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ABSTRACT Wearable sensor-based human activity recognition (HAR) is the study that deals with sensor
data to understand human movement and behavior. In a HAR model, feature extraction is widely considered
to be the most essential and challenging part as the sensor signals contain important information in both
spatial and temporal contexts. In addition, because people often carry out an activity for a while before
changing to another activity, the sensor data also contain long-term context dependencies. In this paper,
in order to enhance the long, short-term and spatial features from the sensor data, we propose a hierarchical
deep learning-based HAR model (HiHAR) which is constructed from two powerful deep neural network
architectures: convolutional neural network (CNN) and bidirectional long short-term memory network
(BiLSTM). With the hierarchical structure, HIHAR contains two stages: local and global. In the local stage,
a CNN and a BiLSTM are applied on the window-data level to extract local spatiotemporal features. The
global stage with another BiSLTM is used to extract long-term context information from adjacent windows
in both forward and backward time directions, then performs activity classification task. Our experiment
results on two public datasets (UCI HAPT and MobiAct scenario) indicate that the proposed hybrid model
achieves competitive performance compared to other state-of-the-art HAR models with an average accuracy
of 97.98% and 96.16%, respectively.

INDEX TERMS Human activity recognition, wearable sensor, deep learning, CNNs, bidirectional LSTMs,

context dependence.

I. INTRODUCTION

Human activity recognition (HAR) has been attracting con-
siderable interest due to its wide-range applications in surveil-
lance, smart environments and healthcare domains. Research
in HAR can be organized into three main approaches: vision
sensor-based, radio-based and wearable sensor-based.

In the first approach, videos collected from cameras such
as RGB and depth videos are used to classify the activity
by segmenting the human subject from the background and
calculating the human skeleton [1]. Although this approach
is currently one of the most active research areas in computer
vision, challenging problems that arise in this approach are
user privacy and computational complexity.
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In the radio-based approach, attenuation of the radio
strength and change of communication patterns caused by the
existence and motions of users in a radio field are analysed
to distinguish human activities [2]. This method provides a
device-free solution for HAR [3] and utilizes the communi-
cation infrastructure such as wireless transceivers, thus helps
to improve the user experience and to reduce the deployment
cost. A key limitation of this approach is that the system is
highly sensitive to the environmental interferences.

The third approach uses sensors such as inertial mea-
surement units (IMUs), barometers and heart rate sensors
embedded in wearable devices to perceive human move-
ment. Recently, with the technological advancement in the
area of microelectronics and the ubiquitousness of smart
devices, discussions regarding this approach have dominated
research in recent years, especially in the healthcare domain.
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A typical application of HAR 1is health informatics
mobile apps which are widely deployed in wearable smart
devices [4]. By recognizing user activities, these apps can
track user exercise intensity, health conditions, whereby help
promote a healthier lifestyle. Another remarkable application
of HAR is abnormal activity detection and alarm systems.
Freezing of gait detection in Parkinson’s disease can monitor
the patients’ movement and help stimulates the patients to
resume walking by providing a rhythmic auditory signal
[5], [6]. Automatic recognition of falls plays a vital role in
providing earlier responses, thus, help to reduce the serious
consequences especially for elderly people [7].

In general, a wearable sensor-based HAR system often
contains three main stages: preprocessing, feature extraction
and classification. In the first stage, the data (e.g., acceler-
ation, angular velocity), after being collected from sensors,
is preprocessed to remove noise, then split into small seg-
ments. From this, feature extraction methods are applied to
the processed data, in order to extract essential features before
being fed into classifiers.

Traditionally, conventional pattern recognition (PR) meth-
ods have been widely applied for HAR. In this approach, sta-
tistical and structural feature extraction methods are applied
to extract features in the time domain (e.g., mean, standard
deviation), frequency domain (e.g., Fourier transform) and
time-frequency domain (e.g., short-time Fourier transform,
Wavelet transform) [8]. Machine learning algorithms such as
k-nearest neighbours (KNNs), Naive Bayes (NB), decision
tree techniques and support vector machine (SVM) are, then,
adopted for the classification task. In some experimental
environments, where the data is well-preprocessed and there
are only a few labelled data, these HAR models are fully
able to gain good performance. However, in real-life sce-
narios, this approach may suffer from a number of pitfalls
as it heavily depends on heuristic hand-engineered feature
extraction methods [9]. This domain knowledge requirement
also makes it difficult to apply the HAR system to new
domains.

With the rising of computing power and the number of
available datasets, the past decade has witnessed a huge
growth in deep learning algorithms which achieve remarkable
performance in various fields such as computer vision (CV)
and natural language processing (NLP) [10]. Deep learning
models such as convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) are believed to have the
ability to learn data representation and automatically extract
abstract features. In addition, their deep architectures also
help promote the re-use of features [11]. Thus, deep learning
has been used as an ideal approach to overcome the chal-
lenges of conventional pattern recognition methods in the
field of HAR.

Different from the conventional approach, deep learning-
based HAR frameworks often contain only two main parts:
preprocessing and classification. Firstly, the raw sensor data
is split into fix-length windows with an overlap. In the second
part, feature extraction and classification are unified into one
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model and are simultaneously updated during the training
process.

Similar to other classification tasks such as spam filtering
and image classification, in the testing phase, most of the
studies in HAR have only focused on the raw sensor data
of single window for predicting the corresponding activity
label. Although this approach has been proved to perform
well on the well-cleaned experimental data, it fails to take into
account the real-life scenario where the data contain not only
basic activities but also transitions. Moreover, sensor data
in HAR contain long-term dependency as people commonly
carry out an activity for a while before changing to another
activity. Thus, considering only context-independent data can
make the system face the problem of inadequate information
for activity prediction. In this paper, we explore the possibil-
ity of utilizing long-term dependency in human activity by
introducing a hierarchical hybrid deep learning-based human
activity recognition model (HiHAR).

The main contributions of this paper are the followings:

o We propose a novel hybrid end-to-end deep learning
model which leverages two of the most popular deep
network architectures: CNN and BiLSTM to efficiently
extract both spatial and temporal features from multi-
modal raw sensor data.

o A hierarchical architecture with two stages: local and
global is proposed to automatically extract local features
from single windows and global temporal features from
adjacent windows to enhancing the long-term depen-
dency of human activity’s time-sequential data, thus,
improve the classification confidence.

o The proposed model is tested on two public datasets
which provide real-life scenarios with a sequence of
activities and transitions among them instead of using
clean preprocessed data.

The rest of the paper is organized as follows. In Section II,
we review some previous works which use deep learning
methods and provide a background of hybrid DL models and
some opening gaps in HAR. In Section III, we propose a
novel HAR framework in which a hierarchical hybrid deep
learning model is deployed in order to leverage the long-term
dependency of human activity and improve the accuracy of
the HAR system. Section IV shows the experimental results
and discussions. Our conclusions and some notes on future
works are drawn in the final section.

Il. RELATED WORK

A. CONVOLUTIONAL NEURAL NETWORKS

In the last few years, several studies on HAR have delved
into deep learning and achieved great successes. With the
advantage of automatically extracting the correlation of local
groups in array data, CNN has become a favourable deep
learning architecture in HAR. One of the first examples of
using CNN in HAR is presented in [12] by Yang et al.
The authors indicate that through the deep architecture of
CNN, higher-level representation of raw sensor data could
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be extracted. Moreover, mutually enhancing feature learning
and classification in one model makes the learned features are
more discriminative. Ronao and Cho [13] have pointed out
that a deep CNN working with 1D convolutional operations
can outperform traditional pattern recognition methods on
activity classification using smartphone sensors. Whereas,
Jiang et al. [14] instead of using 1D convolution, resized the
sensor data to a virtual 2D image before feeding it into a 2D
CNN in order to extract both temporal and spatial features
from the activity images for the classification task. [15] pro-
poses a two-stage CNN model to improve the recognition
accuracy of activities that have complex patterns and less
training data.

Recently, several state-of-the-art CNN architectures pro-
posed in the computer vision field have been successfully
applied to HAR. The work in [16] proposed a HAR model
based on U-Net [17] to perform prediction at sampling
point level, hence overcome the problem of multi-class.
Mahmud et al. [18] transform 1D time-series sensor data to
2D data, then apply residual block-based CNN to extract
features and classify activities. Tang ef al. [19] use the Lego
filter [20] to construct a lightweight deep convolutional neu-
ral network for HAR.

B. RECURRENT NEURAL NETWORKS

With the ability to contain information about the history of
all the past elements in the sequence, recurrent neural net-
works (RNNs) are widely used for processing the time series
sensor data in HAR. Zeng et al. [21] proposed a continu-
ous attention-based long short-term memory (LSTM) model
which pays more attention to important sensor modalities and
salient parts of the sensor signal in HAR. Barut ez al. [22]
design a multitask framework using stacked LSTM layers
to perform activity classification and intensity estimation
from raw sensor data. Authors in [23] and [24], instead of
using raw data, use feature data extracted from the principal
component analysis (PCA) and discrete wavelet transform
(DWT), respectively, as input to the bidirectional LSTM
recurrent neural network. [25] propose a spectrogram-based
feature extraction and data augmentation method to deal with
the scarcity of label data, then carry out the classification
task by using a deep LSTM. In [26], it was shown that fus-
ing automatically learned features extracted from a stacked
LSTM RNN and hand-crafted features can boost the system
performance. Chen et al. [27] proposed a local feature-based
LSTM network which is capable of encoding temporal depen-
dency and learning features from high sampling frequency
acceleration data.

C. HYBRID MODELS

In recent years, several studies have suggested that using
hybrid models which are combined from different types of
deep learning architectures can achieve high performance in
HAR. A combination of inception module-based CNN and
gated recurrent units (GRUs) [28] has been proposed in [29]
for extracting sequential temporal dependencies in complex
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human activity recognition. Chen et al. [30] deployed a 1D-
CNN-LSTM model for extracting deep features from long
acceleration sequences, then used an attention mechanism
to combine with the handcrafted features of heart rate vari-
ability data in a sleep-wake detection framework. A semi-
supervised framework was proposed in [31] using a recurrent
convolutional attention model to deal with the imbalance
of the labelled data. [32] applies CNN on small slices of
window data, the extracted features are then fed into an LSTM
layer for activity recognition. Different from other hybrid
HAR models that use LSTM on the features extracted from
CNN, Xia et al. [33] proposed an LSTM-CNN in which a
two-layer LSTM is applied directly to the raw sensor data
before deploying 2D convolutional layers.

Although the literature shows the success of conventional
pattern recognition and state-of-the-art deep learning meth-
ods, a closer look at the literature reveals a number of gaps
and shortcomings. Most of the studies have only focused
on the data of individual windows to predict the activities
separately without considering the correlation of adjacent
windows. Although this approach can achieve high accuracy
in multi-class classification tasks such as face recognition
and medical image classification, it can lose the property of
long-term dependency in HAR sensor data. To address this
shortcoming, Chen ef al. [26] have proposed an algorithm
called maximum full a posterior (MFAP) to consider both
the past and the current a posterior information. The activity
sequence is assumed as a first-order Markov chain so that
the current observation is conditionally independent of the
previous observation given the current activity. However, this
method requires an extra manual task on the output of softmax
layer from the deep neural network.

In addition, a little work has been done to utilize and
validate the ideas under real-life scenario while a vast major-
ity of prior works uses clean dataset in which the data of
each activity is collected, processed and stored separately
without considering the transitions between activities. In fact,
activities are carried out in sequence and there are some activ-
ities that cannot be carried out adjacently without transition
such as lying and running. To address these shortcomings,
we propose a hierarchical hybrid model which we referred to
as HiIHAR. With the hierarchical architecture, the model can
extract local temporal, spatial features, and global temporal
dependency in window sequences.

lll. METHODOLOGY

The HAR framework contains two main components:
windowing-sequencing and the HiHAR model. In the
windowing-sequencing step, collected sensor data are split
into fix-length windows with overlaps. The window data is,
then, segmented into sequences of windows. The HIHAR
model consists of 2 stages: the first stage is a 2D
CNN-BiLSTM subnet which is applied to single windows to
extract local temporal and spatial features, the second stage
is constructed from a BiLSTM and softmax layer to learn
the global dependency and perform the classification task.
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FIGURE 1. Detailed and unrolled architecture of the proposed hierarchical hybrid deep learning model. In stage 1, each window data
is processed individually by the subnet contains a CNN block and a local BiLSTM to extract local features. Stage 2 contains a global
BiLSTM which analyses the whole window sequence to extract global features and perform classification task.
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FIGURE 2. lllustration of sliding window method in HAR.

The detailed architecture of the proposed hybrid deep learn-
ing model is shown in Fig. 1.

A. WINDOWING-SEQUENCING
Windowing is considered as one of the most popular seg-
mentation techniques used in HAR for the recognition of
periodic activities (e.g., running, walking) and static activities
(e.g., standing, sitting, lying) [34]. The raw sensor signals are
split into fixed-length windows. There is an overlap between
adjacent windows to increase the number of training data
samples and avoid missing the transition of one activity to
another. The windowing process is described in Fig. 2.

The window data at time ¢ is a 2D matrix with a size of
(N x K) and is presented as

W, =[al a2 ... ak] e RV*K )
T .
where column vector a¥ = (ai‘l, al’fz, . ..,ai‘N) is the

sequence data of sensor k at window time ¢, T is the transpose
operator, K is the number of sensor sequences and N is the
length of the window. In order to leverage the correlations
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among windows and apply the training process, the window
data is split into sequences of windows

S:{(Wl,yl),(Wz,y2),...,(WT,yT)} 2)

where T is the length of the window sequence and y; is the
corresponding activity label of window W;.

B. STAGE 1: CNN-BiLSTM SUBNET

1) CONVOLUTIONAL BLOCK

With a structure in which each unit in feature maps is con-
nected to local patches in the feature maps of the previous
layer [10], CNNs using 2D kernels have the ability to extract
local spatial and temporal features from raw sensor data.
In addition, CNNs are also capable of identifying multimodal
correlations among sensors [35]. Furthermore, if a pattern can
appear in one part of a window sensor data, it could appear
anywhere in other windows in term of time, hence the idea of
sharing the same weights between units at different locations
helps CNNs not only reduce the number of parameters but
also can detect the same motif in varied temporal positions of
the sensor array. Therefore, in the hybrid model, we imple-
ment a convolutional block that contains a set of 1D, 2D
convolutional and pooling layers. The detailed architecture
of this convolutional block is shown in Table 1.

Firstly, in order to input the sensor data into the
2-dimension convolutional block, the window data split from
the previous step is considered as a virtual image W; €
RN *Kx1 with height is the length of the window: N, width
is the number of sensor signals: K (e.g., accelerometer: x, y,
z; and gyroscope: x, y, z), and depth is equal to 1.

The block contains 1D, 2D convolutional operations, pool-
ing operations and activation functions. In the first two convo-
lutional layers, a filter size of (3 x 3) is applied to extract both
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local temporal, spatial features and multimodal correlation
from the sensor data. As the number of sensor signals is
small compares to the window length (i.e., K <« N), a same-
padding is used to preserve the input size spatially as well as
the information near the edge of the input data. The last three
layers MaxPool(2,1), Conv(3,1), MaxPool(2,2) are deployed
without padding to distill the deep features, reduce repre-
sentation and computational cost. In addition, by operating
over each activation map independently without overlapping,
and reduce the size of feature maps, pooling layers help the
representations be more manageable and also reduce the risk
of overfitting.

Output tensor of the last MaxPool layer has a size of
N’ x K’ x 32 where the time information is contained in
the first dimension with a size of N’. However, the local
BiLSTM requires 2D input data (timesteps X features). Thus,
the output is reshaped into a 2D tensor with a size of
(N’ x (K’ x 32)) before being fed into the local BiLSTM
layer.

2) LOCAL BiLSTM
Bidirectional recurrent neural network (BRNN) was first
proposed by Schuster and Paliwal [36] and is widely used
in sequential data processing applications such as automatic
speech recognition and machine translation. The network is
constructed by splitting the state neurons of an RNN into
two states with identical structures but opposite directions:
forward and backward. The forward state deals with the
positive time direction while the backward state deals with
the negative time direction. Outputs from two states are com-
bined using merging mode (e.g., concatenation, summation).
In this study, in an effort to avoid vanishing and exploding
gradient problems of standard RNN, an LSTM recurrent
network proposed in [37] is deployed in the bidirectional
recurrent neural network for learning temporal features in a
single window.

Output hidden states of the local bidirectional long
short-term memory layer at window W, after merging is
defined as

T 7
H" =[h;1 ho ... by ] e RV*R A3)

where the superscript (L) indicates the local stage, N’ is the
temporal dimension of the output tensor from the convolu-
tional block, and R is the number of hidden units in BILSTM.
This output tensor H§L> of window W; is then reshaped into
a vector 0,<L> before being fed into the global BiLSTM layer.
Finally, outputs of a window sequence can be defined as

0@ =[oft) ot ... of" ] @

C. STAGE 2: GLOBAL BiLSTM

Most of the previous studies consider the context-
independence method where each window is analysed inde-
pendently. However, the context information can play an
important role in the classification of current activity. For
example, if the predicted activity of the past window W;_;
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TABLE 1. Structure of the convolutional block.

Type Filter Shape  Stride/Padding  Activation

Conv2D 3x3x32 (1, 1)/ same ReLU

Conv2D 3x3x32 (1, 1)/ same ReLU

MaxPool2D  Pool 2x1 (2, 1)/ no

Conv2D 3x1x32 (1, 1)/ no ReLU

MaxPool2D  Pool 2x2 (2,2)/ no

Reshape

1 1 T 1 1
T

a a’ a’ a*! a

W : Data of one window

FIGURE 3. Normal structure of two stacked BiLSTM layers.

and the future window W, are lying, there will be a high
possibility that the activity of the current window W, is lying.
Therefore, to be able to learn long-term dependency, a second
BiLSTM is applied to a sequence of windows, instead of
a single window. The global BiLSTM is implemented as a
multiple-input and multiple-output layer where the hidden
state of each input is used for predicting the corresponding
output activity. This layer takes the output vectors of the win-
dow sequence from stage 1 as input for long-term dependency
interpretation

G G . L L
(h§ R >) — BiLSTM'O (0(1 >,...,o<T>> (5)

where h'®) is the hidden state of the global BiLSTM at
window time 7. A batch normalization method proposed by
Ioffe and Szegedy [38] is applied to the output hidden states
as a regularization mechanism in order to avoid overfitting
and increase the stability of the model. Finally, a fully con-
nected layer with a softmax activation function is deployed
for activity classification.

Structure of the two BiLSTM layers used in this paper is
different from the structure of a normal stacked RNN-based
HAR model in two aspects: input data and inter-layer con-
nection. In the normal stacked BiLSTM layers which are
described in Fig. 3, the first BILSTM layer is applied to the
sensor data of every time step inside a window. An output
hidden state of each time step is then sequentially input to
the next BiLSTM layer. However, in the proposed HIHAR
model, the local BiLSTM layer is applied to every time step
of the distilled features extracted from the CNN block. All
the output hidden states of a window are then fed into the
global BiLSTM as a feature vector of one time step (i.e., one
window). Thus, the HHHAR model can process on a sequence
of windows while the normal stacked BiLSTM model can
only be applied for individual windows.
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TABLE 2. Dataset description.

Dataset UCI HAPT MobiAct (Scenario)
Sensors 3-axis Accelerometer, 3-axis Accelerometer,
Gyroscope Gyroscope,
Orientation sensors
Device Samsung Galaxy S2 Samsung Galaxy S3
Position Waist Trouser pocket
Sampling 50Hz ~200Hz-2OWmsAmPle, 50,

rate

Window size

2.56s (128 readings)

2.56s (128 readings)

Overlap

1.28s (50%)

1.28s (50%)

No. subjects

30

19

(Train/Test) (1-24/25-30) (1-14/ 15-19)
Activities 12 Activities 11 Activities
(6 BAs & 6 PTs) (7 BAs & 4 PTs)
PT group 1 stand-to-sit, sit-to-lie, stand-to-sit, car-step in
stand-to-lie
PT group 2 lie-to-sit, sit-to-stand,  sit-to-stand, car-step

lie-to-stand

out

IV. EXPERIMENT RESULTS

A. DATASETS

The paper concentrates on building a model that can han-
dle and utilize real-world circumstances where activities
are carried out in a continuous way, thus, we selected
two widely-used public datasets that provide raw data with
sequences of actions and transitions: UCI HAPT [39] and
MobiAct [40]. The details of the two datasets are listed
in Table 2.

1) UCI HAPT

The public UCI HAPT dataset was collected from a group
of 30 volunteers with an age range of 19-48 years old.
The dataset provides raw inertial signals collected from
3-axial linear acceleration and 3-axial angular velocity sen-
sors embedded in a smartphone mounted on the user’s waist.
It contains a set of 6 basics activities (BAs): standing, sitting,
lying, walking, walking upstairs, walking downstairs; and
6 postural transitions (PTs) that occurred between three static
postures: stand-to-sit, sit-to-stand, sit-to-lie, lie-to-sit, stand-
to-lie and lie-to-stand.

2) MobiAct DATASET

The MobiAct dataset was collected and published by the
Biomedical Informatics and eHealth Laboratory (BMI lab)
in [40]. The dataset contains raw sensor data from a smart-
phone when participants carry out different types of activities
of daily living and a range of falls. The phone was put in
a trouser pocket freely chosen by the participant in random
orientation. In this paper, we only use the scenario data in
order to simulate real-world situations. The scenario data
contains 5 sub-scenarios of daily living: leaving the home,
being at work, leaving work, doing exercise and returning
at home. The data was collected from 19 participants with
11 different activities: 7 basic activities (standing, sitting,
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walking, jogging, jumping, walking downstairs and walking
upstairs) and 4 transitions (stand-to-sit, sit-to-stand, car-step
in and car-step out). The original data was collected with the
highest sampling rate of the smartphone which approximates
to 200 samples per second (Hz).

3) PREPROCESSING

In order to reduce the computational complexity, the sce-
nario data in the MobiAct dataset is downsampled to S0Hz.
With the sampling frequency of 50 Hz, we split the sequen-
tial data into windows with a fixed width of 2.56 seconds
(128 readings/window) and 50% overlap. For the windows
that contain more than one activity, the most frequent sample
activity will be selected as the label of the window. Finally,
the total number of windows obtained in UCI HAPT and
MobiAct datasets are 11,883 and 10,945, respectively. The
window data distribution on activities of two datasets is
shown in Fig. 4. As we are only interested in recognizing
basic activities (BAs) and the window number of postural
transitions (PTs) are small compared to the BAs, in order
to avoid the class imbalanced problem of PTs, a grouping
method proposed in [24] is applied to cluster PTs that have
similar pattern into groups.

B. EXPERIMENTAL SETTINGS

Shuffling dataset before splitting into training and testing
sets is a widely-used method in HAR and other classification
tasks. However, this method does not work in the case of
time series data in HAR because it ignores the long-term
correlation inherent in human physical activities. Moreover,
human activity has a high intra-class variance since each
person has a unique way to perform an activity. Thus, shuf-
fling dataset gives the model a chance to look at the data
from all subjects in the dataset and helps it predict well on
the test set. However, in practical situations, the model is
often applied to new users whose activity sensor data might
have a big difference compared to the dataset. In addition,
this method can cause difficulties in model investigation and
implementation as researchers might struggle for reproducing
the result. Therefore, in this study, in order to evaluate the
model flexibility in working with different users, the models
are trained on a set of subjects and tested on another set of
subjects in the dataset. In the UCI HAPT dataset, data of the
first 24 users are used for training and data of the remaining
6 users are used for testing while in the MobiAct (scenario)
dataset, this training/testing split is 14 users/5 users.

As the BiLSTM network is applied over a sequence of
windows instead of a single window, the window sequence
data is shuffled randomly every epoch in order to obtain
faster convergence [41] and provide the most general testing
scenario. Due to randomness in the training process (e.g.,
weight initialization, data shuffling), the accuracy can slightly
change after each running time, thus, for each model that we
consider in this research, we run 10 experiments, the average
accuracy and standard deviation obtained from the experi-
ments are considered to assess model performance.
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FIGURE 4. Window data distribution on different activities of the two datasets.

TABLE 3. Hyper-parameters and training configuration.

Parameter Value

Initializer Glorot uniform

Loss function Categorical cross-entropy

Optimizer Adam
Mini-batch size 64
No. epochs 250

LSTM hidden state size 128

All the deep learning models considered in this work are
implemented using the TensorFlow framework [42] and are
trained from the scratch. The weights and bias are initialized
using Glorot uniform initializer [43]. The adaptive moment
estimation (Adam) [44] is used as the gradient descent opti-
mizer. A learning rate scheduling method is applied to adjust
the learning rate during the training process. At the begin-
ning of the training process, the learning rate is initialized
to 0.001 and is decreased to 0.1 of the prior learning rate
(i.e., divided by 10) when the learning stagnates (i.e., the
loss has stopped decreasing for 10 epochs). The details of
hyper-parameters and model training configuration are rep-
resented in Table 3.

C. RESULTS AND DISCUSSION

1) MERGING MODES IN BiLSTM

As outputs from the forward and backward direction in the
BiLSTM are not connected but later are merged into one,
four merging modes are examined in this study: averaging,
concatenation, multiplication and summation with each mode
represents a corresponding operator applied to the outputs
of two unidirectional LSTM layers. In Table 4, the average
accuracies of a HIHAR-8 model which uses sequences with a
size of 8 windows in different merge modes are provided. The
parameters column indicates the number of parameters in the
last fully connected layer which takes the outputs of the global
BiLSTM layer as input in the case of W, € R!28%6 It can be
seen that although the concatenation method has double the
number of parameters compared to the other merging modes,
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TABLE 4. Comparison of different merge modes of BiLSTM in HiHAR-8.

Accuracy (%)

Mergemode oy yApT  MobiAct-scenario | Arameters
Summation 97.98 £0.24 96.16 £0.22 1548
Averaging 97.88 +0.24 95.81 £0.39 1548
Multiplication ~ 97.47 4+0.22 96.07 £0.25 1548
Concatenation ~ 97.82 4+0.28 95.70 £0.15 3084

it does not achieve the best accuracy. Therefore, the summa-
tion mode is selected for further experiments as it has the least
computational cost compared to other modes.

2) EFFECT OF SEQUENCE LENGTH

Because BiLSTM requires the whole sequence data to per-
form the forward and backward operation, considerable atten-
tion must be paid when selecting the size of the window
sequences. A comparison of how different sequence lengths
affect the model accuracy is conducted and the results are
provided in Fig. 5. The box plots indicate the classification
results from 10 attempts of each sequence size, while the dash
lines present the average accuracies. It can be seen that the
accuracy is improved significantly when the sequence length
is increased. In the UCI HAPT dataset, the average accuracy
increases by 2% by increasing window sequence length from
T = 1to T = 3. This is because longer sequences provide
more past and future information for the model to analyse.
However, long sequences can contain redundant information
and make the training process be difficult as the model tends
to memorize the order of activities carried out in the training
data. Therefore, after taking the highest accuracy at sequence
length T = 8, the accuracy becomes stagnant and starts
decreasing. Since the model has to wait for the whole window
sequence to come in order to analyse past and future infor-
mation, long sequences lead to a high delay of the system.
Therefore, the proposed model with window sequence length
T = 8 (HiHAR-8) is selected as our final model for the best
trade-off between accuracy and latency.

3) COMPARISON MODELS
We compare our proposed model with conventional pattern
recognition methods as well as state-of-the-art deep learning
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TABLE 5. Average accuracy comparison between different machine
learning methods and models of ablation study.

Average Accuracy (%)
Model UCIHAPT  MobiAct-scenario
Conventional ML models
KNNs (k= 17) 75.62 65.86
SVM 89.26 63.60
Single DL models
LSTM 91.02 £1.50 83.38 £2.95
BIiLSTM 92.63 £1.07 90.43 £1.48
CNN [12] 94.40 +£0.36 93.69 +0.34
Hybrid DL models
InnoHAR [29] 95.09 £0.49 93.70 £0.49
LSTM-CNN [33] 90.49 +1.01 91.15 £0.79
Ablation models
CNN-BiLSTM Subnet 95.97 £0.28 93.78 £0.67
Unidirectional HHHAR 97.09 £0.22 95.11 £0.46
HiHAR-8 97.98 +0.24 96.16 +0.22

models in the field of HAR. In Table 5, different machine
learning methods include conventional pattern recognition:
KNNs, SVM; deep learning: LSTM, BiLSTM, stacked BiL-
STM, CNN [12]; and hybrid deep learning methods: CNN-
GRU [29], LSTM-CNN [33] are employed in order to make
a comparison with the proposed HIHAR-8 network. Three
referenced models used in this part are implemented based on
the description in the corresponding papers. The results indi-
cate that deep learning methods outperform conventional ML
methods with a big gap in the average accuracy. The proposed
HiHAR-8 achieves the best results on both datasets with
97.98% and 96.16% which are 2% higher compared to the
hybrid inception module CNN-GRU-based InnoHAR model.
These results have strengthened our hypothesis that the local
spatio-temporal and long-term context features extracted by
our hybrid deep learning model provide a better understand-
ing of sensor data, hence improve the classification accuracy.
In addition, the results suggest that CNN models are able to
work well on raw signal while LSTM models perform well
on the abstract sensor signal which is distilled by CNN.
Table 6 illustrates the computational complexity includ-
ing the number of trainable parameters and the number of
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TABLE 6. Complexity of the deep learning models.

Complexity

Model No. Parameters FLOPs
Single DL models

LSTM 88,329 371,980
BiLSTM 158,985 610,577
CNN 56,509 112,784
Hybrid DL models

InnorHAR 1,354,009 2,898,623
LSTM-CNN 90,633 196,881
CNN-BiLSTM Subnet 323,881 907,598
HiHAR-8 4,484,905 1,186,235

floating-point operations (FLOPs) that are required for infer-
ring a single window of the MobiAct (scenario) dataset with
9 activity labels. The number of FLOPs is calculated using
the ProfileOptionBuilder API provided by the TensorFlow
framework. As the HIHAR-8 model infers 8 windows at one
time, the number of FLOPs of this model is divided by 8 to
obtain the average FLOPs for inferring a single window. From
the results, it can be seen that most of the hybrid models
have higher complexity than the single DL models. The
HiHAR-8 model has the highest number of parameters while
the InnoHAR model requires the most number of FLOPs.
In the HIHAR-8 model, although the same subnet at the local
stage is used for every single window to reduce the size of
the model, the connection between the two stages obtains the
most parameters because all the output hidden states from the
local BiLSTM are input to the global BiILSTM.

4) ABLATION STUDY

For a thorough examination of the proposed HIHAR model,
an ablation study with two models is considered: CNN-
BiLSTM subnet and unidirectional HIHAR. The former is
implemented by removing the global BiLSTM from the
HiHAR model with the aim of evaluating the efficiency in
learning local spatial and temporal features. By using only
sensor data of single windows for recognizing the corre-
sponding activity, the model also helps to illustrate how the
adjacent windows contribute to the activity prediction of the
current window. The unidirectional HiHAR is implemented
by replacing the global BiLSTM layer with an LSTM layer
in order to delve into how the future information affects the
current classification. The results of the ablation study are
depicted in Table 5.

The subnet achieves competitive performance with the
innoHAR model and outperforms the LSTM-CNN model
on both datasets. This result reveals that using 2D convolu-
tional kernels and a bidirectional recurrent network helps to
improve the data representation learning of the model. How-
ever, using only the current window for predicting activity
limits the view of the model, hence the average accuracy
of the subnet is 2% lower than the HiHAR. When only
the past information is provided, the unidirectional HIHAR
achieves an average accuracy of 97.09% which is 1% lower
compared to the HIHAR. Since the model requires no future
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information, the latency is reduced to just half of the window
size (1.28s). Thus, in case that a fast response is required, uni-
directional HiIHAR can be deployed with high performance
compared to other state-of-the-art models.

Fig. 6 illustrates the activity recognition results of the
HiHAR-8 and the subnet CNN-BiLSTM on the UCI HAPT
dataset. Although the subnet performs well in recognizing
most of the activities and tracking the activity change, there
are some misclassifications between standing and sitting.
The reason is that in the UCI HAPT dataset, the phone was
mounted at the user’s waist, thus, the acceleration and angular
velocity data between sitting and standing are sometimes
similar to each other. This similarity causes confusion in
the subnet as the output predicted activity keeps changing
between standing and sitting. In contrast, by exploiting the
past and future information, the HHHAR model has higher
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confidence in differentiating the two activities. This result
has further strengthened our hypothesis that there exists a
correlation among human activities and by leveraging this
context information from adjacent windows, the model has
higher confidence in predicting activity.

5) CONFUSION MATRICES

The confusion matrices of the proposed HIHAR model in one
experiment on two datasets are shown in Fig. 7. The model
performs well on classifying most of the basic activities with
high precision and recall values. For example, an approxima-
tion of 100% of precision and recall are obtained for walking,
walking downstairs, walking upstairs, standing in the UCI
HAPT dataset, and for jogging, jumping in the MobiAct
scenario dataset. However, one limitation of the proposed
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model is found in the case of the MobiAct scenario dataset.
Because the phone is kept at a random side of the trousers and
in a random direction, there are some windows that the model
confuses in differentiating walking, walking upstairs and
walking downstairs. In both datasets, the transition groups
are sometimes misclassified with their corresponding static
postures. This is because there is no exact boundary among
the preceding posture, transition, and the following posture,
which leads to a problem that there may exist multiple activ-
ities in one window data.

V. CONCLUSION

In this paper, we presented a novel hierarchical hybrid
deep learning-based model to enhance temporal, spatial fea-
tures and utilize long-term context information in wearable
sensor-based human activity recognition systems. The pro-
posed system incorporates the use of a convolutional neu-
ral network in time-space information extraction and two
bidirectional long short-term memory networks in learning
local and global context in both forward and backward time
directions. The experimental results show that by focusing
on the multi-modality characteristic of the sensor signal and
leveraging the strengths of the CNN, BiLSTM network, our
proposed method can significantly improve the classification
accuracy of the HAR model in the two public datasets. Impor-
tantly, our results provide evidence for the potential of using
context information in activity recognition. In future work,
we intend to concentrate on how to reduce the system latency,
complexity and improve the accuracy of recognition between
static postures. In addition, further research will be needed to
overcome the problem of inter-class similarity and reduce the
impact of device position on system performance.
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