the equipment
and deal with the buffer allocation dilemma - how many are
needed and where to place them optimally. Consequently,
it can be concluded that the proposed SMO approach pro-
vides support for the production planning and management
of RMS when facing fluctuating production volumes. The
applicability of the proposed SMO approach is not limited
to manufacturing systems with modular machines and could
also be applied to other types of RMS, such as human-based
assembly/manufacturing systems, in which different configu-
rations could be achieved through other means, e.g., employ-
ing a flexible material handling system like gantry robots.
However, this would require adjustments in the approach to
consider the new requirements.

Essentially, this study not only demonstrates the bene-
fits that decision-makers could gain by adopting an SMO
approach when selecting the RMS configuration and task
assignment for fluctuating production volumes scenarios but
also reveals a comprehensive amount of data that support the
trade-off decisions inherent to a choice that requires rapid
decision making and adaptation. To this extent, this study
emphasizes the use of SBO in systems that may face fluc-
tuating demands, which is one of the reasons for the adoption
of an RMS beyond the design phase.

As discussed in the analysis of the results, rules can be
used to reveal and simplify the understanding of how different
RMS variables affect the overall performance of the system.
A relatively recent research area within SMO is the extraction
and utilization of knowledge from the optimization data using
data mining because the Pareto-optimal solutions generated
may reveal the clues about what constitutes the good solutions
with respect to different criteria. Data mining methods can
help to extract such patterns that may ultimately help the
decision-maker in gaining a better understanding of solving
the problem under different situations (e.g., demands). The
knowledge gained can also be used in future related opti-
mization scenarios. Such a process of generating and utiliz-
ing the knowledge within SMO is generally referred to as
Knowledge-Driven Optimization [50]. Future research may
also consider increasing the variety of the product families
together with their volume proportion scenarios as studied in
the current paper as well as including additional RMS aspects
like reconfiguration frequency and the entire lifecycle of the
system.
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