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ABSTRACT Glaucoma is a leading cause of irreversible visual field loss. The early detection and
diagnosis of the disease are therefore necessary to prevent blindness. Pupillary light responses are an
interesting new technique for the detection of glaucoma. However, the analysis of pupillary signals has
been associated with manual supervision or involved high computational costs. The present paper is
to propose an analysis framework to automatically investigate changes in the complexity of pupillary
signals under ambient light conditions for the screening of glaucoma. In this work, pupillary data of
13 glaucoma patients, 13 age-matched controls, and 11 young controls were recorded at the light intensity
of 100 cd/m2 using a commercial eye tracker. The pupillary complexity of the participants was analysed
using Higuchi’s fractal dimension, permutation entropy, and conditional entropy. We found that there was a
statistically significant difference in the pupillary complexity between glaucoma patients and control groups
(P < 0.0001). Specifically, the difference was more pronounced when using the fractal dimension measure.
These results confirm the potential of using pupillary complexity for the screening of glaucoma using
commercial devices.

INDEX TERMS Complexity, detection, entropy, fractal dimension, glaucoma, pupil, screening.

I. INTRODUCTION
Glaucoma is characterised by an optic neuropathy associ-
ated with loss of the visual field. The disease is the second
largest leading cause of irreversible vision loss worldwide.
Glaucoma affected over 60 million people in 2010 [1]. This
number will increase to more than 111 million in 2040 [2].
Early diagnosis and treatment of glaucoma play a vital role
in the prevention of vision loss for millions of people.

The common glaucoma tests are tonometry, gonioscopy,
ophthalmoscopy, perimetry, optical coherence tomography,
and pachymetry. Among these, standard automated perime-
try is the most popular method for detecting glaucoma [3].
Optical coherence tomography can identify the disease accu-
rately [4]. These tests are generally available only at ophthal-
mology clinics.

The discovery of melanopsin expressing intrinsically pho-
tosensitive retinal ganglion cells has helped to explain
the regulation of pupil size [5]. This helps to widen the
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understanding of the retinal and optic nerve disorders, includ-
ing glaucoma, through pupillometry recordings [6], [7].

Abnormalities in pupillary light reflex (PLR) have been
reported in patients with glaucoma. The melanopsin-
mediated post-illumination pupil response (PIPR) was used
to detect melanopsin dysfunction in patients with early glau-
coma [8]. The PLR was measured using 1-second pulses of
blue lights (λmax = 464nm) and red lights (λmax = 658nm).
The post-illumination pupil response to light stimuli has been
found to alter in moderate and advanced stages of glaucoma
using 10-second light stimuli of 488 nm (blue) and 610 nm
(red) [9]. There was a significant decrease in PIPR of glauco-
matous patients compared to age-matched controls using two
wavelengths (470 nm and 623 nm) [10].

Open-angle glaucoma is commonly bilateral and asymmet-
ric. The difference in the responses between the two eyes
could be used as a biomarker for glaucoma [11], [12]. Rela-
tive afferent pupillary defect (RAPD) was detected in glauco-
matous patients with 66.7% sensitivity and 82.9% specificity
using the swinging flashlight test [13]. In [3], 0.2 seconds of
coloured light stimuli of different wavelengths (red, green,
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yellow, and blue) were used to study the difference in RAPD
between glaucoma patients and controls.

The above studies show the potential use of the pupil-
lary response for detecting glaucoma. However, these studies
are highly dependent on protocols exploited for chromatic
pupillography. The studies were involved with the manual
selection of dark adaption time and pulse-width, and dif-
ferent wavelengths of light stimuli [14], [15]. In addition,
the analysis needed manual supervision. Hence, there is a
need for automatic recording and analysis of pupillary data
for assisting in the diagnosis of glaucoma that can work under
ambient light conditions.

Non-luminance-mediated changes in pupil size have
been used extensively as markers of arousal and cognitive
effort [16]. The oscillations in the pupil diameters, referred to
as hippus, were found to originate from the parasympathetic
nervous system [17]. Therefore, changes in these oscillations
may reflect the dysfunction of neural pathways in the visual
system. The use of power spectral density and other spec-
tral features were found to be unsuitable for the analysis of
such recordings [18], [19]. It has been reported that sample
entropy to estimate the complexity of pupillary data can
differentiate between glaucoma and healthy eyes [20], [21].
It was observed that the pupillary complexity was higher in
glaucoma eyes than in healthy eyes.

Signal complexity, a concept related to the irregularity of a
signal, can be investigated using a number of non-linear algo-
rithms. Complexity measures are helpful in detecting changes
in the dynamics of biological systems that can be associated
with physiological events [22]. For analysing biomedical sig-
nals, entropy-based algorithms have been used extensively.
There are various types of entropy-based complexity param-
eters for real data: approximate entropy, sample entropy,
and permutation entropy. Although approximate entropy and
sample entropy measure irregularity, they give high values
to random data and do not imply an intrinsic physiological
complexity [23], [24]. In addition, approximate entropy and
sample entropy are very sensitive to its input parameters:
similarity criterion (r) and data length (N ) [25].
We propose the analysis of the complexity of pupillary

signals in patients with glaucoma using Higuchi’s frac-
tal dimension (FD), permutation entropy, and conditional
entropy in the present study. These complexity indices have
a lower computational cost than sample entropy (∼ O(N ) vs.
∼ O(N 2)) [26], [27]. Permutation and conditional entropy
parameters are robust to dynamical and observational noise
and less dependent on the data length [28], [29]. These
entropy measures have been successfully used to analyse
electroencephalogram (EEG) signals and electrocardiogram
signals [26], [30]. In an EEG-based hypoglycemia detection
study, Higuchi’s FDwas found to provide better classification
results of hypoglycemic episodes compared to entropy-based
algorithms [26]. We aim to develop a framework for the end-
to-end investigation of pupillary recordings under ambient
light conditions, including pre-processing, signal condition-
ing, unsupervised segmentation, and feature extraction of

the recordings. In this pioneering work, the FD, permuta-
tion entropy, and conditional entropy in pupillary record-
ings of glaucoma patients, age-matched healthy controls, and
young controls were computed and compared to identify
the differences between glaucoma and healthy eyes. The
computational cost of these was recorded for determining the
computerised and real-time implementation.

The rest of this paper is structured as follows. Section II
demonstrates the study protocol, pupillary signal pre-
processing, complexity analysis, and statistical analysis.
We report the results of this study in Section III. This is
followed by Section IV, which provides a discussion on the
obtained results. Finally, we conclude the entire work in
Section V.

II. METHODOLOGY
A. STUDY PROTOCOL
This study was conducted in accordance with the ethics
approval from the RMITHuman Research Ethics Committee.
Informed consent was obtained from all participants prior to
data recording. The protocol and data of the study have been
reported earlier in [20] and [21].

Thirty-seven participants volunteered for this study: thir-
teen glaucoma patients, thirteen age-matched controls (aged
66.231±8.097 years) and eleven young controls (aged
30.455±2.903 years). Glaucoma patients had early-stage,
bilateral, open-angle glaucoma who were recruited from
Essendon Eye Clinic & Laser Centre (average age =
70.154±8.160). All patients were being treated for intraoc-
ular pressure (IOP), and their IOP was in the range of
17 – 18 mm Hg. All participants were asked not to consume
caffeine for at least 1 hour before data recording. The demo-
graphic details of the participants are shown in Table 1.

TABLE 1. Demographics of the glaucoma patients (G), age-matched
healthy controls (H), and young healthy controls (Y).

Participants’ pupil diameters were measured using a com-
mercial eye tracker, GP3 (Gazepoint, Canada), with a sam-
pling rate of 60 Hz. The device was attached to a computer
screen and placed approximately 65 cm from the participant’s
eyes. Before each experiment, the GP3 device was calibrated
using the provided company’s software and protocol. Dur-
ing the experiment, scale factors and pupil diameters were
automatically recorded by the eye tracker software. The scale
factor reflected changes in the distance between the eyes and
the device. A scale value of 1 represents the distance at the
time of calibration. When the participant is closer to the eye
tracker, the scale value is less than 1, and when the participant
is further away, the scale value is greater than 1.
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The experiments for pupillary data collection were con-
ducted during regular office hours (9:00 AM to 5:00 PM),
in a standard clinic room and with ambient light intensity
near the eyes of participants being 100 cd/m2. Participants
were requested to focus on a blue point target at the centre of
the screen for 120 seconds. During the experiment, they were
sitting comfortably on a fixed chair. The experimental setting
is shown in Fig. 1.

FIGURE 1. Experimental setup for measuring pupil diameters. The
GP3 eye tracker was placed approximately 65 cm from the participant’s
eyes.

B. PRE-PROCESSING
The pupillary signals were multiplied by scale factors to
correct movement artefacts. The next step of pupillary data
analysis was to remove outliers using Hampel filters (sliding
window size = 120 and number of standard deviation = 3).
After that, a 0.02 to 4 Hz Butterworth band-pass filter was
used to extract pupillary information since the typical fre-
quency range of pupillary activity is less than 4 Hz [31], [32].
The selection of the low-cut frequency of 0.02 Hz for the filter
was to remove the baseline wander and DC in the recorded
signals [17]. Fig. 2 shows raw and filtered pupillary signals
from the left eye in the first 60 seconds of a representative
participant.

In this study, the recording during the transition period was
removed automatically. This period was determined using the
time stamp from the eye tracker. We only analysed signals
when the eyes were in the steady-state, in which the eyes
adapted to the light intensity when looking at the screen.
Thus, the initial 10 seconds of pupillary recordings were
removed. The amount of 10 seconds is more than the time to
get the eye to reach its steady-state [33]. We also removed the
last 10 seconds of the recordings to reduce any interference
at the end of the experiment.

The resulting signals were divided into non-overlapped
5-second segments. This helped to increase the number

FIGURE 2. Pre-processing of the left-eye pupillary signal of a
representative participant in the first 60 seconds.

of samples for the analysis. The complexity parameters
were then computed for each of these 5-second segments
using our proprietary software written in MATLAB language
(MATLAB 2017b, The MathWorks, Natick, MA, USA).

C. HIGUCHI’S FRACTAL DIMENSION MEASURES
Higuchi’s FD is a measure of signal complexity [34]. It is
based on the relationship between the length of a curve L(k)
and the scale k . Given a segment x of pupillary signals,
the difference between samples at distance k can be computed
as follows:

Lm(k) =
1
k

[ q∑
i=1

|x(m+ ik)− x(m+ (i− 1)k)|

]
N − 1
qk

.

(1)

L(k) is then computed as:

L(k) =
1
k

k∑
m=1

Lm(k). (2)

If L(k) is proportional to k−D for k = 1,. . . , kmax, the curve
is fractal with dimension D. As a result, D is estimated as the
linear coefficient of the regression line between log(L(k)) and
log(k).

D. ENTROPY MEASURES
The permutation entropy (PE) of order d ∈ N and delay τ ∈
N of a segment xt is calculated as:

PE(d, τ, xt ) = −
1
d

∑
π∈5d

pτπ ln(p
τ
π ), (3)

where t = 0 . . .N − 1,N ∈ N and

pτπ =
# {t ∈ {dτ, dτ + 1, . . . ,N − 1}|v}

N − dτ − 1
(4)
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is the relative frequency of ordinal patterns π in the
time series and 0 ln 0 is defined by 0. The vectors
v(xt , xt−τ , . . . , xt−dτ ) are delay vectors.
An alternate is conditional entropy (CE) which is akin to

permutation entropy and has been shown to provide better
performance in similar applications [35]. Thus, for this study,
conditional entropy was investigated.

The conditional entropy of a segment xt is defined as:

CE(d, τ, xt )=
∑
π∈5d

pτπ ln(p
τ
π )−

∑
π1,π2∈5d

pτπ1,π2 ln(p
τ
π1,π2

),

(5)

in which pτπ is defined in (4) and

pτπ1,π2 =
# {t ∈ {dτ, dτ + 1, . . . ,N − 1}|v}

N − dτ − 1
(6)

is the relative frequency of ordinal patterns π1, π2 in the time
series.

E. STATISTICAL ANALYSIS
In this study, we used t-tests to identify the significant dif-
ferences in pupillary complexity between the groups with
the hypothesis of normal distribution of samples. T-tests are
suitable for two-group comparison and were conducted to
investigate the difference between i) glaucoma patients (G)
and age-matched controls (H), ii) glaucoma patients and
young controls (Y), and iii) age-matched controls and young
controls. Features having P-values < 0.05 are considered
statistically significant. In addition, Cohen’s d effect size was
computed to discuss the differences between the groups.

Logistic regression is a binary classifier and is routinely
used in bio-signal analysis and, in this study, was used to
classify glaucoma and healthy eyes. The extracted com-
plexity parameters were the input for the regression model.
Receiver operating characteristic (ROC) curves were plotted
to describe the classification using the output of the logistic
regression model with every possible cut-off value. The area
under the curve (AUC) was computed.

III. RESULTS
The pupillary dataset in this study was composed of 260 sam-
ples of glaucoma eyes, 260 samples of the age-matched
healthy eyes, and 220 samples of healthy eyes of young peo-
ple. Each sample includes 5-second pre-processed segments
of pupillary recordings from the left and right eyes. For the
age-matched control group, 7 samples were removed from the
dataset because the files were corrupted.

From each sample, three complexity features were com-
puted: Higuchi’s fractal dimension, permutation entropy, and
conditional entropy. A range of values of the parameters for
each feature was tried, and the ones that gave the best results
were selected. For Higuchi’s fractal dimension, kmax = 12,
for the entropy measures, the order d = 6, and the delay
τ = 1. Finally, the dimensions of glaucoma eye, age-matched
healthy eye, and young healthy eye subsets are 260 × 6,
253× 6, and 220× 6, respectively.

FIGURE 3. Higuchi’s fractal dimension of pupillary signals for glaucoma
(G), age-matched (H), and young (Y) participants. The level of significance
is represented by asterisks (∗∗∗∗ means P < 0.001 and ∗∗∗∗∗ means P <

0.0001). Error bar: 95% CI.

Fig. 3 shows that the fractal dimension of pupillary signals
in glaucoma eyes is significantly higher than age-matched
healthy eyes (right eyes, P < 0.0001). In contrast to the right
eyes, the level of significant difference found from the left
eyes was 0.05. Notably, the fractal dimension in glaucoma
patients was significantly higher than in young people. There
were also significant differences in the fractal dimension
between age-matched controls and young participants (left
eyes: P < 0.001 and right eyes: P < 0.0001).
Permutation entropy indices of glaucoma eyes and healthy

eyes are shown in Fig. 4. There was a significant difference in
the right eye complexity between glaucoma patients and age-
matched controls (P < 0.0001). However, it can be seen that
there was no significant difference among the control groups:
the young and the age-matched.

Fig. 5 shows the results of conditional entropy of pupillary
recordings. The conditional entropy indices calculated from
the right eyes of the glaucoma patients were significantly
higher than the control groups (P < 0.0001). Conditional
entropy of the right eyes also shows that there is a slight
difference in pupillary complexity between older controls and
young controls (P = 0.06).
The relationship between left eyes and right eyes in the

three groups is shown in Table 2. It shows that there are no sta-
tistically significant differences between the left eyes and the
right eyes in older people (both glaucoma patients and age-
matched controls). Nevertheless, for young controls, the table
reveals the complexity of pupillary signals calculated from
the right eyes is significantly different from the left eyes.
Among the three complexity measures, permutation entropy
provided the highest significant level (P = 0.002).
The plots of the ROC curves obtained using the logis-

tic classifiers for i) discriminating glaucoma eyes and
age-matched healthy eyes (G-H) and ii) discriminating
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TABLE 2. The relationship between left eyes and right eyes in the three groups of participants (95% CI).

FIGURE 4. Permutation entropy of pupillary signals for glaucoma (G),
age-matched (H), and young (Y) participants. The level of significance is
represented by asterisks. (∗∗ means P < 0.01 and ∗∗∗∗∗ means P <

0.0001). Error bar: 95% CI.

FIGURE 5. Conditional entropy of pupillary signals for glaucoma (G),
age-matched (H), and young (Y) participants. The level of significance is
represented by asterisks. (∗∗∗∗ means P < 0.001 and ∗∗∗∗∗ means P <

0.0001). Error bar: 95% CI.

glaucoma eyes and young eyes (G-Y) are shown in Fig. 6. The
area under the ROC curvewas computed using the trapezoidal
rule. The complexity indices can differentiate glaucoma eyes

FIGURE 6. ROC plot for: i) distinguishing glaucoma eyes and age-matched
healthy eyes (G-H) and ii) distinguishing glaucoma eyes and young
healthy eyes (G-Y).

and age-matched healthy eyes with an AUC of 0.65. When
comparing glaucoma eyes and young eyes, the AUC increases
to 0.75. From the G-H curve, the classification results of
glaucoma eyes were 63% sensitivity and 60% specificity.
From the G-Y curve, we achieved a sensitivity of 72% and
a specificity of 63%.

IV. DISCUSSION
This study has investigated the pupillary complexity in three
different groups: glaucoma, age-matched controls, and young
controls with the aim to develop the outline for automatic
analysis of the detection of glaucoma. The proposed frame-
work for automatic feature extraction of pupillary signals
was composed of signal conditioning (i.e. Hampel filters and
bandpass filters) and complexity measurements. In this work,
we used Higuchi’s fractal dimension, permutation entropy,
and conditional entropy to measure the complexity. We found
that glaucoma patients had a higher complexity than other
groups, irrespective of age. These findings are consistent
with the results from sample entropy-based algorithms in
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previous studies [20], which, however, was not suitable for
computerised analysis.

The computational time of complexity for a sample
of pupillary signals using different algorithms is shown
in Table 3.We usedMATLAB’s built-in time functions on the
hardware with Intel Core i5-7200U CPU 2.71 GHz processor
and 8 GB RAM for the estimation of time consumption.
For comparison, we also calculated the computational time
of sample entropy using the parameter settings described
in [21]. While the table shows that Higuchi’s FD required the
lowest computational time (4.44±0.68 milliseconds), how-
ever, the difference may not be relevant for practical applica-
tions. What is important is that while earlier studies required
manual segmentation, the proposed approach was performed
unsupervised and hence suitable for computerised analysis.

TABLE 3. Computational time of pupillary complexity using different
algorithms.

The selection of kmax in Higuchi’s fractal dimension
depends on signal characteristics and applications [36]. Gen-
erally, it was based on the value that provided the best results
for the discrimination between two or more features. For
electroencephalogram-based applications, kmax was set equal
to 6 [37]–[39]. In the present study on pupillary signals,
a range of kmax was investigated to figure out the value that
provided the best statistical results for the analysis. We found
that kmax = 12 was a reasonable value for investigating the
complexity of pupillary signals using the fractal analysis. For
the calculation of entropy in this study, the same judgement
was used in the selection of parameters.

As pupillary signals are non-stationary [19], the selection
of segment lengths may affect the results. In this study,
5-seconds segments of pupillary signals were used for the
analysis. By removing the first 10-second and the last
10-second of each recording, we avoided any transitions in
the signals. The duration of 10-second is enough for the eye
to reach its steady-state [33]. The non-overlapped segments
were extracted in this period of the steady-state response of
the pupils.

The results of Cohen’s d effect size calculation are shown
in Fig. 7-9. It is worth noticing that all the effect size values
for the difference between glaucoma eyes and age-matched
healthy eyes were greater than 0.35. Especially, the effect
size for the fractal dimension when comparing glaucoma eyes
and healthy eyes of young participants was larger than 0.8.
A benchmark of the effect size has three thresholds: small
(d = 0.2), medium (d = 0.5), and large (d = 0.8) [40].
These give evidence that pupillary complexity could be used
as a biomarker for glaucoma.

FIGURE 7. Effect size for Higuchi’s fractal dimension.

FIGURE 8. Effect size for permutation entropy.

Fig. 10-12 are the pairs plot of complexity measures
in the three groups. Generally, the scatter plots show a
positive correlation between the measures in all groups.
The correlation between Higuchi’s fractal indices with
the other entropy-based indices was highest in glaucoma
patients. Among the complexity measures, the distribution
of Higuchi’s fractal indices was more symmetrical com-
pared to those of PE and CE, which were left-skewed. The
results from the effect size and correlation analysis show that,
besides entropy-based algorithms, Higuchi’s fractal dimen-
sion can be a good candidate for the analysis of pupillary
complexity

In this study, statistically significant levels of differences
were found i) between the left eyes and the right eyes and
ii) between older controls and young controls. Specifically,
the level of significant difference when comparing glaucoma
eyes and age-matched eyes was much higher with features
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FIGURE 9. Effect size for conditional entropy.

FIGURE 10. Pairs plot of complexity measures in glaucoma patients. The
diagonal shows the distribution of fractal dimension, permutation
entropy, and conditional entropy indices.

extracted from the right eyes. The results from Higuchi’s
fractal dimension showed significant differences in healthy
eyes between older people and young people. In order to
achieve a robust conclusion about these observations, a large
number of participants is required.

This is a pioneering study in which the data were
collected using a commercial and portable eye-tracking
device. The procedure for data collection does not require
highly skilled personnel or even a special clinical set-
ting. The proposed automatic analysis framework could be
used in primary healthcare facilities for the screening of
glaucoma.

There are some major limitations in the current study.
Firstly, this is a pilot study in which the number of par-
ticipants is not sufficient to investigate differences due to
factors such as gender and ethnicity, and due to other eye dis-
eases or other clinical factors. We performed binary compar-
isons: glaucoma subjects vs. age-matched controls, glaucoma

FIGURE 11. Pairs plot of complexity measures in age-matched controls.
The diagonal shows the distribution of fractal dimension, permutation
entropy, and conditional entropy indices.

FIGURE 12. Pairs plot of complexity measures in young controls. The
diagonal shows the distribution of fractal dimension, permutation
entropy, and conditional entropy indices.

subjects vs. young controls, and age-matched controls vs.
young controls. While the number of participants is low,
the analysis indicates that there were statistically significant
differences in pupillary complexity between glaucoma and
controls. By extracting 20 samples from each eye of each
participant, we achieved 260 samples of glaucoma eyes,
260 samples of age-matched healthy eyes, and 220 samples
of young healthy eyes. These numbers satisfied the statistical
power of 80%. However, we are aware that these samples are
not independent, and this may affect the results. Therefore, a
larger number of participants is required to validate the find-
ings. Secondly, this work has not investigated the correlation
between pupillary complexity and the severity of glaucoma.
We only studied OAG patients with a treated IOP in the range
of 17-18 mm Hg. Finally, a neurological interpretation of
the results has not been discussed in this study. In real-life
situations, changes in pupillary complexity may reflect other
ophthalmological diseases. Further work will be required to
investigate different eye diseases and also other confounding
factors.
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V. CONCLUSION
Our pioneering study has investigated the difference in com-
plexity of hippus between glaucoma and healthy eyes and
suggested the framework for detecting glaucoma, which has
the potential for automatic and unsupervised data recording
and analysis. This study on a total of 37 participants shows
the potential of pupillary complexity as a biomarker for
glaucoma, which can be recorded using an inexpensive eye-
tracker, and the pupillary recordings can be automatically
analysed. The fractal dimension of pupillary signals of glau-
coma patients was significantly higher than the age-matched
and young control groups. The same results were found
using permutation entropy and conditional entropy. This
shows that pupillary data has the potential for detecting
glaucoma.

Future development of the current work will be related to
investigating the effect of progression of the disease and the
visual acuity, differences between gender and ethnic groups
and identifying the effect due to other eye diseases and con-
founding factors. There is also the need for optimisation of
the proposed framework on a broader pool of participants.
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