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ABSTRACT Air-writing recognition has received wide attention due to its potential application in intelligent
systems. To date, some of the fundamental problems in isolated writing have not been addressed effectively.
This paper presents a simple yet effective air-writing recognition approach based on deep convolutional
neural networks (CNNs). A robust and efficient hand tracking algorithm is proposed to extract air-writing
trajectories collected by a single web camera. The algorithm addresses the push-to-write problem and avoids
restrictions on the users’ writing without using a delimiter and an imaginary box. A novel preprocessing
scheme is also presented to convert the writing trajectory into appropriate forms of data, making the CNN’s
trained with these forms of data simpler and more effective. Experimental results indicate that the proposed
approach not only obtains much higher recognition accuracy but also reduces the network complexity
significantly compared to the popular image-based methods.

INDEX TERMS Air writing recognition, isolated writing, convolutional neural network (CNN),

hand tracking.

I. INTRODUCTION

With the rapid growth of artificial intelligence technology,
many intelligent applications have been developed such as
smart TV and intelligent robots. The most natural way for
humans to communicate with these intelligent systems is
dynamic gestures. In recent years, air writing has become
one of the most popular dynamic gestures. It is defined as
writing alphanumeric with hand or finger movements in a
three-dimensional (3D) free space. Air writing is particularly
useful for user interfaces that do not allow the user to type on
the keyboard or write on the touchpad/touch screen or for text
input for intelligent system control [1].

Air-writing recognition is closely related to motion ges-
tures or sign language recognition. Motion gesture recog-
nition methods can be roughly divided into two categories:
device-based and device-free. The device-based method
requires the use of either handheld or worn devices to obtain
hand (or finger) movement in three dimensions, for example,
handheld pointing devices such as Wii [1], inertial sensors
attached to a glove [2], [3], or motion sensors on the watch [4].
However, the requirement for handheld or worn devices
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and sensors are troublesome and complicated to use; thus,
device-based methods are not commonly used. By contrast,
in the device-free method, users do not need to hold or
wear any devices; hence, this method is more convenient
than the device-based method. Device-free methods can be
further divided into vision-based and radio-based methods.
The former utilizes 2D or 3D cameras to capture gesture input
images. The latter uses radio sensors such as radar [S]-[7] or
WiFi [8]-[11] to obtain gesture signals.

Air writing can be realized in three manners [1]: isolated,
connected, and overlapped air writing. In isolated writing,
the letters are written in an imaginary box with fixed height
and width in the field of view of an image, one at a time.
In connected writing, multiple letters are written from left
to right, which is similar to writing on a paper. In the last
manner, one can write multiple letters stacked contiguously
one over another in the same imaginary box. We study the
isolated writing style in this paper.

Isolated writing is the most essential and popular method.
Motion characters are isolated alphanumeric letters written
in a unistroke. The steps involved in air-writing recognition
generally include hand/finger tracking, feature extraction and
classification. The fundamental problems in isolated writing
include [1], [12]:
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(a) tracking of hand and/or fingers,

(b) segmentation of writing acts (or push-to-write),

(c) restrictions on the users’ writing due to the limitation
of an imaginary box, and

(d) intraclass variability of the writing patterns of a letter.

For vision-based methods, the first problem has been
addressed, but different solutions must be used for 2D and 3D
image sensors. 2D camera-based systems often utilize color
markers on fingers to increase tracking performance since
finger tracking without markers is challenging. 3D camera-
based systems address the hand/finger tracking problem
well simply using the depth information provided by 3D
image sensors such as Kinect [12], Leap Motion Controller
(LMC) [13], or Intel RealSense camera [14].

Air writing lacks a reference position on the writing plane
and thus lacks the beginning and end points of a stroke.
Therefore, it needs to automatically detect the start and end
coordinates of the characters written in the air. This is referred
to as segmentation of writing acts, or the so-called push-
to-write problem. One of the possible solutions is to use a
specific posture to signal the endpoint of a writing act [1],
e.g., a fist posture. However, this will increase the number of
gestures that users must remember. When depth information
is available, the segmentation of writing acts can be done by
merely using a depth threshold [15].

In summary, 3D camera-based systems address the first
two problems more conveniently than 2D camera-based
systems. However, 3D systems are more complex and
expensive.

The imaginary box limits the range of writing. It reduces
the variations of letter input such as position, scaling or
rotation of the written image. This alleviates the burden of
the subsequent processing. Nevertheless, from the users’ per-
spective, this method causes inconvenience and restrictions
of users on writing.

In this paper, we design a simple yet effective air-writing
recognition approach based on deep convolutional neural
networks (CNNs) using a single low-cost 2D web camera.
Our approach solves the first three problems in a convenient
manner. Furthermore, it can work in a real-time smart-TV-like
environment. The major contributions of this article are:

(a) A robust air-writing trajectory acquisition algorithm
based on a web camera. The algorithm combines
skin and moving features to detect the moving skin
region and then applies the Camshift algorithm to
track the moving hand. It performs hand tracking only,
thus avoiding the complicated procedures for finger
tracking. In addition, the proposed algorithm solves
the push-to-write problem without using a delimiter.
Furthermore, it does not utilize an imaginary box;
hence, users can write freely in the air without any
restrictions.

(b) A novel data preprocessing scheme. The scheme
normalizes the x and y coordinate sequences of the
writing trajectory and then combines them into 1D and
2D arrays. The two types of data arrays are employed to
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train 1D-CNN and 2D-CNN. These simple data arrays
make the designed CNNs simpler and more effective
than the use of complex written images.

(c) A CNN-based air-writing recognition system using a
low-cost web camera. It achieves real-time recognition
with a high accuracy of more than 99% and very
low network complexity. It outperforms the popular
approaches using written images as input.

The remainder of this paper is organized as follows.
Section II discusses the related prior work. Section III
describes the proposed method in detail. The experimental
results are presented in Section I'V. Finally, the conclusions
are drawn in Section V.

Il. RELATED WORK

This work presents a vision-based approach; hence, only the
vision-based methods that utilize 2D and 3D cameras in the
literature are discussed in the following.

Many studies have been carried with 2D technology.
Air-writing recognition can also be considered in parallel
to hand gesture recognition. The steps involved in vision-
based 2D hand gesture recognition are hand/finger detection
and tracking, feature extraction and classification. An early
vision-based work by Oka et al. [16] used a complex device
with an infrared and color sensor for fingertip tracking and
recognition.

To simplify the acquisition process of the writing trajectory
based on generic 2D video cameras, Roy et al. [17] used a
marker of a fixed color for writing in the air. The marker
tip can be easily detected by color-based segmentation.
This work also presented a velocity threshold of writing
to achieve the segmentation of writing acts. The proposed
method achieved 97.7%, 95.4% and 93.7% recognition rates
in person-independent evaluations over English, Bengali and
Devanagari numerals, respectively. To incorporate flexibility
in marker choice and stable motion tracking under varying
lighting conditions, Rahman et al. [18] improved the marker
tip tracking scheme by a marker calibration mechanism. They
presented a dual network configuration consisting of RNN-
LSTM (recurrent neural network—long short-term memory)
networks for noise elimination and digit recognition. The
proposed method yielded a recognition rate of 98.75% for
single-digit recognition and 85.27% for multidigit recogni-
tion. Due to the variation in writing speed of different users,
we argue that it may be difficult to set an appropriate velocity
threshold value. Recently, Misra et al. [19] developed a hand
gesture recognition scheme to recognize letters, numbers,
arithmetic operators and ASCII characters using a red marker
placed on the finger for fingertip detection. The scheme
achieved a recognition rate of 96.95% for the classification
of 58 gestures. The above maker-based schemes impose
behavioral constraints on the users. Therefore, a marker-free
approach is a better option.

Marker-free fingertip detection/tracking is very challeng-
ing because a face that is a moving object with similar
skin tone to hands is present in video frames, making
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hand detection and hence fingertip detection much more
complicated. The preceding step of fingertip detection is
hand segmentation. Numerous works for hand segmentation
and fingertip detection based on 2D cameras have been
performed in recent years [20]. These works can be divided
into two categories: model-less and model-based approaches.
The former utilizes color and motion cues, which are simple
and can operate in real time but are often less robust with
respect to environmental variations such as illumination
changes [21], [22]. By contrast, the latter usually provides
higher robustness but incurs a high computational cost and
requires a large amount of training data, making it unsuitable
for real-time application [22]. The air-writing recognition
system in [20] proposed a new writing hand pose detection
algorithm for the initialization of air writing. Furthermore,
the work used a distance-weighted curvature entropy for
robust fingertip detection and tracking. In addition, it also
proposed a termination criterion based on the moving velocity
of the fingertip to serve as a delimiter and mark the
completion of the air-writing gesture. Character recognition
experiments gave a mean accuracy of 96.11%.

Recently, several air-writing methods based on 3D image
sensors have been developed. References [12] presented a
Kinect-based online handwriting recognition system. The
authors in [13] used LMC to obtain the 3D positions of
fingertips, the center of the palm and the orientation of the
hand. References [14] developed an air-writing recognition
scheme using 3D trajectories of fingertips acquired by an
Intel RealSense 3D depth camera.

The writing trajectory can be obtained after the detec-
tion/tracking of fingertips is completed. The subsequent
processing is to recognize the trajectory, generally includ-
ing feature representation (extraction) and classification
in traditional machine learning. The vision-based repre-
sentation contains 3D model-based and appearance-based
approaches [23]. The appearance-based approach is more
widely used than the 3D model-based approach. The
appearance-based model is further categorized into color-
based, silhouette geometry, deformable Garbarit, and motion-
based models [23]. Based on these models, a wide variety of
distinguishing features for the representation of gestures have
been proposed in recent years [24].

Several classification algorithms have been developed
for hand gestures with a temporal dimension. The popular
algorithms are the hidden Markov model (HMM) [25],
dynamic time warping (DTW) [26], finite state machine
(FSM) [27], support vector machine (SVM) [28] and random
forest [29].

The methods based on traditional machine learning
extract features in a hand-designed manner and then train
a classification model. While those methods are robust,
they have some limitations in the generalization of the
models for many cases. Recently, some deep learning-based
approaches have been presented, such as [30]-[33]. The
work in [30] mapped 3D fingertip coordinates acquired
with LMC into a trajectory image that was used to train
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FIGURE 1. The proposed air-writing recognition system.

a 2D-CNN model. References [31] presented air-writing
recognition based on a fusion framework that combines 2D-
CNN and BLSTM to model the spatial and temporal features
of gestures. The method achieved 99.25% and 99.83% for
the alphabet gesture and the numeric gesture, respectively.
References [32] developed dynamic hand gesture recognition
with a 3D-CNN that fuses the motion volume of normalized
depth and image gradient values. References [33] presented
an approach for activity and gesture recognition with 3D
spatiotemporal data based on a combination of a CNN and
an LSTM (long short-term memory) network. The CNN was
utilized to extract relevant features from 3D skeleton data,
and the LSTM was applied to tackle the activity recognition.
In [34], the authors proposed a gesture recognition system
based on the data collected by an RGB camera and a
depth sensor. By combining 3D-CNN and LSTM networks
to extract spatiotemporal features of the gesture sequence,
the system achieved a recognition rate of 97.8% for eight
selected gestures. References [35] developed an air-writing
recognition system using 3D trajectories collected by a depth
camera. The LSTM recognizer of the system achieved the
highest recognition rates of 99.17% and 99.32% for two
different datasets.

The deep-learning-based methods stated above perform
better than the conventional methods in recognition rate.
However, most of these methods are very complex since they
use 2D/3D networks and/or written images. This work aims
to develop a simple yet effective system using a 1D or 2D
network that utilizes only the writing trajectory data instead
of images.

ill. PROPOSED METHOD

The proposed air-writing method is shown in FIGURE 1.
It includes three stages: trajectory acquisition, data process-
ing and network. The image sequence is acquired with a
web camera. Based on the image sequence, a novel hand
tracking algorithm is presented to calculate the trajectory of a
stroke that a user writes in the air. Then, the trajectory data
are processed and converted into two kinds of forms: 1D
arrays and 2D arrays. The two kinds of data are formed into
trajectory datasets, which are used to learn CNN models in the
offline training phase. During online prediction, the system
receives real-time data from the web camera and then predicts
the digit (or symbol) that the user writes using the learned
models. We describe the three main stages of the proposed
system as follows.
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A. TRAJECTORY ACQUISITION

The purpose of this unit is twofold: to acquire the 2D image
that the user writes in the air and to record the coordinate
sequence of a stroke, called the trajectory of writing. The
trajectory is formed by the coordinates of the center of a
moving hand. Thus, detection and tracking of the moving
hand from the 2D image sequence is essential in this unit.

Hand detection/tracking has been studied for a long time.
However, it is still a challenging issue if both robustness and
real-time execution are required. In this paper, we combine
skin and moving features to detect the moving skin region and
then apply the Camshift algorithm [36] to track the moving
hand. The proposed algorithm is robust and can operate in
real time.

Hand detection using skin features is a simple and fast
method. However, it is easily prone to errors due to the
interference of skin-like objects, lighting changes, and skin
changes of different users. To solve the interference of skin-
like still objects, a moving feature is included in our skin-
pixel detection algorithm. Moreover, to adapt the skin feature
variation due to the light change and user change, we extract
the skin feature of the face region of the user who is writing.
Specifically, we use a face detection algorithm to extract the
face region of a particular user and calculate the histogram
of the H channel in HSV color space. Then, we apply
backprojection on the whole image to detect other regions of
the image that have the same histogram. The backprojection
is calculated from the histogram. It replaces every pixel by its
probability to occur in the image.

The detected regions above can be hands or naked body
parts. By combining moving features, we can further remove
the naked body and detect the moving hand simply using a
logical AND operator. Here, the simple frame differencing
method is employed to detect moving pixels using adjacent
frames, as shown in FIGURE 2(a) and FIGURE 2(b). The
binary image after the AND operation may have few small
holes and/or noise. We removed them with morphological
operations, and the detected hand was clean and complete,
as shown in FIGURE 2(c).

Finally, we apply the Camshift algorithm to track the
moving hand region and record the center coordinates of the
hand region of every frame of a gesture that corresponds to
writing a character. The sequences of the coordinates form
the trajectory of the character.

The procedure for obtaining the image and trajectory of air
writing of a digit (symbol) is as follows. A user sits down in
front of a web camera. When the system detects the face of
the user, the air-writing session begins. When the user raises
his or her hand and writes a character by moving his or her
finger, the system will detect the moving hand. The frame
immediately after the moving hand is detected is regarded
as the start of a stroke. The frame immediately after the
moving hand disappears is the end of the stroke. The center
coordinates of the hand in all frames between the start and
end of the stroke are recorded, forming the trajectory of the
digit, as illustrated in FIGURE 3. In addition, the image of
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FIGURE 2. (a) Frame k image, (b) Frame k+1 image, (c) The result after

moving the skin filter.

recording

R1.©9O°

FIGURE 3. lllustration of writing trajectory.

the written character is also recorded. The above procedure
solves the push-to-write problem without a delimiter in a
simple manner.

B. DATA PROCESSING
1) 2D IMAGE
As stated before, we convert the handwritten data into a 2D
image. The original size of the captured image is 640 x 480.
The user most likely writes commands in different positions
in air. To attack the shift variance, we transform the captured
image into an image that has a size of 360 x 360 and is located
in the middle of a window. The resulting image is shown in
the top row of FIGURE 4.

The transformation is performed using the following
equations:

, Xi — Xavg
= Tt 360 + 180 1
i 14y ot M
¥y = 2 360 + 180. 2
1.4r
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FIGURE 4. Examples of written images and normalized coordinates of
trajectory.

where

Xavg = (Xmax + Xmin) /2 3
Yavg = Ymax =+ Ymin) /2 4
- { AX = Xjpax — Xmin, if Ax > Ay 5)
AY = Ymax = Ymin, if Ax < Ay

In the above equations, x; and y; are the original coordinates
in the x-axis and y-axis, respectively, and x; and y; are the
transformed coordinates. Xp.; and yp. are the maximal
values of coordinates in the x-axis and y-axis, respectively.
The purpose of 1.4 x r in Egs. (1) and (2) is to leave
0.2r margins on the left boundary and right boundary when
the coordinates are plotted as an image. To reduce the
computational load in training, the normalized image with a
size of 360 x 360 is further resized to 36 x 36 with linear
interpolation. The resized image set is used to implement the

existing popular approaches for comparison.

2) 1D TRAJECTORY

To reduce network complexity, we normalize the coordinates
of the original trajectory and then transform them into a 1D
sequence. The normalization is performed according to

Xppaw = Xavg +1/2 (6)
Xyyin = Xavg — 1'/2 7
Vinax = Yavg +7/2 3
Yonin = Yavg = /2. )

The average values [xayg, Yavg] and the range r above
are defined in Eq. (3)~(5). Using the new maximal and
minimal values defined in Eq. (6)~(9), we can normalize the
coordinates into [-1, 1] by

! = 2 (xi — xr/nin) B (x;rlax - xr/nin) (10)

l

It is noted that the x coordinate and y coordinate are
normalized with the same value r that is the length of the
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long axis of the written image. Thus, the aspect ratio of
the width and height of the written image can be preserved.
If normalization is performed independently on the x-axis and
y-axis, the aspect ratio will be lost. Our experience indicates
that the above aspect-ratio preservation will significantly
improve the performance. Examples of the normalized
x-coordinate and y-coordinate sequences are illustrated in
FIGURE 4.

The times required to complete a writing action of a digit
(or character or symbol) are generally not equal for different
users. Therefore, the data lengths for different writing actions
are not the same. Our experiences indicate that 3 seconds is
sufficient to complete the writing of a digit for general users.
The frame rate per second (fps) of a camera is 30 in our
system. Thus, the data length of a written digit is not greater
than 90 points. Here, we set the data length to 100 to consider
tolerance. The results obtained from Egs. (10) and (11) are
then upsampled by linear interpolation to obtain 100 points
of data for each dimension. To further study the effect of the
data arrangement on system performance, we arrange the data
into two ways as follows.

a: 1D_PAD

The x-coordinate sequence is padded with 14 zeros at both
ends to form a [1,128] sequence. The y-coordinate sequence
is processed using the same method. The resulting x and y
sequences are then concatenated into a 1-D array [1,256].
The zero-padding is used to isolate the x and y coordinates
to avoid their interference with each other in the convolution
operation.

b: 2D_NO-PAD
The x coordinate and y coordinate sequences without padding
are arranged in a 2D array [2,100], where the X sequence
is placed in the first row, and the y sequence is placed in
the second row.

C. CONVOLUTIONAL NEURAL NETWORK DESIGN
A basic CNN is composed of several convolutional layers
for feature extraction, each of which is usually followed by a
pooling layer. The last convolutional layer is also followed by
one or more fully connected (dense) layers for classification.
For the 1D and 2D trajectory data stated above, we design
a 1D-CNN and 2D-CNN, respectively, to recognize the input
digits (or directional symbols). The typical architectures of
our proposed 1D-CNN and 2D-CNN for recognizing digits
are shown in FIGURE 5(a) and FIGURE 5(b), respectively,
and consist of several 1D or 2D convolutional blocks. The
architectures for directional symbols are similar; hence,
they are neglected here. Each convolutional block contains
convolution, maximal pooling, batch normalization, and
activation function. The CNN (1D or 2D) applies batch
normalization after convolution and before activation because
it helps to improve the performance and stability of neural
networks [37]. The ReLu function is adopted as the activation
function in the hidden layers to avoid the vanishing gradient
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FIGURE 5. Proposed CNN architectures for trajectory data. (a) 1D-CNN,
(b) 2D-CNN.

problem [38]. The dense block consists of more than one
dense layer. The softmax activation function is employed in
the output dense layer that maps the real-value input into the
prediction probability in the range of [0,1]. Dropout is also
employed between the two hidden layers since it is beneficial
for avoiding overfitting [38].

We apply the minibatch gradient descent (MBGD) algo-
rithm [39] to learn the CNN model. MBGD computes the
gradient of the loss function / with respect to the parameter
set ¢ for every minibatch of n training examples and then
performs an update iteratively to obtain the optimal parameter
set (corresponding to the minimal loss function) by

G = i1 — PVl x B (1)

where x and y are the target output and the predicted output of
the network, respectively, V,, is the gradient operator, and p
is the learning rate. MBGD utilizes the backpropagation (BP)
scheme to compute the gradient of the loss function. In this
work, we choose cross-entropy in Eq. (13) as the loss
function.

N
l(p,x,y) = —Zi:lxilogy,' (13)

In MBGD training, choosing a suitable fixed learning rate
is difficult. A learning rate that is too small will lead to
slow convergence, while a learning rate that is too large will
hinder convergence and cause the loss function to oscillate
around the minimum or even cause divergence. To solve this
problem, several gradient descent optimization algorithms
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with different learning rate schedules have been reported
such as Adagrad, Adadelta, Adam and RMSprop [39]. The
Adam (adaptive moment estimation) algorithm is employed
in this work since it has been experimentally proven to
be effective [39]. Adam estimates the individual adaptive
learning rates of different parameters according to the first
and second moments of the gradients of the loss function. The
update algorithm of the parameter set of the network is given
by [39]

U'%z
Ot < QPt—1 — —F/——
N

where 7 is a fixed learning step size, ¢ is a very small constant,
and mi; and ¥, are the first and second moments after bias
correction, respectively, that are calculated by

(14)

~ my Vi

my = Bim,_y + (1 — Bgr. (16)
vi = Bav,_y + (1 = Ba)g?, (17)

where g; denotes the gradient of the lost function at time 7,
and B; and B, are the decay constants for the first and second
moments, respectively.

IV. EXPERIMENTAL RESULTS

A. DATASET CREATION

Our work aims to develop an air-writing system for smart-TV
control. Since no public dataset for this purpose is available,
we create two types of datasets. One is a digit dataset,
including O to 9 with different writing directions: clockwise
and anticlockwise; hence, it contains a total of 20 symbols.
The other is a pure directional symbol dataset that includes
16 symbols. FIGURE 6(a) and FIGURE 6(b) show the images
of the symbols in the two datasets.

Each of the two datasets contains a training set and test set.
The training and test sets were obtained by 6 and 8 volunteers,
respectively, with ages ranging from 20 to 30 years old.
To improve the robustness of our system, the volunteers for
the collection of training data and test data are completely
different. For the digit dataset, the training set size and test
set size are 12,000 and 1,600, respectively. For the directional
symbol dataset, they are 9,600 and 1,280, respectively.

K-fold cross-validation is the most popular method in
various applications of machine learning [38], [40]. We apply
K-fold cross-validation for tuning the hyperparameters using
the training sets. To find the best K value, we divide the
training set into training and validation subsets with different
size ratios and then carry out training and validation for each
size ratio. The result indicates that K = 5 (size ratio = 4:1)
achieves the highest recognition rate; therefore, we used
5-fold cross-validation in this work.

B. OPTIMIZATION OF CNN CONFIGURATIONS AND
PERFORMANCE EVALUATION

This subsection discusses the design of optimal CNN
configurations and the evaluation of performance in terms
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FIGURE 6. Two datasets used in our work.

of two metrics: recognition rate and network complexity
presented in [8]. Here, the total number of parameters of the
CNN is used to evaluate the network complexity. A highly
complex network often requires a large amount of training
data to avoid overfitting and involves a high computational
cost. We apply the popular deep learning platform Keras to
calculate the two metrics [41].

1) OPTIMIZATION OF CNN CONFIGURATIONS

The design of CNN configurations involves hyperparam-
eter optimization, that is, to set various hyperparameters,
including the number of hidden layers, nodes of every layer,
batch size, and learning rate. The goal of the hyperparameter
optimization in our work is to find the set of hyperparameters
that obtains the highest recognition rate given network
complexity. Some general strategies such as grid search and
random search have been presented to find the best network
that achieves the highest recognition rate [29]. However,
these strategies do not consider the metric of the network
complexity. Therefore, in this work, we apply the process of
trial and error based on our experience to obtain improved
network configuration that balances recognition accuracy and
network complexity.

For 1D zero-padding data, we design two 1D-CNNs: the
first has two convolutional layers and is denoted as 1D-2, and
the second has three convolutional layers and is denoted as
1D-3. The leftmost columns in TABLE 1 and TABLE 2 show
the best configurations of 1D-2 and 1D-3, respectively. The
other two columns list the network parameters for the two
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TABLE 1. 1D-2 network configuration and its performance for 1D_PAD
data.

Digit Direction
Layers Parameters Parameters
ConvlD Filter 4/kerel 43 Filter 4/kernel 79
Maxpoolingl D 2 4
ConvlD Filter 8/kernel 43 Filter 8/kernel 3
Maxpoolingl D 2 4
Dropout 0.025 0.05
Flatten
Dense 20 16
Dropout 0.025 0.1
Dense 20 16
Recognition rate 99.275% 99.750%
Total Num of Params 1,2240 2,760

TABLE 2. 1D-3 network configuration and its performance for 1D_PAD

data.
Digit Direction
Layers Parameters Parameters
ConvlD Filter 2/kernel 47 Filter 2/kernel 35
Maxpoolingl D 2 2
ConvlD Filter 4/kernel 27 Filter 4/kernel 27
Maxpoolingl D 2 2
ConvlD Filter 8/kernel 19 Filter 8/kernel 3
Maxpoolingl D 4 4
Dropout 0.025 0.05
Flatten
Dense 20 16
Dropout 0.025 0.1
Dense 20 16
Recognition rate 99.375% 99.766%
Total Num of Params | 3932 2732

datasets. It is obvious that the 3-layer CNN achieves a higher
recognition rate with much lower network complexity for the
digit set than the 2-layer CNN.

Similarly, we also train two 2D-CNN models for [2,100]
data. The results are shown in TABLE 3 and TABLE 4,
respectively, and indicate that the 3-layer CNN is much
improved with respect to network complexity (4548 vs.
8252 on average of two datasets) at the cost of a small
decrease (approximately 0.2%) in recognition rate.

2) PERFORMANCE EVALUATION

Currently, there is no standard air-writing dataset available
for smart TV control. Therefore, we implement the popular
networks using the written images of our datasets. The
results in terms of recognition rate and total number of

142833



IEEE Access

C.-H. Hsieh et al.: Air-Writing Recognition Based on Deep Convolutional Neural Networks

TABLE 3. 2D-2 network configuration and its performance for

TABLE 5. 2DCNN network configuration and its performance for original

2D_NO-PAD data.

written image.

Digit Direction Digit Direction
Layers Parameters Parameters Layers Parameters Parameters
Conv2D Filter 4/kernel (3, 19) | Filter 4/kemel (3, 3) Conv2D Filter 16/kernel (3, 3) Filter 16/kernel (19,
Maxpooling2D 1,2) (1,4) 2|
Conv2D Filter 8/kernel (3,43) | Filter 8/kernel (3, 19) Maxpooling2D 2.2 2.2
Maxpooling2D (1,2) (1,4) Conv2D Filter 36/kernel (3, 3) Filter 36/kernel (3, 3)
Dropout 0.025 0.05 Maxpooling2D 2,2) (2,2)
Flatten Conv2D l;ill)ter 64/kernel (11, Filter 64/kernel (3, 3)
D 20 16
ense Maxpooling2D | (2,2) 2,2)
D t 0.025 0.1
ropou Dropout 025 0.25
Dense 20 16
Flatten
R 1t . 0, ) 0,
ecognition rate 99.075% 99.703% Dense 128 128
Total Num of 12,808 3,696
Params Dropout 0.5 0.5
Dense 20 16
TABLE 4. 2D-3 network configuration and its performance for Recognition rate 83.588% 79.656%
2D_NO-PAD data. Total Num of 418,008 165,076
Params
Digit Direction
Layers Parameters Parameters TABLE 6. 2DCNN-LSTM network configuration and its performance for
) B original written image.
Conv2D Filter 2/kernel (3, 31) Filter 2/kernel (3, 99)
Maxpooling2D (1,2) (1,2) Digit Direction
Conv2D Filter 4/kernel (3, 35) Filter 4/kernel (3, 35) Layers Parameters Parameters
Maxpooling2D (1,2) (1,3) Conv2D Filter 16/kernel (4, 4) Filter 16/kernel (4, 4)
Conv2D Filter 8/kernel (3, 23) Filter 8/kernel (3, 7) Maxpooling2D 2,2) 2,2)
Maxpooling2D (1,4 (1,3) Dropout 04 04
Dropout 0.025 0.05 ConvaD Filter 16/kernel (4,4) | Filter 16/kernel (4, 4)
Flatten Maxpooling2D 2,2) 2,2)
Dense 20 16 Dropout 0.4 0.4
Dropout 0.025 0.1 Conv2D Filter 16/kernel (4,4) | Filter 16/kernel (4, 4)
Dense 20 16 Maxpooling2D @.2) .2
it 0, 0,
Recognition rate 98.750% 99.625% Dropout 04 04
Total Num of 5,608 3,688
Flatten
Params
LSTM Unit 10 Unit 10
Dense 20 16
parameters are compared with those of our methods. Here, Recognition rate 95% 93.75%
thre'e popular networks Wldely used in the literature [30]-[35] Total Num of 36.548 36.504
are implemented for comparison: (a) pure 2D-CNN, (b) 2D- Params

CNN plus LSTM (2DCNN-LSTM), and (c) 2D-CNN plus
SVM (2DCNN-SVM). The first is an end-to-end pure CNN
approach that uses 2DCNN to complete both the feature
extraction and classification tasks. The last two are hybrid
approaches that utilize 2D-CNN for feature extraction and
then apply SVM or LSTM for classification. The results
of the three methods are shown in TABLE 5-7. It is noted
that 2DCNN-SVM is implemented in a simple manner,
as reported in [42]. Specifically, at the output layer of the
CNN, instead of the conventional softmax function with the

142834

cross entropy function, the Euclidean norm with the squared
hinge loss is used [42].

The best models in every case of the proposed CNNs that
are trained with the 1D form and 2D form of the writing
trajectory are selected and compared with the three popular
models mentioned above in TABLE 8. By using the 1D form
and 2D form of the writing trajectory data, we obtain the first
two models in this table. It is noted that the values of the
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TABLE 7. 2DCNN-SVM network configuration and its performance for
original written image.

Among our proposed networks, 1D-CNN is slightly better
than 2D-CNN. The two CNN models based on trajectory data
significantly outperform the existing popular methods using
written images. In addition, the network complexity of our

Digit Direction
Layers Parameters Parameters
Conv2D Filter 4/kernel (4, 4) Filter 4/kernel (4, 4)
Maxpooling2D (2,2) 2,2)

proposed neural networks is much lower than those of the
popular methods, and our systems can operate in real time.
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Conv2D Filter 16/kernel (4, 4) Filter 16/kernel (4, 4)
Maxpooling2D 2,2) 2,2)

Conv2D Filter 16/kernel (4, 4) Filter 16/kernel (4, 4)
Flatten

Dense 20 16

Recognition rate 81.6% 75.34%

Total Num of 2,263,288 1,811,700

Params

TABLE 8. Performance comparison of our proposed methods and the
popular methods.

Recognition rate
(%)

Models Total Num of Params

Proposed IDCNN for
Trajectory 1D Data
Proposed 2DCNN for

99.571 3,332

. 99.188 4,648
Trajectory 2D Data
2DCNN for

. 81.622 291,542
Written Images
2DCNN-LSTM

. 94.375 36,526
for Written Images
2DCNN-SVM
78.450 2,037,494

for Written Images

recognition rate or total number of parameters in this table
are calculated from the average of two datasets, i.e., digit
and direction. We conclude that 1D data concatenated by the
x-coordinate sequence and y-coordinate sequences achieve
the best performance in terms of the recognition rate and
network complexity. Moreover, the proposed approach using
trajectory data in 1D or 2D form as the input of CNN is
superior to the popular methods that use written images as
the input.

V. CONCLUSION

In this paper, we have proposed deep CNNs for the recog-
nition of air-writing digits and special direction symbols for
smart-TV-like control. A robust air-writing trajectory acqui-
sition algorithm based on a web camera is developed that
performs hand tracking only, avoiding the use of complicated
procedures for finger tracking. By preprocessing the writing
trajectory, we obtain one-dimensional and two-dimensional
data that are utilized to design 1D-CNN and 2D-CNN,
respectively. Through careful design and optimization of
hyperparameters, the proposed CNNs achieve excellent
performance with a recognition rate greater than 99%.
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