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ABSTRACT Inertial sensors have gained relevance as wearable sensors to acquire the kinematics of human
limbs through fusion sensor algorithms and biomechanical models. However, there are some limitations to
the use of Inertial Measurement Units in the control of wearable robotic devices: 1) Some approaches use
magnetometer readings to estimate the orientation of the sensor, and, as a result, they are prone to errors
due to electromagnetic interferences; 2) Biomechanical model-based approaches require complex and time-
consuming calibration procedures. In order to address these issues, this paper proposes an Extended Kalman
Filter to estimate sagittal lower limb kinematics during gait, based on gyroscopes and accelerometers and
without requiring any calibration or sensor alignment process. As magnetometer measurements are not
involved, this method is not affected by electromagnetic disturbances. Our approach calculates the knee
rotation axis in real-time, and it estimates hip and ankle sagittal axes considering that the movements in
that plane occur around parallel axes. We carried out an experimental validation with eight healthy subjects
walking on a treadmill at different velocities. We obtained waveform RMS errors about 3.8◦, 3.6◦, and 4.8◦

for hip, knee, and ankle in the sagittal plane. We also assessed the performance of this method as a tool for
controlling lower-limb robotic exoskeletons by detecting gait events or estimating the phase and frequency
of the gait in real-time through an Adaptive Frequency Oscillator. The average RMS delay in the detection
of gait events was lower than 60 ms, and the RMSE in the estimation of the gait phase was about 3% of the
gait cycle. We conclude that the described method could be used as a controller for wearable robotic devices.

INDEX TERMS Inertial sensor, extended Kalman filter, lower-limb kinematics, robotic exoskeleton sensors.

I. INTRODUCTION
Inertial sensors have become valuable tools for acquir-
ing human motion during complex functional tasks such
as gait [1]. Inertial Measurement Units (IMUs) are com-
posed of accelerometers, gyroscopes, and magnetometers
that measure the information with respect to their own three-
dimensional local coordinate systems [2]. Several fusion
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sensor algorithmswere developed to use the information from
these three kinds of sensors to estimate the IMU orientation
with respect to a global coordinate system [3]. They are
usually based on strap-down integration [4]–[6], nonlinear
filtering techniques, such as Extended Kalman Filters [7], [8],
or nonlinear numerical optimization [9], [10]. These algo-
rithms assume that accelerometer readings are dominated by
gravity at specific samples to correct vertical tilt [2], [6],
[11], [12] or use magnetometer readings assuming mag-
netic field homogeneity to compensate for drift in the
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horizontal plane [6], [13]. In these last cases, magnetic
disturbances may affect the performance of the orientation
estimation [14], [15].

Although these techniques provide reliable information
about the IMU orientation, estimating the orientation of a
limb segment is not straightforward. Since there is no exact
correspondence between the sensor’s coordinate system and
the human segment, it is necessary to deal with possible
misalignments between them. To overcome this problem,
some authors proposed the use of movements to calibrate
a biomechanical model [11], [16], while others used prior
knowledge like segment lengths or masses [5], [9], [10] or
the position of the sensors with respect to the joint centers [8].
These calibrations are only valid while the sensors remain in
the calibration position; thus, a new calibration is required if
they change their position during an experiment.

As IMUs can directly measure a subject’s movement,
robotic wearable systems can use them to implement assistive
strategies or rehabilitation therapies based on real human
motion instead of using the robot’s own movements (usually
measured by encoders). Recently, robotic devices have shown
promising results as therapeutic tools for gait rehabilitation
of impaired patients [17], [18] as well as assistive devices
to support their gait [19], [20]. Different approaches were
followed to implement sensory systems in these devices [21],
such as potentiometers or inertial sensors for measuring
angles, torque sensors, or foot pressure sensors for acquir-
ing ground reaction forces. Conversely, other authors opted
for different approaches like using biosignals such as elec-
troencephalography (EEG) [22] or electromyography (EMG)
[23], [24], or new flexible sensors according to the soft-
robotic paradigm [25]–[27].

The reduction in price and size of inertial sensors
have spread their usage as sensory systems for robotic
exoskeletons or active orthosis to acquire the kinematics
of assisted [28]–[31] or unassisted [32], [33] lower limbs.
However, these robotic applications imply severe drawbacks
to the use of inertial sensors. In particular, IMUs are espe-
cially prone to magnetic disturbances from hospital environ-
ments [3] or elements of the experimental set-up (such as
treadmill motors or exoskeleton actuators) [34]. On top of
that, the calibration and alignment procedures required to use
these systems are complex and time-consuming.

In this context, we developed an auto-adaptive algorithm
based on inertial sensors that estimates the sagittal joint axes
and the angular movements in human lower limbs during gait
based on inertial sensors data. The overarching goal is to
enable the application of this technology as a reliable input
for the control of robotic wearable devices. The proposed
algorithm addresses the three main limitations of this tech-
nology to be used in this field: (1) being not affected by
magnetic disturbances, (2) easing calibration and donning
procedures of the sensory system, and (3) being independent
of the relative position between the IMU and the human limb.

To fulfill these requirements, our algorithm is based
on the measurements from gyroscopes and accelerometers.

As magnetometers are not involved, the system is unaffected
by magnetic interferences. Besides, since the algorithm is
able to estimate in real-time the coordinates of the axes,
it does not require either previous calibration procedures or
being aligned with human segments, being robust to possible
sensor displacements during an experiment.

To validate the application of our method in the controller
of a robotic exoskeleton, we evaluated its performance under
two common control paradigms that are usual for these
devices: 1) Detection of gait events for the definition of
the device’s action [35]–[39]; and 2) Estimation of the gait
phase in real-time using an Adaptive Frequency Oscillator
(AFO) [31], [40], [41]. Several authors have worked on
gait event detection and gait segmentation [42], [43], and
Prasanth et al. presented an extensive review of thesemethods
in [44]; however, some of them have not been validated as
controllers for robotic wearable devices, so they are out of
the scope of this work.

In a nutshell, in this document, we propose an algorithm
to estimate planar angular movements and their axes in real-
time by fusing IMU signals. The algorithm is based on an
Extended Kalman Filter, and it was used to estimate the hip,
knee, and ankle movements in the sagittal plane. We also
describe the experimental validation performed on healthy
subjects in terms of errors, and, as application examples,
we evaluated the use of this method as two typical controllers
for robotic exoskeletons. Finally, we discuss the obtained
results and confirm that our approach can be used as a tool
for wearable robots’ controllers as errors remained under the
thresholds previously published in the literature.

II. MATERIALS AND METHODS
The algorithm presented in this document is an extension
of our previous work [45], where we assumed that the knee
is a perfect revolute joint, following the approach presented
by Seel et al. [2]. Here, we also assume that hip, knee,
and ankle sagittal movements occur around parallel axes.
As a result, we can use the knee axis estimation to calculate
the axis for hip flexion-extension and ankle dorsiflexion-
plantarflexion. We also assume that the coordinates of
these axes in the local coordinate systems of the IMUs
are constant in time, although they are different between
them, and their relative position may change over time
(see Fig. 1, panels a and b).

A. PROBLEM FORMULATION
We assume that the rotation axis of a joint is invariant with
respect to the local frame of the IMUs. Therefore, if vD
represents a unitary vector in the direction of the joint rotation
axis in the local frame of the distal segment, and vP represents
the same joint axis vector in the local frame of the proximal
segment, the joint angular velocity at the sample j, θ̇j, can be
computed as follows

θ̇j = ω
T
Dj vD − ω

T
PjvP (1)
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FIGURE 1. Conceptual overview for the algorithm. In (a), we represent the calculus of the knee joint axis based on the knee angular velocities seen
from the thigh (ωkT

) and the shank (ωkS
). In (b), we represent the hip flexo/extension axis and the ankle dorsiflexion/plantarflexion axis, which we

assume are parallel to the knee axis. The origin of the local frames OF and the unitary vectors for the joint axis vjF
are also depicted. The subindex j

indicates the joint involved (h for hip, k for knee, a for ankle), while the subindex F indicates the local frame from which the variable is seen (P for the
pelvis, T for the thigh, S for the shank, F for foot). The unitary vectors for the joint axis are expressed in spheroidal coordinates where c(α) and s(α)
represent the cosine and sine of the angle α. In (c), we include the block diagram of the algorithm and the information flow across it.

where ωDj and ωPj are the angular velocities of the distal
(D) and proximal (P) segment of the joint measured by the
corresponding IMUs at the sample j.
Taking into account the spheroidal coordinates of unitary

vectors vD and vP, we define the unknown vector x̄ as

x̄ =
[
αD βD αP βP

]T (2)

where the pairs (α, β) are the spheroidal coordinates of the
joint axis seen form the distal (D) and proximal (P) sensor,
respectively.

To calculate x̄, we use N sample times to define the error
vector:

e(x̄) = [e1 e2 . . . ej . . . eN ]T ; N ≥ 4 (3)

where the error e(x̄)j at the sample j has the following
expression

e(x̄)j = ||ωDj × vD|| − ||ωPj × vP|| (4)

In this way, the unknown vector x̄ is iteratively computed
using the Newton method as

x̄i+1 = x̄i +G(x̄)+i e(x̄)i (5)

whereG(x̄)+i is the pseudoinverse of the JacobianmatrixG(x̄)
at iteration i defined by

G(x̄)i =
∂e(x̄)
∂ x̄

∣∣∣∣
i

(6)

As shown by (6), the Jacobian matrix G(x̄)i is built from
the error vector e(x̄)i that, at the same time, requires N mea-
surements of the angular velocities ωDj and ωpj with N ≥ 4.
At each sample time, the error vector e(x̄)j is updated with

a new velocity measurement. Therefore, each iteration of (5)

is performed with the N = 10 latest velocity measurements
and with an updated Jacobian matrix G(x̄)i. Because of the
variation of these parameters for the sample j, equation (5)
can be rewritten as:

x̄i+1 = x̄i +G(x̄, j)+i e(x̄, j)i (7)

B. MULTIJOINTPROBLEM EXTENSION
At this point, the process differs in function of the joint
involved. Since we assumed that the knee joint is composed
of a single axis, all the movement measured by the distal
and proximal inertial sensors corresponds to the movement
around this axis in the sagittal plane. Thereby, this axis is fully
defined and can be iteratively calculated by solving (7) and
considering the solution of the previous iteration x̄i. This iter-
ative problem is resolved by using the extended Kalman filter
previously reported in [45] and summarized in the appendix
of this document.

The unique-axis assumption cannot be maintained in hip
and ankle joints as they allow movements in more planes.
However, since IMUs in the thigh and the shank are also
involved in the movements of hip and ankle joints respec-
tively, and assuming that the rotation axes v of the sagittal
movements are parallels, there is a correspondence between
the coordinates of the rotation axes for different joints seen
from the same IMU:

vhD = vkP; vaP = vkD (8)

where the subindexes indicate the joint (h for hip, k for knee,
and a for ankle) as well as the segment (D for distal and P
for proximal) involved in the restriction. According to these
equivalences, the unknown state vector of equation (2) for the
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FIGURE 2. Sensor placement during the experimental essays. In panel (a), we highlighted the two sets of sensors involved in the experimental set-up.
Orange inertial sensors are the Xsens sensors used as the gold standard for the calculus of the biomechanical model. In contrast, the sensors highlighted
in blue are used to acquire the velocity and acceleration from gyroscopes and accelerometers to feed the Kalman algorithm. In panel (b), we show the
placement of these sensors in three subjects that participated in the experimental validation. Ellipses of the same color mark the same sensor in each
subject. The orientation of the same sensor slightly varied between subjects.

hip and ankle joints can be expressed as:

x̄h =


αhD
βhD
αhP
βhP

 =

αkP
βkP
αhP
βhP

 ; x̄a =


αaD
βaD
αaP
βaP

 =

αaD
βaD
αkD
βkD

 (9)

Once the iterative problem was solved for the knee joint
for the i+ 1 iteration, we use the estimation of the knee axis
coordinates vkDi+1 and vkPi+1 to define the initial state vectors
at the iteration i for the estimation of hip and ankle axes:

x̄hi =


αkPi+1
βkPi+1
αhPi
βhPi

 ; x̄ai =


αaDi
βaDi
αkDi+1
βkDi+1

 (10)

Starting from these initial vectors, we can solve the equa-
tion (7) to estimate the state vectors x̄hi+1 and x̄ai+1 for the
iteration i+ 1.

As explained in [2], signs of vD and vP need to match,
i.e., the axis seen from both sensors, must point in the same
direction. It can be achieved by maintaining a rough position
that does not restrict the mounting orientation and defining
the sign of one of the axis components; for example, the y-
axis of the sensor must point laterally, and the y-component
of the axis must remain positive.

C. EXPERIMENTAL VALIDATION
We tested the performance of this algorithm within eight
healthy subjects (both sexes: 4 males, 4 females; age:
23.8±3.5 years; height: 1.7±0.07m; weight: 65.5±11.2kg;
mean± standard deviation). All subjects gave their informed
consent for the experiment; the study was conducted in accor-
dance with the Declaration of Helsinki, and it was approved
by the local Ethics Committee (CSIC’s Ethics Committee,

approval number: 034/2020). Subjects were instructed to
walk normally on a treadmill while sensor information was
recorded. The inputs of our algorithm come from 4 (four)
TechMCS IMUs (Technaid, Spain) that measured the raw
angular velocity and acceleration. We strapped these sensors
in arbitrary positions in the pelvis and the subjects’ right
thigh, shank, and foot (Fig. 2, panel a), being their orientation
slightly different between subjects (Fig. 2, panel b). The
initial orientation of these sensors was not modified during
the execution of the trials.

We compared the estimation of our algorithmwith themea-
surements obtained by an MVN system (Xsens Technologies
B.V., Netherlands) as in other previous studies [46]–[48].
We used the quaternions provided by these sensors to run
the OpenSense workflow of OpenSim open-source soft-
ware [49], [50] and execute the biomechanical model defined
in [51]. The results provided by OpenSense were used as the
reference to assess the performance of our algorithm.

During the experimental trials, subjects walked on a tread-
mill at a constant velocity for 1 minute. Each subject repeated
this trial three times at six different velocities (from 1km/h
to 3km/h in 0.4km/h steps); the repetition order was set
randomly. Data from the two sets of sensors were acquired
at 50Hz.

III. RESULTS
Fig. 3 illustrates the comparison of the angles obtained by
the Kalman filter with the result of the OpenSense biome-
chanical model for one of the trials. These results correspond
to the movement of the hip, knee, and ankle joints in the
sagittal plane: flexo/extension for hip and knee and dorsiflex-
ion/plantarflexion for the ankle. Due to the uncertainty when
the algorithm converges, there is an offset between the angles
obtained by both methods. However, we can see the similarity
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FIGURE 3. Angle estimation obtained by the Kalman algorithm (in orange) compared with the result obtained by OpenSense
(in cyan). Panel (a) represents the raw results for hip flexion, knee flexion, and ankle dorsiflexion following both methods.
Panel (b) represents the same results after removing the mean value and eliminating the offset.

FIGURE 4. Violin plots for error distribution when comparing OpenSense
and Kalman filter results. The shadowed areas represent the histogram of
the data distributions, while boxplots represent the median, quartiles,
and interquartile ranges of the distributions. We discarded data outliers
from representation, corresponding to 1.3%, 2.5%, and 3.1% of hip, knee,
and ankle samples. The highlighted region corresponds to errors
between ±5◦.

between both waveforms once we remove the average value
of both curves (Fig. 3, Panel b). We discarded ankle data in
three patients because the foot gyroscopewas placed too close
to the ankle joint and velocity measurements were erroneous.

To evaluate the algorithm’s performance, we consider the
waveform of the angles from the OpenSense simulation and
the Kalman filter algorithm. These waveforms were calcu-
lated by removing the mean value from the kinematic signal.

θ̂ = θ − θ̄ (11)

TABLE 1. Summarized error in angle estimation.

We calculated the error between both angle estimations
according to the following equation:

ε = XOpenSense − XKalman (12)

where X is the variable whose error we aim to assess. This
error definition will be used across this document.

Fig. 4 represents the error distributions for angle estimation
in hip, knee, and ankle after pooling together the data from
all subjects and trials. Average errors are close to zero, and
RMS errors (RMSE) are 3.8◦, 3.6◦, and 4.8◦ for hip, knee,
and ankle joints, respectively (Table 1).

During normal walking, it is highly probable that sensors
slightly vary their initial orientation. Fig. 5 shows an example
of one experimental trial during which the thigh IMU slightly
moved from its original orientation. As the algorithm contin-
uously estimates the joint axis direction, the algorithm reacts
and corrects this estimation after the sensor’s motion (Fig. 5,
panel a and b). As it can be seen (Fig. 5, panel c), the effect
over the angle estimation is transient, and it lasted until the
new joint axis direction was reached.
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FIGURE 5. Example of the reaction of the algorithm to a slight sensor displacement during gait. Panel (a) shows the spheroidal
coordinates of the estimation of the joint axes seen from the local coordinate system of each IMU (pelvis, thigh, knee, and foot).
In Panel (b), we represent a zoom of the panel (a) to show the effect of a slight displacement in the thigh IMU; arrows point to the
instant when the sensor changes its orientation, and the brown area represents the time while the algorithm corrected the
estimation. In Panel (c), we represent the waveform estimation of hip, knee, and ankle flexion compared with the reference
measure from OpenSense. Brown areas represent the same temporal window across panels. Notice how angle estimation is
slightly affected due to sensor displacement, but this effect is corrected due to the new axis estimation.

TABLE 2. Key-Point definition for the assessment of the algorithm.

A. KEY EVENTS DETECTION
To assess the capacity of our method to detect gait events
for controlling wearable robots, we evaluated the detection
of the key points for hip and knee flexo/extension and ankle
dorsiflexion/plantarflexion defined in [52], [53] (Table 2 ).
We adopted the method proposed by Bejarano et al. [54]
to identify key events related to floor contact: Heel-Strike
is defined as the minimum of the shank angle, and Toe-
Off as the minimum of shank velocity. Fig. 6 illustrates the
performance of the key-events detection in one trial.

During the experimental recordings, three subjects did not
present a well-defined knee flexion movement during the
stance phase. As a result, K2 (maximum early stance) and K3
(minimum terminal stance) key points were not calculated in
these patients.

According to the error definition of the equation (12),
we calculated the error in key-points detection concerning:
i) time detection and ii) angular value of the joint waveform at
this event. Fig. 7 and Table 3 summarize the error results in the
detection of the key points. Average delays are close to zero,

VOLUME 9, 2021 144545



J. S. Lora-Millan et al.: IMUs-Based Extended Kalman Filter to Estimate Gait Lower Limb Sagittal Kinematics

FIGURE 6. Example of step kinematics and key-points detection during one trial. In all panels, we have compared the kinematics
obtained with the OpenSense model (cyan) and the Kalman algorithm (orange), and we have also represented the error between both of
them (purple). Step data are normalized to 0-100% of the gait cycle, considering the Heel-Strike detected based on OpenSense data as the
beginning of the cycle. Solid lines represent the median value, while areas represent the 10-90 percentiles. Panels (a) and (b) represent
the shank angle and velocity in the sagittal plane for the detection of the Heel-Strike and the Toe-Off, respectively.
Panels (c), (d), and (e) represent the joint angle for the hip, knee, and ankle, respectively. In all panels, we have highlighted the
corresponding Key-Points, accompanied by their labels. Markers represent the median location in the gait phase and angle; deviation
whiskers indicate the 10-90 percentiles.

and RMS delays are lower than 90ms for every key point. The
average RMS delay for all Key-Points is 0.06s±0.02 (mean±
standard deviation). The average RMSE for all Key-Points is
4.2◦±1.1 (mean ± standard deviation).

B. ADAPTIVE FREQUENCY OSCILLATOR
We also evaluated the quality of the information provided by
our method to estimate in real-time the phase and frequency

of the gait, data that could be used by a robotic exoskeleton
controller. We used the AFO described in [55] with the heel-
strike phase correction presented in [56].

We compared the results from this AFOwith the real phase
and frequency of the gait calculated offline. The inputs for the
AFO were the joint angles and heel-strike computed with our
extended Kalman filter, while the offline phase and frequency
were computed with the heel-strike events detected based on
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FIGURE 7. Violin plots for error distribution of key points detection when comparing OpenSense and Kalman algorithms. Panel (a)
represents the error in time detection, and panel (b) represents the error in the angular value of the key point. Boxplots represent the
median, quartiles, and interquartile ranges of the distributions, while shadowed areas represent the histogram of the data
distributions. We have discarded outliers from representation; discarded data were lower than 10% of the total number of samples.
The highlighted region corresponds to errors between ±0.05s and ±5◦ for time error and angle error, respectively.

the OpenSense model. Fig. 8 illustrates an example of the
phase estimation during one trial for the kinematics of each
joint.

Table 4 summarizes the error for the phase and frequency
estimated with the AFO, and Fig. 9 shows the representa-
tion of the distributions, errors were calculated according
to the error definition of the equation (12). Regarding the
phase estimation, hip and knee RMSE are lower than 3.2%,
although ankle RMSE is slightly higher than 8.5%. Hip and
knee RMSE for frequency estimations are lower than 0.03Hz,
although ankle RMSE is higher than 0.07Hz.

C. GAIT SPEED DEPENDENCY
Here we evaluate the dependency of the performance of
the proposed algorithm with the gait speed. We looked for
linear correlations between the measured errors (waveform
errors, key-point detection errors, and frequency and phase

estimation errors). However, none of these errors showed a
significant relationship (P < 0.01) with the gait velocity of
the subjects. Fig. 10. shows the correlation between wave-
form errors and gait velocities for the three joints, and Table 5
includes the results of the statistical analyses. Supplementary
Figures 1-3 show regression models for key-points detection
errors and frequency and phase estimation errors with respect
to gait velocity. Supplementary Tables 1-2 contain the infor-
mation about the statistical tests concerning the linearmodels.

IV. DISCUSSION
This paper introduces the formulation and experimental val-
idation of an Extended Kalman Filter algorithm to estimate
the sagittal movement of the hip, knee, and ankle joints
during gait. This algorithm estimates the joint axes and
the movement waveforms in real-time, based only on gyro-
scopes and accelerometers; consequently, it is unaffected by
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TABLE 3. Average and RMS errors in the detection of key-points.

TABLE 4. Summarized errors in gait phase and frequency estimation.

magnetic disturbances. As this algorithm is able to contin-
uously estimate the joint axes in the local coordinate sys-
tem of the sensors, it is not necessary to align the sensor
axes with the segments of the body. Notably, the algorithm
does not require any previous calibration for the estimation
of the joint axes; it estimates them during the user’s first
steps and continuously updates these estimations in real-
time. Although we have run the algorithm offline, it can be
directly used in real-timewithout any change. Actually, in our
previous work [45], we reported the real-time implementation
on a microcontroller of an earlier version of this algorithm
that only involved the knee joint. More powerful hardware
like a dual-core microcontroller or a single-board computer
must deal with the computational cost of running the current
algorithm in real-time.

In general, the quality of the ankle estimation is lower than
for the hip and knee joints. Mainly, it is because the angular
velocity in the ankle joint is lower than in the other two joints
during most of the gait cycle; thus, the signal-noise ratio is
worse than for the hip and the knee. According to [48], a good
estimation requires that the motion is rich enough to fulfill the
constraints; in this sense, the algorithm is able to yield better
results in hip and knee joints as their angular velocities are
higher during most of the gait cycle.

On the other hand, ankle and hip errors are higher than
knee errors because we used a hinge joint to model these three
joints. This model is more accurate for the knee than for the

other joints, which can move in the three anatomic planes and
not only in the sagittal one; however, the low attained RMSE
for the ankle and hip joints enable this algorithm to be used
in the three joints.

Compared with previously published works, our method
yields slightly higher errors than other methods that also use
gyroscopes and accelerometers [3]; nevertheless, it does not
require any previous alignment or calibration, allowing for
a quicker set-up. We yielded similar RMSE than Seel et al.
for the knee joint (their result was 3.3◦ while ours is 3.6◦)
and worse RMSE for the ankle joint (4.8◦ against 1.6◦) [2].
Compared with our method, they also estimated the joint
axes, although they did it offline and based on calibration
motion. Joukov et al. also obtained better RMSE than us
(lower than 2.4◦) in the lower limb kinematic estimation [7].
They used a method based on a Rhythmic Extended Kalman
Filter; however, they also needed to calibrate the model and
align the local IMUs frames with joints frames. Other meth-
ods that also yielded lower RMSE errors relied on anthropo-
metric measurements of the subjects [5], [10] or needed to
train subject-specific models [57], [58].

Compared with these approaches, although our method
is not as accurate, it is easier to don, and it does not need
previous calibration movements, so it increases its value as a
sensor system for controlling wearable devices. Our approach
is also more robust than the other alternatives to sensor
displacements during measurements. Since we continuously
calculate the joint axis direction, our method reacts to sensors
displacement by correcting the axis estimation in real-time.
All these features enable the possibility of using this approach
to assist daily life activities in a domestic non-supervised
environment.

The proposed method was designed to allow inertial sen-
sors to be used as input information for controllers of lower-
limb wearable robotic devices, for example, by detecting gait
events that could act as states in a finite-state machine or
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FIGURE 8. Example of phase estimation during one trial when
hip (Panel a), knee (Panel b), or ankle (Panel c) kinematics are used as
input of an AFO. The phase estimated was represented (orange line) and
compared with the real gait phase (dashed brown line). The error
between them is also depicted with respect to the right axis (purple line).
Shadowed areas represent the 10-90 percentiles of the signals.

estimating the gait phase in real-time. We assessed the per-
formance of this method for the detection of gait key events
related to the waveform of the joint’s motion. The yielded
average RMS delay is about 60ms, which corresponds to only
three sensor data samples.

Compared with other published methods, ours performed
similarly when detecting contact events. Our experimen-
tal validation arose average errors for detecting heel-
strike and toe-off of −18±23ms and 3±30ms, respectively.
Maqbool et al. used similar data, as they used an IMU
placed at the shank of the users [59]. By using a real-
time heuristic approach, they reported average errors of
16±9ms and −13±15.9ms for initial contact and toe-off,
respectively. Similarly, Sahoo et al. also used a rule-based
method with shank-placed IMUs data and reported average
errors of 10.4±26.5ms and −13.7±76.6ms for these same
events [42]. However, other studies reported better results
than ours, although they used different approaches. For exam-
ple, Boutaayamou et al. yielded average errors of 1.3±7.2ms
and −1.8±11.8ms for detecting heel-strike and toe-off by
using accelerometers attached to the heel and the toe [60].
Similarly, Mariani et al. reported average errors of 1±13ms

FIGURE 9. Error distributions for the phase (Panel a) and frequency
(Panel b) estimated with the AFO based on the kinematics resulted from
the Kalman filter. The shadowed areas represent the histogram of the
data distributions, while boxplots represent the median, quartiles, and
interquartile ranges. Outlier data were discarded from the representation,
being less than 5% of the total of samples. The highlighted region
corresponds to errors between ±2.5% and ±0.025Hz for phase and
frequency estimation, respectively.

and −3±13ms for both events using foot-worn inertial
sensors [61].

In spite of our slightly poorer results, according to the
analysis in [42], small differences in the order of millisec-
onds would not affect practical scenarios. In addition, unlike
these previous works, which were focused only on contact
events, our approach also provides information about other
relevant events related to the maximum and minimum of the
flexion/extension movements of the joints.

According to [62], [63], delays lower than 150ms
are valid for online functional electrical stimulation, and
Figueiredo et al. [64] consider that delays of few tenths
of milliseconds are acceptable for the control of robotic
exoskeletons as they are lower than the reaction time of
voluntary muscle contractions (180ms). Therefore, we can
conclude that the presented algorithm can be considered valid
to detect gait events to control wearable robotic devices.
Noticeably, a previous approach of this method was validated
to control a quasi-passive exosuit for space activities by
detecting knee kinematics key events [65].

We have also assessed the performance of an AFO when
we use the estimated waveforms as inputs. Results pointed
out that AFO performance worsens when using ankle data,
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FIGURE 10. Linear regression between gait velocity and waveform errors
for the three joints. Panels (a) – (c) represent the relationships between
gait velocity and trial RMS errors for the hip, knee, and ankle joints,
respectively. Boxplots represent the error distribution at each velocity; the
straight lines represent the regression calculated for each joint.

TABLE 5. Statistical results for the regression models between gait
velocity and waveform error estimation.

as RMSE is about three times more than when AFO uses
hip or knee information. According to Ruiz-Garate et al.,
we can consider that phase estimation is synchronized with
gait if the error is lower than 10% [66]. In this regard, phase
estimations are valid for controlling a robotic device as the
phase estimation RMSEs are lower than this threshold in the
three joints.

Compared with the results obtained by AFOs in other
studies, the estimation based on ankle data is not as accu-
rate. However, the estimations based on the knee and hip
kinematics (with RMSE about 3.1% and 2.8%, respectively)
are similar or slightly poorer. Other authors reported a phase
estimation RMSE of 3% using noncontact capacitive sen-
sors [67], 2% using insole pressure sensors to measure
the vertical ground reaction force [68], or 1.4% using an
encoder to measure the hip angle [68]. However, the appa-
ratus required for our algorithm is more robust than pressure-
based sensors and easier to don than capacitive sensors or
exoskeleton-embedded sensors.

Finally, we did not find relations between gait velocity
and the performance of the algorithm. We analyzed the gait
velocity range between 1km/h and 3km/h, and no correlations
were found between gait speed and RMSE in the kinematics
or the results of key-events detection or AFO estimations.
Although varying gait speeds were not directly assessed, this
method would not be affected by them. Our approach already
considers changing instantaneous velocity measurements due
to the normal gait cycle, and, on the other hand, a changing
gait speed would not affect the biomechanical basis of our
approach, as suggested by the results of our previously pub-
lished work [45]

Apart from the experimental conditions reported in this
paper, our method should be valid as long as the move-
ment around the sagittal axis is rich enough to fulfill the
one-axis restriction in the knee joint [48]. This suggests
that this algorithm could also be applied in other con-
texts as outdoor environments or with impaired subjects.
Hawkins et al. reported that healthy subjects walking on
uneven terrain usually adapt their gait to increase balance
and stability by slowing down their gait velocity or increasing
hip and knee flexion and ankle dorsiflexion movements [69].
These adaptations would not interfere with the performance
of the proposed algorithm, as it does not modify its biome-
chanical basis, and we have assessed its correct performance
even at low gait speed (1km/h). This low gait speed is also
characteristic of impaired subjects [70], who also could use
this approach as long as they were able to generate movement
in their lower limb joints. However, it would still be necessary
to validate the performance of this algorithm experimentally
under these circumstances.

V. CONCLUSION
This paper presents a new algorithm based on an Extended
Kalman Filter for real-time estimation of lower limb kine-
matics that can be used as a basis for lower-limb wearable
robot controllers. As the algorithm does not use magnetome-
ter data, it is not affected by electromagnetic disturbances
in the environment. In addition, as the proposed algorithm
continuously estimates the sagittal joint axis, it does not need
any prior calibration or alignment, which eases donning the
system and enables it to be used in daily life. After assessing
the algorithm, RMSE errors about 3.8◦, 3.6◦, and 4.8◦ for
hip, knee, and ankle flexion in the sagittal plane, and gait
event detection delays and phase estimation errors under
the required threshold confirm that the proposed method is
a feasible solution to control lower-limb wearable robotic
devices.

APPENDIX
To solve the posed problem, we used the following nonlinear
state-space discrete form representation of the process and
measurement models

xj+1 = f(xj,uj, j)+mj; zj = h(xj, j)+ nj (13)

144550 VOLUME 9, 2021



J. S. Lora-Millan et al.: IMUs-Based Extended Kalman Filter to Estimate Gait Lower Limb Sagittal Kinematics

where x, u and z are the state, control and measurement
vectors at instant j and m ∼ N (0,Q) and n ∼ N (0,R)
represent uncorrelated Gaussian processes with zero mean
and covariance matrices Q and R. Considering the nominal
state vector x̂ as the state vector without the process noise,
the error x̃ due to this noise, at time j+1 can be expressed as

x̃j+1 = f(xj,uj, j)+mj − x̂j+1 (14)

As function f(xj,uj, j) can be approximated by means of a
Taylor expansion around the state vector x̂j, the error x̃j+1 can
be defined as follow,

x̃j+1 =
∂f(x,u, j)

∂x

∣∣∣∣
x=x̂j

x̃j +mj

= 8(x̂j,uj, j)x̃j +mj (15)

with 8(x̂j, j) as a state transition matrix. Therefore, (14) can
be linearized by taking the dynamics of the error x̃ into
account.

Using an analogue procedure, the error in the measurement
vector z̃j is linearized around the state vector x̂j as follow,

z̃j = H(x̂j, j)x̃j + nj (16)

where the matrix H(x̂j, j) is the Jacobian of the measurement
matrix h(xj, j).

A. PROCESS MODEL EQUATIONS
As we are interested on estimating the joint rotation angle
around the sagittal axis, the state vector of the process model
must be determined. The joint angular velocity θ̇j at each time
instant j can be calculated as follow

θ̇j = (ωT1j v1 + bias1)− (ωT2j v2 + bias2)+ ηθ̇ (17)

where ω1j and ω2j are the angular velocities measured by the
inertial sensors attached to the segments of the limb at the
time j, v1 and v2 are the local coordinates of the sagittal joint
axis and bias1, bias2 and ηθ̇ are the biases and noise of the
measurements

To compute the joint rotation angle, an offset term has also
been considered, which leads to

θj = hθ (v1, v2, bias1, bias2, offset)+ ηθ
θj = θj−1 + θ̇j1h+ offset + ηθ (18)

where 1h is the sample time of the measurements.
Additional constraints can be defined by considering the

transformation matrix R12 that links the estimation of the
local coordinates of the sagittal joint rotation axis v1 and v2.
This same matrix is used to transform the coordinates of
unitary vectors in the direction of gravity g1 and g2 from both
coordinate system, giving us the constrain eg.

g1 = R12g2 ⇒ eg = g1 − R12g2 (19)

Assuming that the gravity and rotation vectors are not coin-
cident and that the joint rotation movement can be modelled
as a rigid transformation, the cross products L1 = g1 × v1
and L2 = g2 × v2 are preserved. In this way, the vectors

L1 and L2 are related by the next equation, giving us an
additional kinematic constrain eL .

L1 = R12 × L2 ⇒ eL = L1 − R12 × L2 (20)

Using the constraint defined in (4), and due to the fact that
R12 links the coordinate of v1 and v2, this constraint can be
redefined as

e(R12, v2)j = ||ω1j × R12v2|| − ||ω2j × v2|| (21)

Therefore, we can define a constrain vector with (19),
(20) and (21):

e(R12, v2, g2,L2) = [e1 e2 . . . eN egeL]T (22)

Considering the exponential map of rotation matrices, the
transformation matrix R12 can be written as

R12(b, γ ) = eb̂γ = I+ b̂ sinγ + b̂2 (1− cosγ ) (23)

where b is the unitary rotation vector, γ is the rotation angle
and b̂ is the skew-symmetric matrix such b̂ ∈ so(3). By con-
sidering that the spheroidal coordinates of the rotation axes v1
and v2, the components of vectors x̄j and ˜̄xj at a time j will be

x̄j = [α1 β1 α2 β2 γ ]T ; ˜̄xj = [α̃1 β̃1 α̃2 β̃2γ̃ ]T (24)

where the tilde variables indicate the estimation error.
Then, as an error vector ˜̄x can be included into the state

vector (shown by the linearization of (15)), the state vector x̃
is defined as follow

x̃ = [x ˜̄x]T ; xθ = [θ θ̇ ]T

˜̄x = [α̃1 β̃1 α̃2 β̃2 γ̃ b̃ias1 b̃ias2 õffset]T (25)

Assuming that the constraints error vector ˜̄x is linear,
the state transition matrix will be defined as

8 =

[
∂h(v1, v2, bias1, bias2, offset)

/
∂ x̃

8e

]
=

[
hx̃
8e

]
(26)

with h and 8e being

h(v1, v2, bias1, bias2, offset) =
[
hθ hθ̇

]T
8e =

[
08×2 I8×8

]
8×10 (27)

with I being the 8× 8 identity matrix.
So, the equation of the process model (15) is redefined as[

xθ
˜̄x

]
j+1
=

[
hx̃
8e

] [
xθ
˜̄x

]
j
+mj (28)

The covariance matrix Q has been computed using the
standard deviation of the IMUs and following the equations
of the process model in the error of the state vector. The
standard deviation of the bias and offset variables have been
considered equal to zero.
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B. MEASUREMENT MODEL EQUATIONS
To estimate a state vector x̄, we can rely on a set of constraints
that try to minimize errors e(x̄, j) = 0 which are functions
of the state vector x̄ to be estimated. If we suppose that a
linear approximation of the constrain functions e(x̄, j) around
an initial guess of the solution x̄ designated as ¯̄x is done by
means of a Taylor series expansion. The error ˜̄x = (x̄− ¯̄x) can
be computed by the following linear equality

e(x̄, j) = e( ¯̄x, j)+
∂e(x̄, j)
∂ x̄

∣∣∣∣
x̄=¯̄x

(x̄− ¯̄x) (29)

In this way, considering that we are measuring the error
e(x̄, j) = 0, the equation (29) can be used to write the
measurement model in the following way

−e( ¯̄xj, j) = G( ¯̄xj, j) ˜̄xj + nj = ˜̄zj (30)

where the matrix G( ¯̄xj, j) is the Jacobian of the error vector.
The measurement model of (30) indicates that the error

constitutes the state vector, while the vector nj represents
the noise term. As there are not sensors to measure z̄j,
these virtual measurements will be supposed to be equal to
zero z̄j = 0, this assumption requiring the measurement
errors to be considered into the measurement covariance
matrix R.

In this way, considering the state vector of the process
model of (28) and the virtual measurement of (30), the mea-
surement model equation is defined by[

0
˜̄zj

]
=

[
I2×2 0
0 G( ¯̄xj, j)

] [
xθ
˜̄x

]
j
+ nj (31)

The covariance matrix R has been computed considering
that the variables of the measurement matrix are proportional
to the variances of the IMUs in accordancewith the IMU local
frames where they are being computed.
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