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ABSTRACT Road surface wetness is a contributing factor in traffic accidents. As the amount of friction
reduction correlates with the water film height covering the road surface, a quantification is of high
relevance in order to improve traffic safety. Both drivers and autonomous vehicles would benefit from
additional information. This paper presents a novel concept for road wetness quantification. It is based
on a 2 × 4-planar capacitive transducer array, capable to detect water spray ejected by the tires and its
wetness-related dependencies. The reliable assessment of these dependencies by a proposed capacitive
sensor system is shown in an experimental study on an asphalt circuit for various wheel speeds. Besides the
spray’s correlation with speed, the results reveal significant differences in transducer positions and designs
confirming the array’s relevance regarding wetness quantification. In addition, a 1-nearest neighbor classifier
capable of automatically distinguishing between eight wetness levels is proposed. The classifier is optimized
by an extended version of balanced accuracy and reaches similar performance as binary classifiers from
related research. A balanced ratio between capacitance increase-, standard deviation- and speed-related
feature types is one key aspect of classifier performance. Furthermore, up to a certain extent, the array’s
individual transducers can significantly contribute to classifier performancewith design- and position-related
advantages.

INDEX TERMS Capacitive sensors, driver assistance, road surfacewetness detection, vehicle safety, wetness
classification.

I. INTRODUCTION
Although sensor functionality and related driver assistance
functions in today’s motor vehicles steadily increase, there
are still a large number of traffic accidents every year.
In 2018, more than 308,000 accidents with personal injury
were statistically recorded in Germany, resulting in almost
400,000 casualties [1]. Over two thirds of these accidents
were recorded in urban areas and approximately 6% can be
ascribed to the road surface condition and weather effects.
Here, road surface wetness due to rain is representing more
than a third of weather-related accidents.

Due to lower friction between the tires of a vehicle and the
road surface, accident risk increases significantly on a wet
surface [2]–[4]. The amount of friction reduction depends on
the water film height covering the road surface, which can
vary between a few microns to a few millimeters [5], [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Salvatore Surdo .

As the water film interferes between tire and road surface,
skid resistance is reduced with increasing water film height.
Therefore, road surface wetness frequently leads to critical
driving situations resulting in accidents.

As former studies on rain-related crashes have shown,
the crash frequency increases significantly on wet road sur-
faces [4]. Since today’s vehicles do not provide direct infor-
mation about the road’s current wetness, the vehicle’s driver
estimates the present conditions intuitively and experience-
based. Misinterpretations can lead to fatal consequences for
the driver and other traffic participants. Since the amount of
skid resistance decreases as vehicle speed increases, speed is
a contributing factor in many weather-related accidents [5].
Therefore, speed adjustments are vital to reduce accident risk.
Studies on the operating speeds on dry and wet road surfaces
could not find a significant speed reduction on wet roads [7].
Drivers do not recognize the lower friction between tires and
road surface. Furthermore, in more than 90% of all crashes,
driver error is believed to be the main reason, even though
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the critical cause is ascribed to the vehicle, environment,
or roadway [8].

Autonomous vehicles (AVs), which may be available on
the mass market in the near future, are expected to signif-
icantly reduce the number of traffic accidents, since driver
errors can be eliminated [8], [9]. For environmental percep-
tion, different technologies including lidar, radar, and video
cameras are commonly used [10]. They allow the vehicle
to drive autonomously and additionally to recognize critical
situations due to other traffic participants. However, besides
a negative impact of adverse weather conditions on environ-
mental sensors, they are unable to detect and quantify road
surface wetness [11]–[13]. Therefore, additional sensors for
road surface wetness quantification are essential for safe AVs.

In research, several approaches have been studied aiming
at the reliable detection of weather-related road conditions.
Since modern vehicles are equipped with various cameras
as standard, one approach is to use them for that purpose.
In [14]–[16] images from both stationary and in-vehicle
cameras have been used to classify road surface conditions
into different classes including dry, wet, icy, and snowy.
Besides being dependent on bright light conditions, they have
not yet been able to differentiate between wetness levels.
An approach already studied in the 1980s is based on the
reflection properties of electromagnetic waves on dry and
wet surfaces [17]. Since radar became standard equipment
in modern vehicles and costs are approaching an affordable
level, research has become more relevant again. The study
in [18] for example, shows the possibility to distinguish
between dry and wet road surfaces. Similar to in-vehicle
cameras, radar does not yet provide a quantification of road
surface wetness. Another approach extensively studied in
research so far is based on the road surface’s optical proper-
ties, which change with wetness. The use of a light source
and wavelength-selective detectors allows differentiating
between wet and dry road surfaces, as shown in [19], [20].
Furthermore, measuring systems based on this approach are
commercially available, which provide a quantification of
roadwetness [21]. However, due to size and cost reasons, they
have not yet been suitable for automotive series use.

Research using microphones to record tire-road noise is
a further field that has been studied closely. As the noise
level differs between a wet and dry road surface, inferences
regarding the road condition can be drawn. As shown in
[22]–[24] a classification between dry and wet is possible,
but so far there has been no differentiation between more than
two wetness levels. A more promising approach concerning
road wetness quantification is based on structure-borne noise.
Water drops impinging on body parts of the vehicle generate
noise as structure-borne sound signals, which can be detected
by acoustic sensors [25], [26]. As shown in [27] the approach
is theoretically suitable to quantify road surface wetness. The
Porsche 911 (type 992) has recently been fitted with a sensor
of this type. It can detect considerable moisture and is used
to warn the driver about the risk of aquaplaning [28], [29].

However, a classification into wetness levels has not yet been
reported.

The approach we pursue in this paper is based on the
capacitive measuring principle. In the research field of detect-
ing weather-related road conditions, there are only a few
publications. Besides stationary capacitive sensors integrated
into the roadway [30], a mobile sensor is proposed in [31]
which is supposed to detect ice from a remote operated
vehicle’s underbody. Due to the requirement of a constant low
distance to the road surface, it is unsuitable for use in vehicles.
In contrast, we use planar capacitive transducers at vehicle
body parts as the wheel arch liner to detect impinging water
drops thrown up by the tires. As shown in [32], the approach
is generally suitable to detect road surface wetness.

In this paper, we focus on a novel concept for the quan-
tification of road surface wetness. Part of this concept is
an array comprising various planar capacitive transducers
implemented at suitable vehicle body parts. Since transducer
selection and positioning are essential to gather adequate
information for wetness quantification, we discuss the fun-
damentals of tire-road interaction and derive a suitable array.
In order to prove the reliable assessment of wetness-related
dependencies with the introduced concept, we propose a
sensor system suited for automotive applications and present
an experimental study on a test track. A further focus is
on the classification of wetness levels. While the majority
of the research presented above only provides differentia-
tion between dry and wet, we present a classifier suitable
for the distinction between eight wetness levels. Therefore,
we propose a reliable criterion for classifier optimization and
evaluate different classifiers for our concept. Additionally,
we discuss suitable features and study the transducer array’s
importance regarding classifier performance.

The remainder of this paper is organized as follows.
In Section II, we briefly describe planar capacitive sen-
sors. Afterward, the fundamental concept is described
in Section III. Besides the principles of tire-road interaction,
the transducer array and the resulting sensor system are pre-
sented. Section IV outlines the experimental setup including
test vehicle, track, and conditions. Afterward, the experi-
mental results are presented in Section V. In Section VI,
we describe the classification. After an introduction of
evaluation metrics, we present the classifier optimization.
Furthermore, we discuss suitable features and the transduc-
ers. Finally, a conclusion is drawn in Section VII.

II. PRELIMINARIES – PLANAR CAPACITIVE SENSORS
Typically, planar capacitive sensors are made up of two elec-
trodes, the driving electrode and the sensing electrode [33].
Between these electrodes an electric field is applied, pen-
etrating into the medium being monitored. This results in
electric displacement inside the medium, altering the charges
stored between the electrodes. Thus, sensor capacitance is
changed, allowing inferences to be drawn about themedium’s
permittivity and system parameters that correlate with it.
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FIGURE 1. Schematic representation of an interdigital electrode structure
built up by four digits with width w , which are separated by a distance d .

In case of the more conventional parallel-plate capacitive
sensor, which has the same measuring principle as the planar
capacitive sensor, an electric field is distributed uniformly
between the two parallel plates [34]. Here, the fringe field is
negligible since the electrode surface’s dimensions are much
larger compared to the electrode thickness. If the arrangement
of the electrodes is modified in a manner that creates in-plane
electrodes (the parallel electrodes are opened up) the field
characteristics will change. The previously negligible fringe
field becomes predominant, expanding into the area above
the electrodes [33]. Since the electric field lines still penetrate
into the medium, single-sided access is provided, which is an
essential feature in applications such as the one presented in
this paper.

In order to maximize the contribution of the fringing
field effect in sensor capacitance, interdigital electrode struc-
tures are commonly used to design planar capacitive sensors
[35], [36]. The electrodes of these structures are generally
built up by the same number of n digits with width w, which
are separated by a distance d (see Fig. 1). The correlation
of width w and distance d can be defined as the distance
between the centerlines of adjacent digits belonging to the
same electrode. This parameter is denoted as spatial wave-
length λ in literature and is directly related to the electric
penetration depth γ , which is approximately proportional
to it and sometimes defined as one third of it [37], [38].
In addition to γ , other figures of merit like signal strength,
dynamic range, and measurement sensitivity can be adjusted
by modifying the introduced parameters. Thus, their choice
is essential to meet the application’s requirements. Further
contributing factors to the figures of merit result from the
choice of the manufacturing process and transducer size.

III. FUNDAMENTAL CONCEPT
In this section, the fundamentals of tire-road interaction
are discussed and a suitable transducer array for the quan-
tification of road surface wetness is derived. Furthermore,
we propose a capacitive sensor system suited for automotive
applications.

A. TIRE-ROAD INTERACTION
Usually, the contact area between a tire and a wet road surface
can be divided into three zones for speeds less than the
critical speed of dynamic hydroplaning [39]. The ‘‘three-zone
concept’’ was originally suggested by Gough [40] for sliding

FIGURE 2. Three-zone concept of a rolling tire, based on [42] and
schematic representation of water ejection on a rotating tire, based
on [44]–[46].

locked-wheel traction and further carried by Moore [41] to
cover the case of a rolling tire [42]. Fig. 2 illustrates the three-
zone concept of water displacement by a rolling tire. In the
first zone, the tires ride on an unbroken water film while
some water is gradually pushed out the sides [43]. The water
film becomes progressively thinner in the second zone until
it ceases to function as a continuous film [39]. The transition
to the third zone is marked by the end of the continuous
water film. Here, direct tire to road surface contact is possible
through the water film, which facilitates the generation of
useful traction.

In order to establish direct contact between tire and road
surface, water has to be displaced by the tires as seen for
the three-zone concept. There are four primary mechanisms
for water ejection by a tire, which are all functions of wheel
speed, water film thickness, and tire design [44]–[47]. These
mechanisms can be divided into bow and side wave, tread
pickup, and capillary adhesion, as illustrated in Fig. 2.

The tire can only transport parts of the total water film on
the road surface through the tread grooves to the outside or in
direction of the rotation [44], [46]. Thus, the remaining part
is displaced ahead of the tire contact area similar to a bow
wave, resulting in droplets splashing to the front and the sides.
These droplets are large in size and move at comparatively
high velocities, which is commonly denoted as ‘‘splash’’ in
literature [45], [47]. They follow a ballistic trajectory and
generally stay close to the ground. Therefore, bow and side
wave usually do not hit the vehicle’s surface [48].

Finer droplets with comparatively low velocities, denoted
as ‘‘spray’’ in literature, are generated by tread pickup and
capillary adhesion [44], [45], [48]. The mechanism of tread
pickup occurs due to water being passed through the tread
grooves, which is ejected tangentially into the air as soon
as centrifugal forces at the rotating wheel exceed adhesion
forces [46], [47]. Furthermore, parts of the water under the
tire contact area spray away as fine droplets at an angle of
less than 30◦. The spray can partially contain splash water,
which is generally ejected at a shallower angle. Due to cap-
illary adhesion, some water is retained on the tire. It leaves
the tire tangentially as fine droplets continuously along the
circumference of the tire [49]. For that reason, this kind of
spray is sometimes denoted as ‘‘circumferential spray’’ in
literature [27]. In the following, we adopt this notation.
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TABLE 1. Specifications of the two manufactured electrode designs.

In contrast to the other effects, which only result from
higher road surface wetness, circumferential spray occurs
once the road surface is wet [27]. Different factors of influ-
ence determine the spray’s characteristics. A higher wheel
speed results in smaller droplets being ejected at a higher
frequency [47]. In contrast, greater road surface wetness leads
to bigger droplets up to a certain degree. If the maximum
droplet size is reached, greater road surface wetness leads
to more droplets. Furthermore, droplet size decreases as the
spray-off angle increases due to released water along the
rotation. In addition, tire design is another notable factor,
since tire depth and geometry determine the amount of water
that can stick to the tire after liftoff.

B. TRANSDUCER ARRAY
In our work, we mainly focus on circumferential spray, as it
occurs once the road surface is wet, even at very low wetness
levels (see Section III-A). Furthermore, this kind of spray
shows a correlation between wheel speed and water film
thickness. Thus, vehicle body parts as the wheel arch liners
are hit by water droplets of different sizes, amount, and speed.
In order to distinguish between various road surface wetness
levels, we exploit these dependencies by implementing a
transducer array at a suitable position.

For the array layout, we focus on two planar capacitive
transducers of the same size, but different electrode design in
this work. In Table 1, the specifications of the two electrode
designs are summarized. Due to a fixed electrode area A,
the number of digits n results in two different spatial wave-
lengths λ. As described in Section II, varying the spatial
wavelength results in differing penetration depths γ of the
electric field. While Design 1 provides a penetration depth
of approximately 2.4 mm, Design 2 only allows the electric
field to penetrate around 0.8 mm into the medium due to
the lower spatial wavelength. Thus, bigger water droplets
and higher amounts lead to faster saturation for Design 2,
while Design 1 still allows distinguishing between them.
On the other hand, dynamic range and measurement sensitiv-
ity behave contrary to penetration depth, as there is a trade-
off between these factors. Shortly summarized, Design 1
provides the measurement of water spray in a wider range,
while Design 2 is advantageous especially for very low
amounts of water droplets.

The two electrode designs are manufactured on flexible
printed circuit boards (PCB) as these provide a suitable
application on vehicle body parts like the wheel arch liner.
The two-layered PCB’s base material is made of polyimide
(50 µm) and additional adhesive (2 × 15 µm). On top,

FIGURE 3. Planar capacitive transducers arranged as a 2 × 4-array on the
right front wheel arch liner.

the electrode structure is realized as copper traces (18 µm)
protected by a coverlay made of adhesive (25 µm) and poly-
imide (25 µm). On the bottom of the base material, a back-
plane made of copper (18 µm) shields the electrode structure
from noise. The bottom is also protected by a coverlay of
the same thickness. Summed up, the 54 mm × 54 mm sized
transducers have a total thickness of around 0.2 mm. There-
fore, they can be applied in a nearly planar manner ensur-
ing a largely unaltered behavior of impinging and draining
droplets.

Since primarily the wheel arch liners are hit by circum-
ferential spray, which also offer an adequate surface area for
the transducers, we focus on them for transducer integra-
tion. More precisely, we concentrate on the front wheel arch
liners’ rear-facing sides as these are firstly hit by the spray
providing a faster decision regarding road surface wetness.
Furthermore, the tires’ displacing characteristics lead to mod-
ified conditions for the rear wheels causing disadvantages for
especially low road surface wetness levels. For implementing
the array, we use a total of eight transducers, four of each
design (see Table 1), expecting sufficient information for
the quantification due to the above-described dependencies.
In order to exploit the dependencies and gather enough infor-
mation, transducer positioning is essential.

The eight transducers are arranged as a 2× 4-array on the
right front wheel arch liner, as shown in Fig. 3. As we neglect
the spray’s influence in x-direction for the selected integra-
tion area, we position the two contrary designs adjacent to
each other. It is worth mentioning there may be an effect on
the spray’s characteristics due to steering. This effect is out of
the scope of this paper but is not expected to be disadvanta-
geous since steering can be detected and the transducers can
complement each other due to their positions. In z-direction,
the transducers are positioned in one alignment respectively,
with exception of D11, which is positioned further inside due
to constructional reasons. Since droplet size and amount vary
along the tire’s rotation for circumferential spray and further-
more show a correlation with speed and road surface wetness,
we choose four positions one above the other with appropriate
distance. While three transducers are positioned at the front
wheel arch liner’s rear-facing side, one is positioned at the
transition to the vehicle’s underbody or the side skirt (see
Fig. 3). While we expect the lower positioned transducers to
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FIGURE 4. Block diagram of the capacitive sensor system (a) and sensor
electronics mounted in a waterproof housing (b).

be more sensitive to lower road surface wetness and wheel
speed, we assume these positions to show drawbacks at
higher wetness and speed. Circumferential spray might be
partially superimposed by other effects (see Section III-A)
resulting in high amounts of water. Furthermore, impinging
water droplets burst on the wheel arch liner, partially accu-
mulating there and drain off downwards in large drops [46].
These effects can be compensated by the transducers posi-
tioned above.

C. SENSOR SYSTEM
As depicted in Section III-B, we assume a 2 × 4-array of
capacitive transducers to be adequate for the quantification
of road surface wetness levels. Therefore, sensor electronics
have to be designed in a way allowing eight channels to
be evaluated almost simultaneously. Fig. 4 (a) shows the
sensor system’s block diagram. Two capacitance-to-digital
converters (CDC) provide the connection of four transducers
each. Furthermore, the sensor system includes a temperature
sensor (TS) which can be used to compensate for the influ-
ence of temperature. The entire control of the program flow
is realized by a 32 bit microcontroller (MCU), which has an
integrated CAN (Controller Area Network) controller. Thus,
the sensor system can be connected to the vehicle bus via a
CAN transceiver (CT).

Due to its suitable specifications, the CDC component is
realized by FDC2214 fromTexas Instruments. FDC2214 pro-
vides four channels, a resolution of up to 28 bit, a maxi-
mum input capacitance of 250 nF and a maximum output
rate of 4.08 ksps [50]. The integrated circuit (IC) uses an
LC resonator as a sensor. If the capacitance of a connected
transducer changes, the LC resonator’s oscillation frequency
will be detuned. The ICmeasures sensor frequency, compares
it to a reference frequency, and outputs a digital value pro-
portional to the ratio of sensor and reference frequency. The
digital value can be converted to an equivalent capacitance.
By tuning the LC resonator, the sensor system’s excitation
frequency can be defined, which is set to 100 kHz for the
experimental study.

The multi-channel sensor electronics, mounted in a water-
proof housing, is shown in Fig. 4 (b). Its IP 67 D-SUB
connector provides a watertight connection to supply voltage
and CAN bus. Furthermore, seals and special cable glands

FIGURE 5. Test vehicle’s tires displacing water resulting in spray (a) on a
test track with manual watering option (b).

for connecting transducers ensure water tightness. Due to its
small size (65 mm × 57 mm × 23 mm), the housing can be
positioned behind the wheel arch liner (see Fig. 3) with short
connections to the transducers in order to minimize parasitic
capacitances.

Since we assume the absolute capacitance to be irrelevant
for quantifying road surface wetness, the sensor system trans-
mits the difference between a transducer’s current value and
the original value of a dry transducer (1C) via CAN. The
eight capacitances are transmitted within two CANmessages.
As one CAN message can transmit 64 bit of data, 16 bit are
provided for each capacitance. The implemented configura-
tion results in a value range from -3276.8 pF to 3276.7 pF,
a resolution of 0.1 pF and a sampling rate of 145 Hz.

IV. EXPERIMENTAL SETUP
This section outlines the experimental setup. Besides the
test vehicle data, the reference measuring system and its
application are presented. Furthermore, test track and studied
conditions are introduced.

A. TEST VEHICLE
The test vehicle is a Porsche 911 (type 991.2 Carrera 4 GTS)
with 20 ′′ 245/35 winter tires on the front axle, which have a
tread depth of approximately 6 mm and an asymmetric tread
pattern (see Fig 5 (a)). The vehicle is equipped with a ref-
erence measuring system (Lufft, MARWIS) for determining
current road surface wetness. It is commonly used as decision
support for airports and winter services and can measure
water film thickness with non-invasive optical spectroscopy
in a range from 0 to 6 mm. It provides a resolution of 0.1 µm,
a precision of±10% and a sampling rate of 100 Hz [21]. For
the experimental study, MARWIS is connected via CAN and
integrated into the vehicle’s front trunk, which is equipped
with an opening to the road. Thus, reference data can be
recorded synchronous to data from the sensor system and data
from the vehicle bus (e.g. wheel speed). Since the opening
is located in the vehicle’s center, MARWIS’ limited sensing
area just covers the road surface horizontally shifted to the
tire track. Therefore, small deviations regarding the precise
water film thickness in the tire track may occur. As we parti-
tion water film thickness into wider ranges and furthermore
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TABLE 2. Assignment of road surface wetness levels and water film
thickness tw.

provide a largely homogeneous water film on the test track,
these deviations can be neglected.

B. TEST TRACK AND CONDITIONS
The experimental study is taken on a 445 m long asphalt
circuit with two larger straight track sections (see Fig 5 (b)).
One of these sections can be watered manually for
approximately 60 m. As lower levels of road surface wetness,
in particular, cannot be kept stable due to the asphalt’s char-
acteristics and the water displacement by the tires, the test
track is watered at the beginning of a defined number of test
runs, respectively. During these continuous runs, the test track
dries to a degree sufficient to cover all defined levels of wet-
ness. Table 2 shows the assignment of road surface wetness
levels and water film thickness. Based on thicknesses that
realistically occur, we define eight classes ranging from dry to
verywet. Especially higher water film thicknesses are hard to
realize under given conditions. Even though the scientifically
and technically challenging task is to detect low levels of
road surface wetness and therefore a larger amount of data
is desirable, an imbalanced data set is a result as indicated
by Sdata, which describes the number of time windows with
a length of 150 sample points (more on this in Section VI).
Furthermore, due to the continuous test runs, transducers are
not dried. As a result, a certain amount of residual moisture
will remain on the transducers potentially complicating road
surface wetness quantification.

Besides water film thickness, wheel speed is another dom-
inating factor for circumferential spray (see Section III-A).
In this paper, we focus on urban roads and study the corre-
sponding speed range (15 kph, 30 kph and 50 kph). During
the test runs (292 in total), wheel speed is kept constant except
for the narrow curves. The third notable factor discussed in
Section III-A, the tire design, is out of the scope of this
paper. Thus, one representative set of tires is tested in the
experimental study (see Section IV-A) and the focus is on
road surface wetness and wheel speed.

V. EXPERIMENTAL RESULTS
In order to confirm the assumptions made in Section III-A
for the specified speed range and, furthermore, to show
the feasibility of quantifying road surface wetness with the

FIGURE 6. Capacitance against time for varying water film thickness of
consecutive test runs at 30 kph (transducer D13).

TABLE 3. Characteristic parameters of consecutive test runs at 30 kph for
transducer D13.

introduced concept, we depict representative results in this
section. Besides the influence of water film thickness on the
measured capacitance, we discuss speed- and position-related
differences.

Fig. 6 exemplarily shows characteristic capacitance curves
for varying water film thickness (WFT) of consecutive test
runs at 30 kph. Since Design 1 provides the measurement of
water spray in a wider range (see Section III-B), the curves
are shown for transducer D13 (see Fig. 3). The water film
thickness indicated in the legend represents the mean value
over the entire wet section of approximately 60 m (marked
by vertical lines), measured with reference measuring system
MARWIS. In addition, Table 3 summarizes characteristic
parameters of the capacitance curves for these test runs.

In general, the capacitance increases immediately after
entering the wet area due to impinging water droplets gener-
ated by the tires. As circumferential spray, which is the dom-
inant spray type for the wheel arch liners (see Section III-A),
is correlated with water film thickness, significant differences
between wetness levels occur. With decreasing road surface
wetness, droplet amount and size decrease, resulting in dif-
fering capacitance curves and characteristics. The maximum
capacitance Cmax only differs slightly for medium wetness
levels, but shows a decreasing trend over the entire wetness
range of the consecutive test runs on that transducer position.
Furthermore, the capacitance curves’ gradient significantly
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FIGURE 7. Mean capacitance against time for two wetness levels and
three transducer positions at 30 kph.

TABLE 4. Characteristic parameters of two wetness levels and three
transducer positions at 30 kph.

.

declines with decreasing water film thickness. While time
constant τrise, which indicates the time needed from the wet
section’s start to reach 63.2% of the measured capacitance
at the wet section’s end, is small for the first measurement it
almost increases tenfold to the last one allowing to distinguish
between wetness levels. When exiting the wet area, capaci-
tance decreases as no more droplets impinge and water drains
off downwards thewheel arch liner. Due to the continuous test
runs, residual moisture remains on the transducers showing
up as a capacitance offset at the beginning of a measure-
ment (similar to condensation or contamination). However,
despite that drawback, a distinction between wetness levels
is still possible since the capacitance increase is significant,
as indicated by 1Cwet, which describes the capacitance dif-
ference between entrance and exit of the wet section.

In Fig. 7, mean capacitance curves for two wetness lev-
els and three different transducer positions at 30 kph are
shown. In order to show the position’s influence on the
measured capacitance, transducers D11 to D13 are exemplar-
ily selected for the comparison. While D11 is positioned at
the transition to the vehicle’s underbody, the other two are
positioned above each other at the front wheel arch liner’s
rear-facing side (see Fig. 3). In each case, the mean capaci-
tance is determined from seven test runs with similar water
film thickness (±0.015 mm). Additionally, Table 4 summa-
rizes related parameters, including maximum standard devi-
ation σmax inside the wet section.

Each transducer position shows considerable capacitance
difference between the two selected water film thicknesses
for both Cmax and 1Cwet. Therefore, the above conclusions
also apply to these positions. In comparison to each other,
position-related differences can be observed. As droplet size
and amount vary along the tire’s rotation for circumferential
spray, the spray’s influence on transducer D12 is bigger than
on transducer D13, which is positioned above in z-direction.
As a result, maximum capacitance is significantly higher for
transducer D12 in both cases. On the other hand, the upper
position has advantages regarding residual moisture, as water
drains off downwards the wheel arch liner. Thus, the trans-
ducer dries faster resulting in a lower capacitance offset at
the beginning of measurement as can be seen for a water
film thickness of 0.02 mm. Furthermore, this results in a
larger 1Cwet for transducer D13 even though impinging
droplet size and amount are lower. Considering time con-
stant τrise, only minimal difference is noticeable for high
road surface wetness since the amount and size of impinging
droplets are high for both transducers resulting in a fast
reaching of the position-related maximum. On the contrary,
in the case of low road surface wetness τrise is smaller for D12
as available water along the tire’s rotation becomes noticeably
less and in addition, residual moisture is higher.

Due to its position at the transition to the vehicle’s under-
body, D11’s behavior differs. At a water film thickness of
0.4 mm both Cmax and 1Cwet are smaller in comparison
to D12 and D13. An even more significant difference arises
for D11’s τrise, which is more than six times larger compared
to the others. Although a high amount of water is whirled up
by the tires, a comparably small percentage of it impinges
on the transducer. Furthermore, when exiting the wet area,
the capacitance continues to increase slightly due to draining
and dripping water. For a water film thickness of 0.02 mm a
similar behavior can be observed. Even though the time con-
stants are less far separated, the capacitance increase is com-
parably small. Due to its horizontal position, the transducer
is less attracted to impinging water droplets in the studied
speed range. Nevertheless, D11 can complement significantly
to the transducer array since its redundancy to the other
transducers is low, even though the stochastic component of
the impinging water droplets is larger, as σmax indicates.

Fig. 8 shows mean capacitance curves for three wetness
levels of different classes and three wheel speeds for trans-
ducer D13. In order to compare the studied vehicle speeds,
the capacitance curves are plotted against distance displaying
a section of 40 m. In addition, Table 5 summarizes character-
istic parameters of these results.

All capacitance curves of the studied wheel speeds show
a similar behavior regarding declining road surface wetness.
While both Cmax and 1Cwet decrease within a wheel speed,
τrise increases due to reducing droplet amount and size
allowing to differentiate between wetness levels. There-
fore, the above conclusions regarding the correlation with
water film thickness equally apply to different wheel speeds.
As circumferential spray is also correlated with wheel
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FIGURE 8. Mean capacitance against distance for three wetness levels
and three wheel speeds for transducer D13.

TABLE 5. Characteristic parameters for three wetness levels and three
wheel speeds for transducer D13.

speed, a comparison of the studied speeds shows signifi-
cant differences between the capacitance curves and their
characteristic parameters. Due to droplets being ejected at
a higher frequency, resulting in larger amounts, Cmax is
generally larger for greater wheel speeds within one water
film thickness while τrise is smaller. On the contrary, 1Cwet
shows different behavior for lower wetness levels. Due to
faster test laps at higher wheel speeds, the amount of residual
moisture remaining on the transducers is frequently larger.
Thus, a higher capacitance offset is noticeable at the start
of a measurement, which reduces the capacitance range to
the speed-related maximum and results in smaller values for
1Cwet, even though the amount of impinging droplets is
higher. Furthermore, σmax rises with decreasing wheel speed
as the potential capacitance range gets wider due to a lower
amount of droplets available.

In brief, the assumptions made in Section III-A regarding
tire spray can be confirmed for the studied wheel speeds.
Circumferential spray shows a correlationwith both roadwet-
ness andwheel speed. Thereby, the amount and size of thrown
up water droplets differ. As droplet size and amount fur-
thermore vary along the tire’s rotation, transducer position-
related differences occur. As has been shown, the capacitive
sensor system is suitable to meet the requirements for

detecting circumferential spray and its correlation induced
changes. Thus, various wetness levels at different wheel
speeds can be detected, even in extreme scenarios as very
little road surface wetness at low wheel speed.

VI. CLASSIFICATION
In this section, the focus is on road surface wetness classifica-
tion. In Section VI-A, suitable metrics for classifier optimiza-
tion and assessment are introduced. Section VI-B covers the
evaluation of classifier algorithms and optimization criteria.
In Section VI-C, the selected features and in Section VI-D the
array’s transducers are discussed.

A. EVALUATION METRICS
In order to automatically classify road surface wetness, mea-
surement data is split up into time windows with a length
of 150 sample points and labeled into eight classes ranging
from dry to verywet (see Section IV-B). As a result, each
class comprises a specific number Sdata of time windows,
summarized in Table 2. According to the table, the resulting
data set is imbalanced, since especially higher wetness levels
are hard to realize under given conditions. As most classifier
learning algorithms assume a balanced distribution and equal
miscalculation costs, small classes are misclassified more
often [51]–[53]. At the data-level, solutions for imbalanced
data sets, such as randomly oversampling the small class or
undersampling the prevalent class, are possible. Due to the
data set size and in order to prevent overfitting, we refrain
from adjusting the data set. Instead, we choose suitable eval-
uation metrics for measuring performance and optimizing the
classifier.

The choice of evaluation metrics is crucial in order to
assess the classifier’s performance correctly. Furthermore,
an accurate metric is essential to optimize the classifier. The
most commonly used evaluationmetric is the accuracy, which
is defined as the ratio of correctly classified samples and the
overall number of samples [51], [54]. For an imbalanced data
set, accuracy tends to be biased towards the majority class
as smaller classes have only little impact on it [52], [53].
Thus, other adequate metrics taking the class distribution into
account are more suitable for these problems.

A commonly used metric in practice is the balanced accu-
racy (BAC), which has conceptual strengths compared to
conventional accuracy while maintaining its simplicity [55].
BAC can take values in the range of [0, 1], where 1 represents
the perfect classification. It is defined as the recall obtained
of each class averaged over the number of classes [56], [57]

BAC =
1
N
·

N∑
i=1

recalli, (1)

whereN is the number of classes. The recall, which describes
the proportion of positive labeled cases correctly classified,
is defined as

recalli =
TP

TP+ FN
, (2)
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where TP represents the number of correctly predicted pos-
itive labeled cases (true positive) and FN the number of
positive cases misclassified as negative cases (false negative).
Some variations of the recall have already been used by many
systems to optimize and evaluate classifiers [54]. Since we
assume misclassifications to adjacent classes as less safety
relevant (except between dry and damp1), we extend the
classes’ recalli by an additional weighting factor

recall∗i = recalli ·
TP+ 1

2 ·8(FN)

TP
, (3)

where 8(FN) represents the number of false negatives in
adjacent classes. For the above reasons, misclassifications
between dry and damp1 are not taken into account and are
therefore not considered in 8(FN). Accordingly, also the
balanced accuracy (see eq. 1) is extended, which is referred
to as BAC* below.

In addition, we consider a further reliable evaluation met-
ric, the Matthews correlation coefficient (MCC), for compar-
ison reasons in this paper. MCC was originally developed
for binary tasks in [58] and extended to multiclass problems
in [59]. It represents a metric that has been proven to be
appropriate for performance evaluation and classifier opti-
mization in case of imbalanced data sets [53], [60]. MCC can
take values in the range of [−1, 1], where 1 represents the
perfect classification. It is defined in eq. 4, where C is an
N ×N confusion matrix, whose kl-th entry Ckl represents the
number of elements of true class k that have been assigned to
class l by the classifier [56], [60]. In this paper, we consider
the introduced metrics for both classifier assessment and
optimization.

B. CLASSIFIER OPTIMIZATION
In order to find a suitable classifier for quantifying road sur-
face wetness into eight classes, a reliable learning algorithm
is required. In research, there is no documented standard way
for classifying road surface conditions [15]. Furthermore,
existing classifiers in this application field have largely only
provided a differentiation between dry and wet. Since we
additionally use a new approach for road surface wetness
detection, we study two conventional learning algorithms to
our data set which have already been successfully applied to
many application domains including road surface condition
classification [24], [51], [61]. One algorithm is the decision
tree (DT) which is one of the most intuitive and frequently
used ones in data science [62]. To divide a data set into

TABLE 6. Mean and best classifier performance of tenfold SFS with
regard to the optimization criterion.

predefined classes it uses a flowchart-like tree structure [63].
The other algorithm applied in this paper is the k-nearest
neighbors (KNN) classifier which often comes surprisingly
close to the optimal Bayes classifier and works well on many
problems [64]. To predict a class, KNN identifies k points
in training data with the smallest distance to the test sample
to be assigned. In order to define the distance KNN uses an
appropriate metric. In this paper, we apply Euclidean distance
which is a commonly used metric that has shown compar-
atively good results [65]. Furthermore, the choice of k is
essential for an optimal KNN classifier. Although expensive
in terms of computation time, one reliable way to determine
k , which we also follow, is to perform cross-validation tests
with various values and select the best one, which often yields
excellent predictive performance [66].

Due to the limited data set, we use tenfold cross-validation
for evaluating the classifiers, which involves randomly divid-
ing the data into ten folds of approximately equal size [64].
Each fold serves once as validation data and the remainder
for training. Although other numbers of folds are possible,
tenfold cross-validation has become the standard method in
practical turns since extensive tests on numerous data sets
and algorithms have shown that it provides the best error
estimation [57], [66]. In addition, we use sequential forward
selection (SFS) to choose relevant features from our set
with 593 features. Thus, besides the improvement of training
speed and prediction performance, avoidance of overfitting
can be ensured [62], [67]. SFS is a bottom-up search proce-
dure incrementally adding features selected by an evaluation
metric to an empty feature set [68]. For that purpose, we use
the three metrics presented in Section VI-A. In the following,
we refer to the metric used to identify relevant features as
optimization criterion (OC) and to the one that is used to
assess the performance as evaluation criterion (EC).

MCC =

N∑
k,l,m=1

CkkClm − CklCmk√√√√√√ N∑
k=1

( N∑
l=1

Ckl

) N∑
l′,k′=1
k′ 6=k

Ck ′l′



√√√√√√ N∑

k=1

( N∑
l=1

Clk

) N∑
l′k′=1
k′ 6=k

Cl′k ′




(4)
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FIGURE 9. The eight classes’ recall (blue) and extended recall (blue and
yellow) of 1NN classifier with BAC* as OC, resulting in a BAC of
0.89 (solid line) and a BAC* of 0.92 (dotted line).

With regard to the classifier assessment, each learning
algorithm (DT, KNN where 1 ≤ k ≤ 15) is studied tenfold
with each OC to increase the results’ confidence. Thus, both
algorithms and OCs can be evaluated. In Table 6 mean and
best values of the ten iterations are summarized. The term
best refers to the SFS with the highest classifier performance.
Since 1NN has shown top performance for all OCs, we refrain
from displaying other values of k for overview purposes.
As shown in the table, 1NN outperforms DT for both mean
and best regardless of the OC, indicating its superior suitabil-
ity for the present application. Furthermore, significant vari-
ations between the resulting SFSs can be deduced from the
table. Since SFS can be considered a greedy approach, it does
not necessarily yield the globally optimum solution resulting
in significant variations [62]. Therefore, the probability of
identifying an optimal SFS can be increased by performing
several iterations.

According to the results presented in Table 6, BAC* shows
advantages as OC in comparison to BAC and MCC for clas-
sifier optimization. Selecting BAC* as OC even results in
higher BAC and MCC performances than with OC equal
to EC. While the best 1NN optimized with BAC yields a
BAC of 0.84, the optimization with BAC* results in a BAC
value of 0.89. Similar behavior can be noticed for the MCC.
Here, the difference between the two MCC performances
is almost 0.03 with an advantage to BAC* as OC. Thus,
the extended balanced accuracy is the most suitable opti-
mization criterion for the studied classifier algorithms under
given conditions resulting in a 1NN classifier with BAC*
performance of 0.92.

Fig. 9 shows the 1NN classifier’s recall (blue bars) for
the eight classes, where 0 represents dry and 7 verywet2.
In combination with the part stacked upon it, this results
in the extended recall. In addition, the solid line shows the
recall’s mean (BAC) and the dashed one the extended recall’s
mean (BAC*). According to the figure, all classes exceed
a recall of 0.83, respectively a recall* of 0.86, resulting in
largely balanced class distribution. Furthermore, it is notice-
able that especially classes 2-6 benefit from the extension of
recall, as these classes tend to misclassify into neighboring

classes more frequently. As outlined in Section V, this can
be attributed to the capacitance curves’ characteristics which
are partially similar for medium wetness levels. In addition,
another factor is to be found in the narrow classes and small
time windows.

The figure also reveals that recalls of classes dry (0.97)
and damp1 (0.94) are significantly higher. A potential source
of influence might be the classes’ greater number of time
windows Sdata (see Table 2). As the training set is larger,
pattern recognition is more reliable than in smaller classes
where generalizations are more difficult. On the other hand,
these classes also show a different behavior regarding the
capacitance curves’ characteristics, since none or only little
amounts of water droplets hit the transducers. Thus, a more
clear distinction from the other classes is possible resulting
in higher classification performance. Since damp1 in partic-
ular is hard to detect from a measurement point of view,
these results demonstrate the potential of our approach and
the resulting classifier. Prospectively, new training data can
improve the results and are also desirable for a new system
configuration or driving scenarios.

Due to the novel concept, the rare publications on road
wetness classification, and the fact that the majority only
differentiates between dry and wet, it is only possible to
compare the above results with those from related research
to a limited extent. Nevertheless, we put them into context
with the findings of two other publications that have also
classified road surface wetness for the relevant speed range.
In [22] road surface wetness is detected from the audio of
tire-surface interaction in an experimental study and different
classifiers are presented. The best classifier yields a BAC
of 0.93 and can differentiate between dry and wet. Similar
results are presented in [24]. The acoustic measurements
can be classified into dry and wet with a BAC of 0.93 as
well. Furthermore, another classifier capable to distinguish
between dry, damp, and wet with a BAC of 0.82 is pre-
sented in [24]. In comparison, the above-presented classifier
yields a BAC of 0.89. Thus, the classifier’s BAC is slightly
below the two compared binary classifiers’ performance,
but above the three-class one’s and provides decent results.
As shown above, the classes dry and damp1 yield a high
performance. Therefore, a binary version of the presented
classifier can be assumed to perform particularly well for our
approach. In order to prove that, we merge seven classes and
develop a binary 1NN classifier based on the findings above.
The resulting classifier yields a BAC of 0.998 confirming
the ability of our approach to almost perfectly distinguish
between a dry and wet road surface.

C. FEATURE EVALUATION
One key aspect of the classifier performance can be attributed
to the features selected by SFS. In order to evaluate the
features’ importance with regard to classifier performance,
we take a closer look at them in this section. For that purpose,
we concentrate on the most promising classifier algorithm
evaluated in Section VI-B, the 1NN with BAC* as OC.
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TABLE 7. Overview of the feature set for each transducer.

FIGURE 10. Transducer-dependent feature frequency at 100-fold SFS with
1NN classifier and BAC* as OC.

Since SFS is not deterministic for varying data sets due to
cross-validation, we perform a total of 100 SFSs with the
chosen classifier and examine the frequency, relevance, and
required amount of features.

Except mean wheel speed, our feature space comprises
two dimensions, 8 transducers and 74 features, resulting in
a total of 593 features. The features are generated by sta-
tistical attributes and data vectors related to the measured
capacitance, wheel speed, and time. Table 7 gives an overview
of the feature set applied to each transducer. It provides a
connection between the statistical attributes and the evaluated
vectors. Besides common statistical features like minimum,
maximum, or mean, implemented for the whole timewindow,
more specific features comprising a fixed number of sample
points s are implemented, with a particular focus on the
capacitance’s standard deviation SD. Another notable feature
is represented by diff, which describes the largest or smallest
change between two consecutive sample points within a time
window.

In Fig. 10 the transducer-dependent feature frequency over
the feature index of 100-fold SFS is shown. In addition,
the red bar with index 593 represents the feature mean wheel
speed. During the 100 iterations, on average 18.49 features
per SFS and a maximum of 30 features are selected. Further-
more, in total 226 of the 593 features are selected with 63 of

FIGURE 11. Frequency over average position of most frequent selected
features at 100-fold SFS with 1NN classifier and BAC* as OC.

FIGURE 12. Box-and-whisker plot of the feature
∂C12

∂t min. The whiskers
representing values 1.5 times the interquartile range above the upper
respectively below the lower quartile. Any other value is assumed to be
an outlier, marked as a dot.

them being selected more than ten times, demonstrating the
non-deterministic behavior of SFS. Moreover, a distribution
over both dimensions of the selected features can be seen
from the figure. Although this figure does not yet allow con-
clusions to be drawn about the importance of each transducer,
it does provide an indicator of the array’s relevance with
regard to classifier performance. In addition, the mean wheel
speed’s selection frequency is noticeable. Even though this
feature on its own cannot classify the data, since the decision-
criterion for road wetness is the transducer’s capacitance,
it is selected in four fifths of the iterations. As outlined
in Section V, wheel speed is correlated with the amount and
size of thrown up water droplets impinging on the trans-
ducer, which explains its importance for road surface wetness
classification.

Fig. 11 summarizes the ten most frequently selected fea-
tures during 100-fold SFS. It shows the frequency over the
average position selected in SFS for each feature. The most
frequent feature, mean wheel speed, is selected 80 times on
average at position 2.5. Furthermore, there are five other
speed-related features in the top ten, each selected in more
than a third of the SFSs. Four of these features repre-
sent the highest 20% values’ mean of the capacitance and
wheel speed’s quotient and the other one the quotient’s mean
for the whole time window. These features are selected
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comparatively early in SFS, again underlining the wheel
speed’s importance with regard to the classifier performance.

There is only one feature selected earlier on average, which
represents the time window’s minimum capacitance increase
between two samples in relation to the time of transducer D12.
If this feature is selected, it is in the first position, which
occurs in three quarters of the iterations. Consequently, this
feature is apparently best suited to classify on its own with
a BAC* of approximately 0.86 on average. Fig. 12 shows
the data distribution in a box-and-whisker plot of the feature
for the eight classes. Class dry is unique in position and
has a comparably small interquartile range indicating a low
data variance and therefore the higher classifier performance
depicted in Fig. 9. As the class index increases, the feature’s
median decreases. In addition, each classes data distribution
is individual and in a narrow value range providing a reliable
class prediction.

If the feature from Fig. 12 is not selected first, similar fea-
tures regarding the capacitance increase are selected instead,
which refer to D12 or D13 in 99%. The lowest-performing
feature (BAC* around 0.81) selected at first position refers to
D14 and represents the time window’s maximum capacitance
increase. Thus, all features selected at first position refer
to transducers of Design 1 (see Table 1), which seem to
be more suitable to classify on their own (more on this in
Section VI-D).
Two additional features, shown in Fig. 11, also relate

to the capacitance increase. As figured out in Section V,
the capacitance curve’s gradient is correlated with water film
thickness. Therefore, these features provide an increase in
classifier performance resulting in a high selection frequency.
The remaining feature of the ten most frequently selected
represents the capacitance curve’s mean standard deviation
for intervals of 25 sample points. This kind of feature is
particularly relevant if the road surface is dry or once the
speed-/wetness-related maximum is reached. In those situa-
tions, they significantly complement the features described
above.

A similar picture emerges for the transducer-independent
consideration of the most selected features. Here, four
capacitance increase-, three standard deviation- and three
speed-related features are among the top ten, illustrating their
importance and complementarity. On the contrary, features
representing capacitance by statistics like minimum, maxi-
mum, or mean are selected more rarely, since their infor-
mation gain alone is too insignificant and disadvantageous
compared to the features above.

A more detailed analysis of the two highest-performing
classifiers of 100-fold SFS confirms the assumptions pre-
viously made. For both SFSs, a balanced ratio between the
three most frequent feature types described above is given
including seven of the ten most frequently selected features
from Fig. 11. Furthermore, both selections contain merely
one feature representing capacitance by statistics like mini-
mum or maximum. While the second-best classifier includes
17 features at a BAC* of 0.92, the best contains 28 features

FIGURE 13. Flow chart for the approach of forward transducer selection.

TABLE 8. Performance (BAC*) history of forward transducer selection
excluding the feature mean wheel speed.

at a BAC* of 0.95. Thus, the latter can even outperform the
classifier presented above and with a BAC of 0.93 reach the
same performance as binary classifiers from related research
(see Section VI-B). In addition, a consideration of the
transducer-dependent features gives further evidence for the
electrode array’s importance. After eight selected features,
the best classifier already includes features from six different
transducers. At position 22 and 23, features from the remain-
ing transducers (D14 and D24) are selected. However, these
features only result in a marginal improvement. A similar
picture emerges with the second-best classifier. Here, features
from six different transducers excluding D22 and D24 are
selected. In the following section, a more detailed considera-
tion follows with regard to each transducer’s relevance.

D. FORWARD TRANSDUCER SELECTION
As shown in the previous section, features from both dimen-
sions, including the eight transducers, are selected during
SFS. In order to study each transducer’s contribution to clas-
sifier performance, we take a closer look at them within this
section. For the study, we again apply 1NN with BAC* as
OC and separate the feature space into eight parts, respec-
tively nine parts considering mean wheel speed. Furthermore,
we introduce forward transducer selection (FTS), which is
based on the wrapper method known from feature selection
and successively generates combinations of the available
transducers.

Fig. 13 shows the flow chart for FTS. Each remain-
ing (initially eight) transducer’s features space is combined
individually with the previously selected transducers’ fea-
ture space (initially blank) and ten SFSs are performed
respectively. Subsequently, BAC* is determined by ten-
fold cross-validation for every SFS. Once all transducers
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have been tested, the highest performing classifier is deter-
mined and compared to the previous transducer selection’s
classifier performance. If BAC* can be improved, the causing
transducer is added to the selection. This is continued until all
transducers have been added or BAC* cannot be improved
further by adding a transducer.

In Table 8, the performance history of FTS excluding
mean wheel speed is summarized. The first sensor to be
selected with a BAC* of 0.86 is D12, which therefore also
represents the most suitable single sensor solution with con-
siderable performance. In comparison, only D13 which is of
the same electrode design and positioned adjacent above D12
can nearly reach that performance. Due to their redundancy,
other transducers are preferred in further FTS and D13 is not
selected despite the high performance as a single sensor.

Furthermore, the table reveals design-related advantages
with regard to a single sensor setup. All transducers of
Design 1 (see Table 1) show higher performance than those
of Design 2. This may be attributed to the design properties
since Design 1 provides a higher penetration depth provid-
ing the measurements of water spray in a wider range (see
Section III-B). Thus, Design 2 offers more complemen-
tary qualities in the proposed transducer array. In addition,
the results also indicate position-related advantages for a
single sensor setup. As the transducer height increases at
the front wheel arch liner’s rear-facing side (D12 to D14, see
Fig. 3), the classifier performance decreases. Since droplet
size and amount decrease as the spray-off angle increases,
D12 shows advantages regarding the classification across the
entire wetness levels. Furthermore, the position at the tran-
sition to the vehicle’s underbody (D11) shows drawbacks as
a single sensor. The above can be confirmed by the results
from Section VI-C, where 83% of the first selected features in
100-fold SFS referred to D12 and the remainder to D13 or D14.

On the contrary, D11 shows the best complementary
characteristics and is selected second with a performance
increase of around 0.03. Since the position is less attracted to
impinging water droplets in comparison (see Section V), its
redundancy to transducers at the front wheel arch liner’s rear-
facing side is comparatively low. The same holds for D21,
which yields the second-highest performance increase and is
selected third for the same reason. Subsequently, D23, D14
and D24 are selected. Although the performance increase is
lower than before, they can significantly improve the classi-
fier. In total, six transducers, three of each design, are selected
covering all vertical positions.

As shown in Section VI-C, mean wheel speed is a feature
with high selection frequency, even though it cannot clas-
sify wetness on its own and other speed-related features are
available. In order to study its influence on required trans-
ducers and classifier performance, we repeat FTS including
the feature mean wheel speed. Table 9 summarizes the cor-
responding performance history. In comparison to Table 8,
there is a significant increase in classifier performance for
the transducers at the front wheel arch liner’s rear-facing
side with regard to a single sensor setup. Since Design 2

TABLE 9. Performance (BAC*) history of forward transducer selection
including the feature mean wheel speed.

shows its advantages for low amounts of water droplets (see
Section VI-D), and droplet size and amount decrease as the
spray-off angle increases, especially D23 and D24 can benefit
from the additional information. Nevertheless, the most suit-
able transducer selected first is still D12 with a BAC* of 0.87.

Similar to the previous FTS, D11 and D21 are selected
subsequently. This is followed by the selection of D22 and
D23, which yield a higher performance increase compared
to the features selected on similar positions in the previous
FTS. In total, one transducer less is selected and a perfor-
mance increase of nearly 0.01 can be yielded by adding
the additional feature. Furthermore, no upper transducer is
selected, which might be attributed to the additional infor-
mation provided by the mean wheel speed. Thus, the vertical
arrangement does not seem to be as decisive as before for the
studied wheel speeds.

In brief, to a certain extent, the array’s individual trans-
ducers can contribute significantly to classifier performance,
just as appropriate statistical features do. With regard to
the required accuracy and available implementation space,
a trade-off exists between classifier performance and trans-
ducer number. According to the findings, a single-sensor
solution is also conceivable as a considerable BAC* perfor-
mance of 0.87 is achievable.

VII. CONCLUSION
In this paper, a novel concept for road surface wetness quan-
tification has been proposed. The concept is based on a
2 × 4-planar capacitive transducer array designed for the
front wheel arch liner’s rear-facing side enabling to detect
water ejected by the tires. In an experimental study on an
asphalt circuit, the spray’s correlation with wheel speed
and road surface wetness has been confirmed for the stud-
ied wheel speeds. Furthermore, the reliable assessment of
wetness-related dependencies with the proposed capacitive
sensor system has been shown. The results have also revealed
significant differences between the transducer designs and
positions as the amount and size of water droplets vary along
the tire’s rotation confirming the array’s relevancewith regard
to wetness quantification.

In addition, different learning algorithms and optimization
criteria for automatically classifying road surface wetness
into eight classes have been studied with the experimen-
tal data. An extended version of the balanced accuracy as
optimization criterion and 1NN classifier has achieved the
highest performance. The overall best classifier yields a BAC
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of 0.93 and can thereby reach the same performance as binary
classifiers from related research. Furthermore, a binary ver-
sion of our classifier yields a BAC of 0.998 confirming
the potential of our concept to almost perfectly distinguish
between dry and wet road surfaces for the studied wheel
speeds. One key aspect of classifier performance can be
attributed to the features selected. A balanced ratio between
capacitance increase-, standard deviation- and speed-related
feature types provides the highest classifier performance.
In addition, the feature average wheel speed can significantly
improve classifier performance. Furthermore, up to a certain
extent, the array’s individual transducers can significantly
improve classifier performance with design- and position-
related advantages.

Future work involves the investigation of higher wheel
speeds and feature selection algorithms with regard to clas-
sifier performance.
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