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ABSTRACT A new batch process scheduling problem is studied in this paper. The problem considers several
machines where the jobs are processed and a team of specialists who analyze the jobs’ results. Two operations
that add complexity to the problem are the potential repetition of one or more processes and the probabilistic
decision about the reprocessing of the jobs. A known State-Task Network partially represents the problem,
so it is extended to include the two operations mentioned before and also the participation of a technical team.
Based on this representation, an integer programming model is formulated for the integrated scheduling
problem so that all the resources, material and human, are used in the best possible way. Actual data from a
research lab located in the Region del Maule, Chile, illustrates the model’s performance. The results showed
that the scheduling obtained significantly contributed to planning the resources at the research lab. Changes
in the technical team and instruments are possible so that the model could also be executed, only changing the
corresponding parameters. Furthermore, additional experiments to the case study were conducted to study
the performance of the model by increasing the size of the parameters.

INDEX TERMS Laboratories, operations research, scheduling, state-task network.

I. INTRODUCTION
Scheduling optimization comprises several classes of
problems that include the well-known Flow Shop, Job Shop,
and Open Shop. The essential components in a scheduling
problem are the finite number of jobs and the finite number
of machines. Usually, the case is separated when only one
machine exists (Single Machine Models) and, on the other
hand, several machines exist (Parallel Machine Models).
In the classical book of [1], a detailed classification of
scheduling problems is found. In our research, we use the
Parallel Machine Model, and the machines are, in general,
different from each other. A fundamental characteristic of the
our scheduling problem is the machines can process several
jobs simultaneously. In the literature, this situation is called
batching machine. It is assumed that the processing times of
the jobs in a batch are the same. Another characteristic of our
problem is the recirculation of a batch. This operation means
that a batch may visit a machine more than once.
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Our problem also assumed that a team analyzes the
results of the jobs processed by the machines. The team is
multi-skilled, so two different people could operate various
machines. The problem of multi-skilling in scheduling prob-
lems is well-known, and [2] presented a recent review paper.
This problem has in project scheduling problems one of the
more important applications. Our problem integrates both
scheduling machines and scheduling a multi-skilling team.
Therefore, a formal definition of the integrated problem and
an optimization formulation are presented in this paper in
Section 3. To our best knowledge, scarce research has been
conducted in the study of the integrated problem. Some of
them are commented on below and in the Literature Review.

The primary motivation of our research comes from a
scheduling problem from one of the molecular research labs
of a winery in Chile. The lab includes a set of machines,
at least one per process (there may be parallel machines only
for certain process), where there are machines that can be
used only in a particular process, while there are machines
that can be used in more than one process (only one process
at a time).Machines run processes in batch, and eachmachine
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can have different capabilities depending on the process it is
running. Each machine that executes a process has to be man-
aged by a human resource for the entire process time. Human
resources have different skills, depending on their training,
therefore they are qualified only to operate the machines and
execute processes for which they are trained.

The main challenge in the lab involves managing many
samples to be processed. The samples do not need to go
through all the analysis processes continuously; they can
stop at specific points and continue at another time. There
are trained personnel to perform all types of analyses and
personnel non-trained only to do specific tasks. Equipment
and instruments for analysis are limited as well as human
resources. In the lab, the planning and scheduling of resources
and tasks are critical. These tasks are neither static nor con-
stant during the year but rather depend on the analytical
demand associated with the season. The case study presented
refers to the grapevine plant production season. Thus, the
need for efficient scheduling and allocation of resources must
be for weekly/monthly terms. The models have to be flexible
enough to reorder based on the demands that arise in the
season.

A potential application of scheduling problems, including
the characteristics described above, is semiconductor man-
ufacturing. A complex job shop contains parallel machines,
batch processes, and re-entrant process flows in semicon-
ductor manufacturing. Wafer fabs are considered the first
main stage of semiconductor manufacturing. At this stage,
a Burn-in oven is a batching machine where several chips can
be tested simultaneously. Complex scheduling problems also
appear in other stages of semiconductor manufacturing, like
in the Assembly and Test stages. A more detailed explanation
of the application of scheduling problems in this area is found
in [3].

Another application is the industry of chemical processes,
such as the manufacture of lubricants, as explained by [4],
where it is pretty common for intermediates to be shared
among two or more products, batches of the material may
have to be split or merged. The same material can be
produced by more than one task, often due to recycling
unreacted feedstocks. Batches of more than one product may
be made simultaneously within the same plant. Similar prob-
lem characteristics can be found in polymer batch plant and
steel-making casting plant as explained by [5].

Although the semiconductor and chemical process indus-
tries share similarities with the problem studied in this paper,
one difference is the integration of machines and workers,
which has not been explored in both industries. Also, in our
situation, jobs depend on a known probability of reentrant,
which has not been studied to the best of our knowledge.

Therefore, despite the literature’s related works on batch
processes, the research lab’s problem includes other particu-
larities and thus needing innovation in modeling the problem.
So, new insights are necessary to formulate the scheduling
problem as a mathematical programming model.

Our paper contributes to the literature on scheduling in
several aspects.
• An optimization model for a new batch process schedul-
ing problem is formulated. The model includes some
typical constraints in traditional scheduling problems
and introduces new types of complex constraints that
integrate the scheduling of the technical staff and the
machines. The existing State-Task-Network model has
the particularity that operations (tasks) and intermedi-
ate and final products (states) can be mathematically
optimized. Our optimization model extends the State-
Task-Network, introducing new constraints and a tech-
nical team’s participation in the whole system operation.
At the same time, the optimization model presents a new
integration between machines and a team to the shown
by [6] since our model includes different characteristics.
Thus, a challenging computational problem must be
solved.

• A case study located in a research laboratory in Chile
is presented. The scheduling problem existing in the
research lab was solved using data from the 2019 season
since 2020 was an abnormal year. The results delivered
by the optimization model showed that the scheduling
of people and equipment found could plan the work of
the analysts efficiently. Additionally, in the presence
of unexpected problems, the model could be used for
re-planning.

• The laboratory analysts validated the results and con-
sidered it a potential tool for the management of
the laboratory. Furthermore, the model could also be
adapted to solve scheduling problems that include both
machines and technical teams in other contexts like
manufacturing.

The paper continues in Section II with the Literature
review. In Section III, the problem and several of its charac-
teristics are presented, while in Section IV the optimization
model proposed is detailed. A case study illustrating the
application of the model to a problem of analysis of samples
in a research lab in Chile is presented in Section V. Additional
experiments with the model are discussed in Section VI.
Finally, conclusions are presented in Section VII.

II. LITERATURE REVIEW
We start the review by discussing scheduling problems that
share characteristics with ours. Then, we present formula-
tions and solution approaches that help us to the treatment of
our problem.

A. RELATED MODELS FOR SCHEDULING PROBLEMS
According to Pinedo’s notation [1], the problem presented in
this paper is a Scheduling problem with Identical machines
in parallel, machine eligibility restrictions, with recirculation
and batch processing. However, not every characteristic of the
problem is defined in Pinedo’s notation, so this scheduling
problem could not be classified as a classical one, being a
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Flexible Job Shop (FJS) with recirculation that most resem-
bles our problem.

There is a wide variety of types and bibliography of FJS
models. Still, we highlight the papers that bear a relationship
to this work, such as [6] who proposed what they called ‘‘a
double flexible job-shop scheduling problem’’. Here, workers
and machines are flexible simultaneously, considering their
multi-objective function green production, human factor indi-
cators, and minimization of the makespan. However, in this
model, one of the characteristics is the following: ‘‘Each
operation can be performed only once on onemachine, and its
sequence is respected for every job.’’ This fact is different in
our scheduling problem, where a batch could be reprocessed.
On the same line, reference [7] studied the same problem
of [6] but only aiming to minimize the makespan.

Reference [8] presented a solution for the flow shop
scheduling with a multi-skill workforce and multiple types
of machines using a framework based on machine learn-
ing. They take as inspiration a multi-stage, multi-machine,
and multi-product manufacturing system operated by a
multi-skilled workforce. Only a small example is described
in the paper. Also, the machine scheduling is different from
ours.

Reference [9] reviewed scheduling problems with batch-
ing. They presented research on models that integrate
scheduling with batching decisions. However, their models
do not include key characteristics of our problem as jobs
recirculation and duplication.

In some papers have been studied problems faced in
laboratories and modeled as scheduling problems. A work
that shares common characteristics with our problem was
developed by [10], which solved a scheduling problem in
a quality control laboratory in the pharmaceutical indus-
try. They aimed to minimize the total flow time with the
least jobs not meeting the due date. Still, no mathematical
programming formulation is presented as a basis for the
problem solution. Reference [11] worked with a chemical
testing laboratory from a water and waste-water company
that had to do different tests and analyses on water and soil
samples. Their goal was to develop a decision support system
to schedule the lab operations to consider capacity allocation,
batching, and sequencing issues. Reference [12] developed
an extension of the Resource-Constraint Project Scheduling
Problem (RCPSP), aiming to minimize the makespan with
a genuine medical research project that dealt with the rela-
tionship between polyamine synthesis and cancer. It was a
case study with resource availabilities and resource require-
ments varying with time. Reference [13] studied the problem
to achieve optimal weekly programming of activities in a
nuclear research laboratory and presented the preemptive
Multi-Skill Resource-Constraint Project Scheduling Problem
with a penalty for preemption. Reference [14] studied the
problem of scheduling laboratory personnel in a clinical
lab, assuring every workstation is filled, and the workers’
skills are exercised by regularly rotating through all work
areas.

Reference [2] reviewed multi-skilling and flexible
resources in scheduling problems. The author presented 160
papers published between 2000 and the middle of 2020 and
gave each paper according to the number and type of objective
functions, the structure of parameters, mathematical formu-
lations, solving methods, and case studies implemented by
the authors. However, characteristics related to scheduling
problems in the context of our problem are not discussed.

B. APPROACHES FOR PROBLEM SOLUTION
A valuable reference for our research is the review paper
of [5], where they presented a general classification for
scheduling problems of batch processes and the correspond-
ing optimization models. In particular, they focused on the
modeling of an optimization approach that utilizes discrete
time. The modeling uses a network representation of the
problem, and they commented that it had been a successful
tool for solving practical problems in chemical engineering.
Initially, this modeling was proposed in [4] and [15] where
they detailed the MILP formulation for a scheduling problem
for multipurpose batch chemical plants. The model has the
particularity that operations (which they call ‘‘tasks’’) and
the intermediate and final products (which they call ‘‘states’’)
are explicitly included as nodes in the network representation
of the problem, which they call State-Task-Network (STN).
STN fits well for representing the problem. It has the flexi-
bility to allow a process to feed more than one state to feed
state early in the network, meaning a recirculation task.

In [16] are presented three MILP models for scheduling
multi-tasking multipurpose batch processes in a scientific
service facility. They used STN for representation, including
two different objective functions: maximizing productivity
and minimizing the makespan. They solved instances with
commercial software to illustrate the formulations’ capabil-
ity and compared them with mathematical models in the
literature.

About RCPSP, [17] proposed four discrete-time model
formulations for the resource-constrained project scheduling
problem with flexible resource profiles where the resource
usage of an activity can be adjusted from period to period.
They compared the results of each model and a priority-rule
heuristic, using instances from Project Scheduling Problem
Library (PSPLIB).

Reference [18] developed a model to improve the schedul-
ing for phlebotomists aiming to reduce the excess work for
personnel, hoping to balance the workload between the shifts.
They used a two-stage stochastic integer linear programming
with a stochastic component for the work demand and solved
it with a heuristic algorithm they proposed. Reference [19]
aimed to solve the problem of reducing the delivery of results
after the deadline in a histopathology laboratory and spread
the workload to reduce peaks of physical works. They mod-
eled the process as batch processing machines and solved it
with a two-phase decomposition approach.

In summary, scheduling problems offer various charac-
teristics, optimization modeling, and solution approaches.
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Related to our problem, the integration betweenmachines and
workers has recently started to be studied in the context of
scheduling problems in recent years. Only three articles were
found in this research line. To our best knowledge, no model
exists in the literature that can fit all the particularities present
in the problem addressed in this paper. Still, Networks STN
with the structure of tasks and states will help formulate
the optimization model in Section 4. The following section
presents in detail the characteristics of the problem to be
studied.

III. THE PROBLEM: CHARACTERISTICS
AND ASSUMPTIONS
The scheduling problem to be studied has the following
components.
• There is a set of jobs to be processed and analyzed. The
jobs are grouped in batches to be processed bymachines.

• There is a set of different machines. Each machine
could process a batch in one operation (called batching
machines in the literature).

• There is a set of processes to be executed by machines.
One or more machines could complete a single process.

• There is a set of precedence relations between the pro-
cesses that defining the route of a batch.

• There is a set of human resources that can operate (or
not) the different machines or instruments.

• There is a period for the horizon planning of the schedul-
ing, typically taking between one and four weeks.

Additional specifications about the relations among the
different components are detailed below. Besides the prece-
dence relations of processes, the flow not always follows only
one path, as explained in Fig. 1, where each box represents
a process that is a step in analyzing the job. Each arrow
represents the flow of that job through processes. The flow is
not always linear; it depends on the result of each process. For
example, if the result of process k+1 is not satisfactory, it has
to return to the beginning of process k and repeat from there
(following dashed arrow). Still, if the result is fair, it continues
through a straight arrow. Also, it is essential to note that there
are specific points where an operation is finished the job is
‘‘duplicated.’’ It can continue in two or more different paths
simultaneously (as at the end of process k in Fig. 1).
Each process has a set of machines that can perform it,

as represented in Fig. 2 by M. Each of these machines can
be operated only by a qualified worker W. Some workers are
flexible enough since they can use any machine (like W2).
Workers with more limited qualifications can operate only
specific machines (W1 and W3).

One of the critical characteristics of the problem is related
to the use of time. It is assumed that the jobs must be
processed every day, and it is necessary that every day, the
specialists are working in the analysis done by the machines.
Thus, the system continuously operates every day, but the
processes and the analysis can take several minutes or hours.
Therefore, the time is discretized in hours every day, and
the entire period to be planned could take several days or

FIGURE 1. Representation of flow of jobs in a laboratory process. Each
process has precedence relations that have to be fulfilled, represented by
arrows. This precedence relations are not only horizontal, it is possible to
repeat a processes as a reentrant task (dashed arrow). Also, there are
‘‘duplication’’ of tasks, as it is shown at the end of process k.

FIGURE 2. Example where workers and machines are flexible.
M represents machines, W workers. As it can be noticed, a worker can
operate more than one machine and therefore different processes.

weeks. In practice, several facts could interrupt the analysis of
samples, either by changes in the equipment composition or
the specialists. Under these conditions, convenient time in the
scheduling is relatively short, for example, one or two weeks.

Therefore, the model to be formulated must consider this
reality to optimize the resources during short periods while
also allowing the tasks to remain. According to [5], this
strategy for managing the schedule horizon has the advantage
that scheduling constraints must be satisfied only at specific
and known time points.

In the next section, the problem is formulated as an integer
programming model.

IV. AN INTEGER PROGRAMMING FORMULATION
FOR THE PROBLEM
A. THE OPTIMIZATION MODEL
In the structural model, precedence relations can be repre-
sented as a STN network. A STN has two types of nodes: state
and task nodes, where states show the input, intermediate and
final products, and task nodes represent the operations that
take one or more input states to one or more output states [4].
This model has flexibility in using resources, as the machines
work processing not a single but a group of jobs. This allows
for the same machine to work in different processes and
has various capacities for each process. The formulation is
based on a discrete representation of time. The planning
horizon is divided into an equal duration number of intervals,
so all the scheduling happens between the interval bound-
aries. This representation has an advantage, as it provides a
reference grid where all operations compete for the resources,
facilitating the formulation [4]. We propose the following
model based on this representation, including new features
compared to the original model. They are human resources
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and a probabilistic decision about the recirculation of jobs.
Additionally, all processes that begin to run on a working day
must end within the same working day, allowing workers not
to stay overtime.

Definition of sets
I : Set of processes, I = {1, . . . , |I |}
S: Set of states, S = {0, . . . , |S|}
T : Set of time periods to schedule, T = {0, . . . , |T |}
J : Set of machines and instruments, J = {1, . . . , |J |}
H : Set of human resources, H = {1, . . . , |H |}
Hj: Set of human resources that can operate a machine or

instrument j, j ∈ J
Jh: Set of machines that can be operate by human resource

h, h ∈ H
Ij: Set of processes that can be executed on a machine or

instrument j, j ∈ J
Ji: Set of machines or instruments that can execute a

process i, i ∈ I
Ts: Set of processes receiving jobs from state s, s ∈ S
Ts: Set of processes that send their outputs to state s, s ∈ S
Definition of parameters
Dt : Last period t for a day, t ∈ T
Vmin
ij : Minimum capacity of machine j when used to per-

forming process i; j ∈ J , i ∈ I
Vmax
ij : Maximum capacity of machine j when used to per-

forming process i; j ∈ J , i ∈ I
Cs: Maximum storage capacity of jobs in state s, s ∈ S
Qs: Number of jobs in state s at the beginning of schedule,

s ∈ S
ρis: Proportion of input of state s that needs process i; i ∈

I , s ∈ S
ρis: Proportion of output to state s that produce process i if

there is no recirculation; i ∈ I , s ∈ S
ρ2is: Proportion of output to state s that produce process i

if there is recirculation; i ∈ I , s ∈ S
pi: Execution time of process i, i ∈ I
git ∈ {0, 1}: Allows to decide if the process i at time t has

recirculation or not, i ∈ I , t ∈ T . If git = 1, it means in
process i at time t there is not recirculation, so it has to take
the set ρis for parameters, if git = 0, in process i at time t there
is recirculation, so it has to take set ρ2is for parameters.
Its value is obtained from Mi which is the probability for a
process i to not have recirculation with i ∈ I , and it can be
calculated as follows: For all i ∈ I , t ∈ T , a random value
between 0 and 1 is obtained that is compared with the current
Mi value; if the random value is less than Mi, then git = 1,
otherwise git = 0.

Decision Variables
Wijht ∈ {0, 1}: Wijht = 1 if human resource h starts to

operate machine j to execute the process i at the beginning of
period t . Wijht = 0 otherwise, i ∈ I , j ∈ J , h ∈ H , t ∈ T
Bijht : Amount of jobs that start to execute in process i in

machine j by human resource h, at the beginning of period
t; i ∈ I , j ∈ J , h ∈ H , t ∈ T
Sst : Number of jobs stored in state s at the beginning of

period t; s ∈ S, t ∈ T

The Integer Programming (IP) formulation of the problem
is as follows (1)–(15), as shown at the bottom of the next page.

The objective function is looking to maximize the number
of tasks that start within the time to schedule. Constraints (1)
and (2) assure that at any period, an idle machine j can start at
most one process i, and if the machine begins to execute, that
machine cannot begin any other process until it is finished.
Constraints (3) and (4) assure that at any period, an idle
human resource h can start to operate at most one machine j.
If the human resource starts to use that machine, she (he) can-
not begin any other process until it is finished. Constraints (5)
and (6) indicate that a machine j cannot execute a process if it
does not belong to Ij, and a human resource h cannot operate
a machine j if he/she does not belong to Hj, respectively.
Constraint (7) makes sure that the number of jobs executed
by human resource h in machine j for process i at time t is
bound by its maximum andminimum capacity. Constraint (8)
indicates that at any time, t , the number of jobs stored in
the state s can be at most its maximum capacity of storage.
Constraint (9) indicates that the amount of jobs stored in-state
s at time t is the amount that the state has at the previous
period before plus the amount that came from the process
that produced the state as output in time t , minus the amount
that is used to feed processes. Constraint (10) makes sure
that the initial number of jobs stored in state s is known.
Constraint (11) indicates that scheduling starts at time 1. Con-
straint (12) makes sure that it must finish within the workday
hours if a process begins to execute. Constraints (13), (14),
and (15) specify the domains of variables. It is important to
note that the IP formulated for the problem contains three sets
of integer variables. The number of variables is dominated by
the variables B andW . There are |I |× |J |× |H |× |T | integer
variables due to B and the same number of binary variables
due toW .

B. ILLUSTRATIVE EXAMPLE
Let us suppose that in a research lab, there are three
machines (machine1, machine2, and machine3), three work-
ers (worker1, worker2, and worker3), two process (process1
and process2), and three states (state1, state2, and state3),
where state1 store all the jobs that don’t have passed by
any process, and state3 store all jobs that have passed all
process, as is shown in Fig. 3. As the image suggests, state1
feed process1. Process1 takes a 1-time block to complete,
and its output always goes 20% back to state1 and 80% to
state2. State2 feeds process2, which takes a two-time block to
complete. Process2 has two possible paths to send its output:
all jobs go back to state two, or all jobs go forward to state3.
There is a decision to choose which paths jobs must follow,
which happens in the rhombus in the image. There is a prob-
ability to follow each path, and this probability is calculated
by using empirical values. These probabilities are 4% for the
dashed path ( goes back to state 2) and 96% continuous path
(goes forward to state 3). Workers work eight hours continu-
ously per day. After those hours, any machine and any human
resource cannot work. So if a process is scheduled to execute a
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specific day, it must begin and finish within the eight working
hours of the same day. Machine1 can execute process1 with
ten jobs, machine2 can execute process1 with ten jobs and
process2 with five jobs, and machine3 can execute process2
with five jobs. Worker1 can operate machine1, worker2 can
manage machine2 and machine3, and worker3 can operate
machine3. The schedule is for one week, and this is 40 hours.
One block of time represents 1 hour. There is no limit to
storage in any of the states.

According to this example, sets can be defined as fol-
low: There are two process, so I = {1, 2}, three states
so S = {1, 2, 3}, forty time periods to schedule T =

{1, 2, 3, 4, 5, . . . , 40}, three machines J = {1, 2, 3}, three
human resources H = {1, 2, 3}, H1 = {1}, H2 = {2, 3},
H3 = {3}. I1 = {1}, I2 = {1, 2}, I3 = {3}. J1 = {1, 2},
J2 = {3}. T1 = {1}, T2 = {2}, T3 = {}. T1 = {1}, T2 = {1, 2},
T3 = {2}.

Parameters can be defined as shown in Table 1 for Dt ,
Table 2 for Vmin

ij and Vmax
ij and Table 3 for ρis, ρis and ρ2is.

As there are limits in the storage capacity of any state,
the maximum capacity is defined as a number big enough,

C1 = 1000, C2 = 1000, C3 = 1000. As is the beginning
of the processing, there are only jobs in the first state and no
jobs in the intermediate and last state: Q1 = 500, Q2 = 0,
Q3 = 0.
Execution time is defined as p1 = 3, p2 = 2.Parameter

gi,t , as it is a random number between 0 and 1 and its value
can be different in each run, it is calculated in a pre-process.
The values of this parameter for this specific run for git with
i = 1 were git = 1 ∀ t ∈ T . With i = 2 the values were
git = 0 ∀ t ∈ {2, 5, 12, 20}, and git = 1 ∀ t ∈ T | t /∈
{2, 5, 12, 20}. As it can be noticed, parameter g1,t never is 0,
which means that never is conditional reentrant, as it was
defined in the example, while parameter g2,t vary, as it was
defined that process 2 can be conditional reentrant.

Table 4 shows the results of the model application to the
illustrative example with data from Table 1, Table 2, and
Table 3. After running twice the model, the results of the
two resulting scheduling are shown in Tables 4a and 4b and
commented below.

As it can be noticed, all processes begin and end during
the 8 hours of a workday. No processes overlap from one

Maximize
∑
i∈I

∑
j∈J

∑
h∈H

∑
t∈T

Wijht

Subject to :
∑
h∈H

∑
i∈I

t−pi+1∑
t ′=t

Wijht ′ ≤ 1 ∀ j ∈ J , t ∈ T − {t : t > max(i∈I ) pi} (1)

∑
h∈H

∑
i∈I

t+pi−1∑
t ′=t

Wijht ′ ≤ 1 ∀ j ∈ J , t ∈ {1, . . . ,max(i∈I ) pi} (2)

∑
j∈J

∑
i∈I

t−pi+1∑
t ′=t

Wijht ′ ≤ 1 ∀ h ∈ H , t ∈ T − {t : t > max(i∈I ) pi} (3)

∑
j∈J

∑
i∈I

t+pi−1∑
t ′=t

Wijht ′ ≤ 1 ∀ h ∈ H , t ∈ {1, . . . ,max(i∈I ) pi} (4)

∑
t∈T

∑
h∈H

Wijht = 0 ∀ i /∈ Ij, j /∈ Ji (5)∑
t∈T

∑
i∈I

Wijht = 0 ∀ h /∈ Hj, j /∈ Jh (6)

WijhtVmin
ij ≤ Bijht ≤ WijhtVmax

ij ∀ i ∈ I , t ∈ T , j ∈ Ji, h ∈ Hj (7)

Sst ≤ Cs ∀ s ∈ S, t ∈ T (8)

Sst = Sst−1 +
∑
i∈Ts

∑
h∈H

∑
j∈Ji

(ρisgit + ρ2is(1− git ))Bijht−pi −
∑
i∈Ts

∑
h∈H

∑
j∈Ji

ρisBijht ∀s ∈ S, t ∈ T (9)

Ss0 = Qs ∀ s ∈ S (10)

Wijh0 = 0 ∀ i ∈ I , j ∈ J , h ∈ H (11)

Wijht (t + pi − 1) ≤ Dt ∀ i ∈ I , j ∈ J , h ∈ H , t ∈ T (12)

Sst ∈ N ∀ s ∈ S, t ∈ T (13)

Bijht ∈ N ∀ i ∈ I , j ∈ J , h ∈ H , t ∈ T (14)

Wijht ∈ {0, 1} ∀ i ∈ I , j ∈ J , h ∈ H , t ∈ T (15)
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day to another in the five workdays, so workers can go home
after their working day as no machines or human resources
are scheduled to work after those 8 hours. According to the
probabilistic component in the model, it can be noticed that
the two schedules shown in Tables 4a and 4b are different
even though the same parameters were used. The difference
is more noticeable in the last two workdays scheduled (from
hour 25 to hour 40). One important issue in the example is the
flexibility of the model to manage a diversity of solutions pro-
vided by the probabilistic component. Thus, the lab manager
could select the solution that best represents the conditions
existent in the lab.

The following section presents the case study and the
results obtained with the application of the optimization
model.

V. THE CASE STUDY
A. A LAB FROM WINE INDUSTRY IN CHILE
Viña Concha y Toro (https://conchaytoro.com/) is the biggest
winery company in Latin America (the second worldwide in
vineyard surface) and is located in Chile. It has a Center of
Research and Innovation (https://www.cii.conchaytoro.com/)
that promotes applied research, technological development,
and knowledge transfer to enhance the competitiveness and
multi-origin excellence of the company and the Chilean wine
industry in a dynamic international market with increasingly
demanding consumers. One facility of this center is the
Molecular Biology Laboratory.

The laboratory features cutting-edge equipment, enabling
early detection of the primary diseases that affect vine-
yards (grapevine trunk diseases, viruses, and bacteria) using
molecular tools. The equipment includes instruments for the
isolation and identification of microorganisms (Microbiology
area), nucleic acid purification and amplification for the iden-
tification of pathogens with automated sample processing
capacity (Polymerase Chain Reaction (PCR) and quantitative
Polymerase Chain Reaction (qPCR) area), and in vitro culture
for the sanitation and multiplication of selected plant mate-
rials. This laboratory is responsible for processing and ana-
lyzing samples from all of the company’s vineyards around
the country, focusing on the mother blocks and the nursery
processes.

The problem is related to grapevine viruses and trunk
diseases, focusing on mother blocks. In this context, the most

FIGURE 3. STN representation of a small example of the problem. Circles
represent the states, and rectangles represent the processes. Continuous
arrows represent paths that occur almost always. In contrast, dashed
arrows represent paths that occur only according to the given probability,
calculated in the diamonds. It is decided which directions the task must
follow: dashed path or continuous path.

TABLE 1. Values of each parameter Dt .

TABLE 2. Values of each parameter V min
ij and V max

ij .

TABLE 3. Values of each parameter ρis, ρis and ρ2is.

crucial step in establishing a profitable vineyard is planting
clean plants [20]. The principal cause of all these pathogens
are disseminated across long distances is by vegetative prop-
agation (scions and rootstocks) [21], [22]. Eventually, this
causes substantial crop losses, reduces plant vigor, and short-
ens the longevity of new vines [23], also having an impact
on the main characteristics of wines, such as acidity, sugar
contents, and pigments [24], [25]. The analysis of mother
block plants leads to a control based on preventive measures
such as sanitary selection for healthy plants to establish new
vineyards [26].

The optimization model was applied to schedule the
processes for identifying pathogens in wood and leaves in
vineyards plants, shown graphically in Fig. 4. Around 1,500
samples of leaves have to pass through 17 processes with
eight machines (represented in Fig. 5). About 900 samples
of wood have to pass through 9 processes (depicted in
Fig. 6) with seven machines or instruments. Also, four human
resources for each were used as the base case, which means
the actual scenario of the company’s laboratory.

Because the purpose of the analysis is to find healthy
plants, at the end of all processes, each sample is labeled
as ‘‘accepted’’ or ‘‘rejected,’’ which means the plant sample
tested negative for diseases or positive, respectively. First, all
the samples from leaves are processed. Suppose a leaf type
sample is ‘‘rejected’’ once its analysis is finished. In that case,
there is no necessity to analyze the wood of that specific plant,
and only when leaf analysis finds healthy plants, its wood
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TABLE 4. Two different scheduling (two runs with the same parameters) for a week (40 hours) are shown in Tables 4a and 4b. Each row represents each
worker’s scheduling at the given hour, where empty cells represent idle periods, P1 and P2 process1 and process2 respectively, and M1 to M3
machines 1 to 3.

is analyzed. So a healthy plant means both leaf and wood
samples were accepted.

The planning was made for two weeks and divided
into 90 time periods representing an hour. Given that the
optimization model has the number of samples stored in each
state as a parameter, the scheduling for the first twoweeks can
be used as input for scheduling the next two weeks, planning
for a longer time.

In Fig. 5 the representation of STN network for leaves
processes is shown, and in Fig. 6 is the representation of STN
network for wood processes. Each state (circles) acts as a
queue through which samples must pass before entering the
respective process (rectangles). There are processeswhere the
sample is ‘‘duplicated,’’ following two paths at the same time
(for example, at the end of process P6 and so on in Fig. 5)
and even ‘‘triplicated’’ at the end of process P5 in Fig. 5. This
represents that there are stages in which the sample from the
same plant may be being processed in more than one process
at the same time. Also, at the end of specific processes, it is
necessary to make a decision: the batch of samples continues
to the following processes (continuous arrows in Fig.5 and
Fig.6), or should it go back as reentrant (dashed arrows in
Fig.5 and Fig.6). This is calculated according to a given
probability. This random component simulates an error in
the process, such as a human error, sample contamination,
inadequate pipetting, and a spoiled sample. This error can be
noticed only at the end of the process, and it means that the
results obtained are not reliable, so they must be repeated.

FIGURE 4. Flowchart in molecular biology laboratory in case study.

The model was run separately for each type of tissue
sample, leaves and wood, and then the results were analyzed.

B. COMPUTATIONAL EXPERIMENTS AND ANALYSIS
The computational implementation of the optimizationmodel
was done using the solver CPLEX 12.8. The experiments
run on a computer with Intel Core i7 8550U CPU 2.0 GHz
and 8 GB RAM. Due to the nature of the solution method
proposed, which has random components, the model runs
several times to obtain statistics and dispersion analysis of
results for the objective function and the schedule.

Model Application: Results and Findings.
The experiments aim to exploit the model’s potential

to provide (near) optimal scheduling of the machines and
workers and some indicators about the use of the machines
and time occupied by the workers. First, Fig. 5 and
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FIGURE 5. STN representation of leaves analysis processes. Circles represent the states, and rectangles represent the processes. Continuous arrows
represent paths that occur almost always. In contrast, dashed arrows represent paths that occur only according to the given probability, calculated in the
diamonds. It is decided which directions the task must follow: dashed path or continuous path.

TABLE 5. Relations between machines, processes, and workers for leaves analysis.

TABLE 6. Process time (in hours) for each process and the probability of the process not having conditional recirculation (probability to follow black
arrows in Fig. 5) for leaves analysis.

Tables 5 and 6 illustrate the input data for applying the model
on leaves. Table 7 presents the model results by detailing
basic information like the value of the objective function
and the running time. Also, statistics about the busy time
of workers and machines is presented. Table 8 illustrates
the detailed scheduling of workers and the specification
of the process assigned to a machine. The same scheme
of input data and results are then presented for the case of
woods.

1) LEAVES SAMPLES: INSTANCE AND RESULTS
a: INPUT DATA SPECIFICATION
The instance used for leaves analysis consists of 90 hours,
four workers, eight machines, 17 processes, and 18 states.
The relations between workers, machines, and processes
are shown in Table 5. Workers 1 and 2 represent technical
human resources, while Workers 3 and 4 represent analyst
human resources. Machines 1,2,3,4 and 5 can process batches

with 24 samples, machine 6 with 24 samples for process 4,
and 96 samples for processes 15 and 16, machine 7 with 288
samples for processes 5,6,7,8,9,10 and 11, and 96 samples for
processes 12, 13, 14, machine eight can process 288 samples
at the same time. At the end of process 3 (see Fig. 5), 87.5 %
of the samples processed go to state 4, and 12.5% return to
state 2. The model size is 100,646 variables, of which 49,504
are binary and 159,889 constraints.

In Table 6 the processing time (expressed in hours) is
shown for each process and the probability that the output of a
process can have recirculation or not (follow dashed arrows or
straight arrows in Fig. 5). Each state had unlimited capacity,
and the start amount of samples in each state (representing
the beginning of the season) is 0, except State 1 that has all
the samples. State 1 is the initial number of samples that have
not gone through any process, and State 18 is the number of
samples that have gone through all the processes, while the
rest are intermediate states.
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FIGURE 6. STN representation of wood analysis processes. Circles represent the states, and rectangles represent the processes. Continuous arrows
represent paths that occur almost always. In contrast, dashed arrows represent paths that occur only according to the given probability, calculated in the
diamonds. It is decided which directions the task must follow: dashed path or straight path.

TABLE 7. Average, Standard deviation, maximum and minimum for objective function value, execution time, and busy hours for each worker and
machine for leaves analysis.

Given that during the first two weeks of the season, there
is only work for the first steps of the workflow, technicians
are mostly busy, and analysts are mostly idle. So, to illustrate
the scheduling of technicians and analysts, we run the model
for the first two weeks (results not shown) and then another
two weeks (results shown). So, we take the results obtained
by the first two weeks (put values of Ss90 in Qs,∀s ∈ S) as
the input for the two successive weeks.

b: MODEL RESULTS FOR LEAVES SAMPLES
After running the model 20 times for the instance described
above, the results are shown below. For leaves analysis,
in Table 7 is shown the average, standard deviation, the
maximum and minimum value of the objective function, and
the total of busy hours for human resources and machines.
It shows an average of 109.2 for the objective function, which
means the sum of all processes that start and finish within
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TABLE 8. Representative scheduling for the second 90 hours for leaves analysis. Each row represents each worker’s scheduling at the given hour, where
empty cells represent idle periods, P1 to P17 process 1 to process 17, M1 to M8 machines 1 to 8.

these 90 hours is around 109 on average, with a standard
deviation of 5.59. Worker 1 and Worker 2, which represent
technician human resources, are busy almost every hour in
every running. Worker 3 andWorker 4, who represent analyst
human resources, always have an average idle time of 30 and
28 hours. Representative scheduling of these results is shown
in Table 8, which illustrates how work time is assigned for
each worker and machine.

2) WOOD SAMPLES: INSTANCE AND RESULTS
a: INPUT DATA SPECIFICATION
The instance used for wood analysis has 90 hours, four
workers, seven machines, nine processes, and ten states.
The relation between workers, processes, and machines is
shown in Table 9. Workers 1 and 2 represent technical human
resources. In contrast, Workers 3 and 4 represent analyst’s
human resourcesMachines 1,2,3,4, and 5 can process batches
with 24 samples, machine 6 with 96 samples for processes 4,
5, 6, and machine 7 with 288 samples for process 9. At the
end of process 3 (see Fig. 6), 87.5 % of the processed samples
go to state 4, and 12.5% returns to state 2. The model size
is 46,774 variables, of which 22,932 are binary and 75,687
constraints.

In Table 10 the processing time (expressed in hours) is
shown for each process and the probability that the output of
a process will have recirculation or not (follow dashed arrows
or straight arrows in Fig. 6). Each state had unlimited capac-
ity, and the start amount of samples in each state (representing
the beginning of the season) is 0, except State 1 that has all the
samples. State 1 is the initial number of samples that have not
gone through any process. State 10 is the number of samples
that have gone through all the processes, while the rest are
intermediate states.

b: MODEL RESULTS FOR WOOD SAMPLES
Given that during the first two weeks of the season, there is
only work for the first steps of the workflow, technicians are
mostly busy and analysts are mostly idle. The results shown
below are the schedule for the second two weeks taking as
input for the number of samples at each state the results
obtained by the first two weeks, where there are samples in
almost every state. After running the model 20 times for the
instance described above, the results are shown below.

For wood analysis, Table 11 is shown the average, stan-
dard deviation, the maximum and the minimum value of the
objective function, and the total of busy hours for human
resources and machines. It shows an average of 88.85 for the
objective function, which means the sum of all activities that
start and finish within these second 90 hours is around 89 on
average, with a standard deviation of 1.9. Also, Worker 1 and
Worker 2, the technician human resources, are busy around
85% of the schedule, while Worker 3 and Worker 4, who
represent analyst human resources, are busy around 89% of
the time. Representative scheduling of these results is shown
in Table 12, which illustrates how work time is assigned for
each worker and machine.

3) SENSITIVITY ANALYSIS
To evaluate the model’s flexibility and assess its perfor-
mance in different scenarios, some tests were carried out
by adding and removing human resources. The model was
run for 135 hours in these trials, representing three weeks,
with 9 hours per workday. The scenarios are the same as leave
analysis, showing the base case (2 technicians and two ana-
lysts), adding a technician, adding an analyst, and removing
an analyst. Results are shown in Table 13. On average, it can
be noticed that the scenario removing a technician takes the
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TABLE 9. Relations between Workers, processes, and Machines for wood analysis.

TABLE 10. Processing time (in hours) for each process and probability for the process to NOT have conditional recirculation (probability to follow black
arrows in Fig. 6) for wood analysis.

TABLE 11. Average and standard deviation for objective function value, execution time and busy hours for each worker and machine for wood analysis.

shortest execution time while adding a technician takes the
largest execution time.

C. FINAL DISCUSSION ABOUT THE CASE STUDY
Some findings of the performance of the optimization model
when applied to data from a research lab are commented on
as follows.
• All resources have high occupation rates, especially
human resources. Worker 1 and Worker 2 (who repre-
sent technicians) for leaves analysis and Worker 3 and
Worker 4 (who represent analyst human resources) for
wood analysis.

• Machines that are the least busy when talking about
usage time work on the processes that take the least time
to be completed. On the other hand, machines with high
occupation rates work on processes that take the longest
and execute the most processes. Some machines work
on the same process, explaining the difference between
the maximum andminimum periods that they were busy.
Sowhen amachinewas used themost, the othermachine
that executes the same process was used the least, and
vice-versa.

• The problem’s random component can explain the
difference between the maximum and the minimum
number of samples in each state. A group of samples
can be re-processed several times in only one process
(dashed arrows in Fig. 5 for leaves and Fig. 6 for wood),
therefore not advancing in the workflow. On other occa-
sions, the random part indicates that they only need
to go through that process once, so they move faster
through the workflow. This random component simu-
lates when an error occurs in the process, such as a
human error, sample contamination, inadequate pipet-
ting, and a spoiled sample, which can be noticed only
at the end of the process.

• In the sensitivity analysis, the best-case scenario in terms
of objective function value and number of finished sam-
ples seems to be adding a technician to the base case
where the three technicians have a high occupation rate.
Adding an analyst to the base case makes no significant
difference. It only reduces the workload for analysts but
cannot achieve greater performance than the base case
scenario. Removing an analyst is the worst scenario.
In terms of objective function value and the number of
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TABLE 12. Representative scheduling of the second 90 hours for wood analysis. Each row represents the scheduling for each worker at the given hour,
where empty cells represent idle periods, P1 to P9 process 1 to process 9, M1 to M7 machines 1 to 7.

finished samples, it increases the workload of the only
analyst left and reduces the busy times formachines used
by analysts.

An interesting aspect of this research is using the IP formu-
lation proposed to solve actual instances in reasonable times.
The results obtained (and already discussed in this section)
from applying the solver CPLEX to the leaves and wood
samples took 5 minutes or less. Besides, all the experiments
carried out in the Sensitivity Analysis also took sevenminutes
or less. So, the ILP model is the right solution for the size
of the problem presented here. However, given the problem’s
high complexity, exact algorithms can solve at the optimum
only instances of limited size.We conducted additional exper-
iments by increasing the number of periods to four weeks.
In this case, the personal computer runs out of memory after
27,523 seconds with a gap of 0.5%.

A final but essential issue related to the case study is the
satisfaction of the Concha y Toro lab team with the proposed
model. The team is used to planning manually, based on pre-
vious experiences and intuition, taking into account the avail-
ability of equipment and skills of Human Resources. This is
evaluated constantly based on the seasonality of the vineyard
growing and the availability of samples derived from the
analytical requirements of each season (annual). With the
‘‘non-static’’ nature of the season, the demand for analysis
varies. It may be necessary to incorporate new analyses that

are different from those already planned. Also, productive
requirements can arise within the season, human resources
and machines can be suddenly designated to another particu-
lar R&D project with higher priority. All these facts make it
difficult to planning horizons higher than one month. Since
the planning was done manually, it does not incorporate
an optimization integrating machines and specialists. Thus,
it could cause incorrect estimations of lead times, delays, and
sometimes a critical idle time of specialized human resources.
In the short to medium term, it will probably be necessary to
grow in machines and personnel. Also, the proper authorities
have additional regulatory components, and doing the man-
ual planning can not cope. So, the team leader (F. Gainza)
decided to explore new approaches, which led to the decision
to use optimization models for scheduling in the lab. The lab
team actively participated in the different steps of formulating
the optimization model, helping to identify the components
of the problem (parameters and constraints), defining the aim
of the objective function, and giving continuous feedback as
the model was built and tested. Based on the results of the
case study, the lab decided to hire a new technician.

Also, it is expected that the adoption of the proposedmodel
in the line of analytical processes of the molecular biology
laboratory subject of study entails a substantial improvement
in the efficiency of use of human resources and equipment.
It also allows being used as a tool to evaluate points of
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TABLE 13. Average and standard deviation for objective function value, execution time, busy time periods for human resources and machines, and
number of samples in the last state for different scenarios.

TABLE 14. Average running time in seconds (Avg. t) and Average GAP (Avg. GAP) for the additional experiments.

TABLE 15. Average running time in seconds (Avg. t) and Average GAP for the new experiments missing Constraint (12).

progress for the current operating scenario. In particular,
it is expected to increase the number of samples analyzed
per season (increase in analytical capacity) and decrease the
‘‘dead times’’ associated with the hours of dedication of
human resources (increase in efficiency person-hours). Addi-
tionally, make informed decisions regarding incorporating
new specific human resources (for example, new analysts and
technicians) and equipment (for example, new centrifuge and
automation systems) that strengthen the analysis process.

VI. ADDITIONAL EXPERIMENTS WITH THE MODEL
Additional experiments to those done in the previous section
are now conducted to study the model’s performance. The
experiments used the network structure in Fig. 6 which
contains the typical components of the problem. However,
intending to construct a set of tested instances, we change the
data defining the number of machines and the team group.
The skills of the team group were also changed. Addition-
ally, the flexibility of machines was randomly defined, and
finally, the planning horizon was increased.

We used two instances to know the impact of incremental
resources in the model results. In the first instance (I1), two
new human resources were added to the basic instance and,
in the second instance (I2), additional to the first instance,
we added a new machine.

From results in Table 14, we present the average time
and average gap for every planning horizon (four weeks, six
weeks, and eight weeks). It is important to mention that a
limit of one hour (3600 seconds) was set for each run, so if
the average running time shown is less than 3600 seconds,
it means that there were runs in which the optimal solution
was found before reaching the time limit. On the contrary,
if the average time is 3600 seconds, the optimal solution
was not found in any of the runs performed. Concerning the
results, for I1, with only a planning horizon of four weeks
was possible to find an optimal solution in some of the runs
made. Therefore, in the I1 instance, the model could obtain
optimal or near-optimal solutions when a planning horizon
until eight weeks is considered. Since the characteristics of
the I1 instance could be found in several research labs, at least
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in this field, real problems could be well-solved by using
the proposed optimization model. However, also in Table 14,
note that the results are different when the I2 instance is
considered. None of the planning horizons studied was pos-
sible to find an optimal solution within the set time. When
the planning horizon increases, the GAP of the solutions
also found increases, and for eight weeks, none of the runs
were able to find a feasible solution. Therefore, the problem
with this configuration of machines and workers starts to see
a severe difficulty obtaining optimal solutions. Still, for a
planning horizon of four weeks, near-optimal solutions can
be achieved.

A new interesting scenario of experimentation was also
explored. The possibility that the working day is not only
of certain blocks per day but also continuous, emulating the
possibility of working in shifts. Suchworking protocol is used
in some environments like for shift scheduling in emergency
departments in a hospital [27], for electricity generation of a
natural gas combined cycle power plant [28], for call centers
scheduling [29], and for police patrol scheduling [30]. This
situation can be represented by removing Constraint (12) in
the optimization model.

In Table 15 the results for the additional experiments
removing Constraint (12) in the base model are shown. For
the I1 instance, it can be noted that, as in the previous experi-
ments, when two additional human resources are adding to
the base instance, an optimal solution could not be found
within the time limit established for the planning horizons
of six weeks and eight weeks. Only in the planning for four
weeks some of the runs found the optimal solution before the
time limit. Note also that the average gap increases exponen-
tially when going from six weeks to eight weeks.

In the case of the I2 instance, where one machine is added
to the machines in I1, only for four weeks was it possible
to find a feasible solution with a high gap of 401%. So, this
variant of the problem, considering a continuous working
period, is impossible to solve by an exact method even for
four weeks.

Overall, with these experiments, we concluded that
the optimization model could efficiently manage problem
instances with eight machines, six workers, and two weeks
as horizon planning. Over this size, increasing workers and
machines, or the horizon planning, the running time achieves
the time limit of 3,600 seconds, and increasing gaps are
achieved. In the case of a continuous operation, when con-
straint (12) is missing, the complexity of the problem strongly
increases. For the I1 instance, only considering four weeks,
optimal solutions were obtained. In contrast, for I2 instances,
near-optimal solutions could not find.

VII. CONCLUSION
In this work, a new batch process scheduling problem has
been defined and mathematically formulated as an optimiza-
tion problem. The scheduling problem contributes to the liter-
ature considering a framework integrating different machines
and a team composed of technicians and analysts. Combining

the two components of the problem generates complex and
original constraints that model atypical operations to batch
processing in the optimization model. A case study from the
winery Concha y Toro research lab in Chile has been used
to apply the mathematical model. Actual data from the lab
was used to analyze the model’s capacity to find scheduling
of human resources and specialized equipment in such a way
as to satisfy the lab requirements.

The results obtained after solving the optimization model
were satisfactory for the lab team. The model could be
run in different periods. Changes in the technical team and
instruments are possible so that replanning could also be
executed with the same model and only changing the corre-
sponding parameters. The model is flexible enough to eval-
uate different scenarios with short execution time, allowing
the decision-maker to assess the performance of both the
machines and the work team.

Although it is possible to solve real scheduling problems
with the characteristics studied in this paper, as future work,
(meta)heuristic algorithms could be implemented for solving
instances of large size. In particular, for this type of problem,
approaches using neighborhoods could be appropriated. So,
GRASP and VNS metaheuristics would be recommended.
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