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ABSTRACT Clinically interesting low-contrast dental and oral features can be challenging to detect.
In visual observation and clinical photographs, identification of low-contrast features can be hard or even
impossible. Imaging methods, e.g., X-ray and magnetic resonance imaging, provide more information
but often require use of ionizing radiation, expensive equipment, and specialized personnel to operate
the devices. A cost-effective, non-ionizing, contrast-enhancing imaging method that can be used at any
dental clinic is in great demand. Here we show a dental and oral feature visibility-enhancement based on a
portable spectral camera and computational filters derived from principal component analysis. By applying
computational filters on oral and dental spectral images, selected features of clinical interest can be
highlighted against their surroundings. Due to the lack of information available in standard color images,
this visibility-enhancement technique can only be realized using spectral images. Oral and dental spectral
imaging does not use ionizing radiation, and modern spectral cameras are small, portable, and can be used
without specialized training. In this paper, spectral image-based visibility-enhancement is demonstrated for
the following cases: gingival recession, calculus, gingivitis, root caries, secondary caries, Fordyce’s granules,
leukoplakia, and pigmentous lesions. The results gained with spectral images and computational filters from
principal component analysis are compared against regular color images and grayscale images computed
with band-pass filters from our earlier work. The results are promising as the visibility and contrast of the
features of interests are enhanced in all the studied cases. This study provides a starting point for future
research and demonstrates the applicability of spectral imaging-based methods for practical use at dental
clinics.

INDEX TERMS Contrast enhancement, dentistry, oral mucosa, principal component analysis spectral

imaging, teeth.

I. INTRODUCTION

Caries, the most prevalent chronic endemic disease, and peri-
odontitis are inflammatory diseases considered as a major
cause of tooth loss. The chronic nature of these diseases
manifests from slow lesion progression. Even though there
has been considerable improvement in dental care, severe
periodontitis is still found worldwide in approximately 11%
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of the adult population [1]. The standard diagnostic approach
in clinical and radiological investigations of both caries
and periodontal diseases rely on visual and morphological
changes associated with these diseases, which makes early
prediction challenging. Specifically, the current diagnostic
techniques for caries are unable to detect the lesions until they
are relatively well advanced and involve one-third or more of
the thickness of the enamel. However, the slow progression of
caries lesions offers a window of opportunity for intervention
to reverse the loss of minerals or arrest lesion progression
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before irreversible damage develops on the dental hard tis-
sues. Taking advantage of this window, however, necessitates
development of techniques for early detection.

Periodontal probing is considered a necessity in diagnos-
tics of periodontal diseases. The pocket depth, bleeding, and
the amounts of plaque, supra- and subgingival calculus are
assessed with the probe. This diagnostic procedure, however,
may induce bacteremia. In some cases, especially in clinically
compromised patients, invasive actions cannot be performed
due to risk of systemic infection, for example. For these
patients, noninvasive methods for periodontal diagnostics are
warmly welcome.

Lesions may also exist on the oral mucosa. White
lesions, including leukoplakia, hyperkeratosis, and Fordyce’s
granules, are relatively common in the oral cavity [2].
Leukoplakias, hyperkeratotic epithelia, may be related to
mucocutaneous diseases [3]. Besides this, white hyperk-
eratotic lesions may also be caused by chronic irritation,
e.g., tobacco, snuff, and mechanical irritation. In such case,
the lesion may possibly disappear when the chronic irrita-
tion is removed. The oral mucosa may also present another
lesion- like white spots unrelated to leukoplakias or hyper-
keratosis: Fordyce’s granules (sebaceous glands), which
are normal variations in the subepithelial stroma. In the
clinic, the diagnosis of oral mucosal lesions begins with
a conventional oral examination and palpation followed by
a scalpel biopsy for histopathological diagnosis. Develop-
ment of non-invasive and fast diagnosis methods is thus
warranted.

Major part of the dental imaging technology in use in
clinical practice is based on the X-ray radiation. Panoramic
radiographs and computed tomography scans reveal the
anatomical and pathological structures of the teeth and alve-
olar bone, but they not only expose the patient to ioniz-
ing radiation and, in some cases, to non-risk-free contrast
agents [4], but also require specialized personnel to safely
operate the devices [5]. Due to the associated risks, the bar-
rier for imaging is higher. However, treatment planning and
patient education can benefit from images, and an increasing
number of dental professionals have been including digital
photography as a part of patient visits [6].

Discerning dental and oral lesions from their surrounding
healthy tissue on intraoral digital photographs can be chal-
lenging due to subtle visual differences. The color charac-
teristics of abnormalities in their early stages may remain
largely unchanged. While photo editing software can improve
the images to some extent, there is a fundamental techni-
cal limitation: color digital photography relies on an array
of photosensitive sensors with wide spectral sensing range.
The sensors have three different types, red, green, and blue,
approximately matching the three cone cell types found in the
human eye. Each of these sensor types is sensitive to a wide
spectral range within the visible region of light and as such
have limitation in data acquisition: each pixel in the image
describes the color by only three values. This limitation can
be overcome with digital spectral imaging [7].
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Digital spectral cameras typically divide the light coming
to the camera into narrow wavelength bands. These narrow
bands allow for more accurate acquisition of the reflectance
of a sample: each pixel in the image becomes a vector of
intensities at different wavelength bands. A modern spec-
tral camera can record hundreds of bands in the visible
and near-infrared region [7]. Additionally, these devices are
becoming smaller and increasingly mobile [8].

Like digital photography, spectral imaging can be limited
to the visible light range of the electromagnetic spectrum.
Often, though, some parts of the infrared region are also
included into the imaging range. The use of visible and near-
infrared range is safe as the radiation is non-ionizing. The
extended wavelength range and the large number of wave-
length bands enables early detection of physiological changes
by the changes in their reflectance spectrum [7]. Furthermore,
reflectance spectral imaging does not rely on any contrast-
agents and is a non-contact detection method.

Spectral imaging, however, produces drastically more data
than ordinary optical photography, which necessitates alter-
native analysis methods. In the context of visualization,
the choice of the methodology depends on the aim of the
analysis: a computational simulation of an optical system for
enhancing an interesting feature necessitates methods that
are implementable optically — at least partially, whereas a
software-based visualizations may apply methods of arbitrary
complexity. The simulations primarily produce optimized fil-
ters or illuminations. Typically, these are narrow-band spectra
and combinations thereof [9], [10], though enhancement can
be done with suitably chosen white light also [11]. This
category may also include computational high-frequency fil-
ters [12], but these are unlikely implementable optically,
as speculated in [13]. Purely computational methods may
use statistical properties of the spectral image to produce
enhanced images. One popular statistical method to handle
spectral data is principal component analysis, PCA [14], [15].
PCA finds the directions of largest variances in a multidi-
mensional dataset. In [16] and [17], PCA is used to esti-
mate the spectral image through dimensionality reduction.
The estimate’s difference to the original spectral image is
weighted with the spectrum of a target feature in order to
enhance the visibility of the feature. In [18], multivariate
histogram is used to enhance the visualization of remote-
sensed landscape. Machine and deep learning solutions,
especially, enable classification of the spatial and spec-
tral data, allowing the merging of the visualizations with
specific semantic meanings allowing, e.g., tumorous tissue
demarcation [19], [20].

In this paper, the computational simulation approach is
taken by studying the PCA of spectra of oral and dental
lesions and their surrounding area. Mathematically, the direc-
tions found with PCA can be interpreted as computational
filters, a subset of which improve the contrast of clinically
interesting, but normally low-contrast features. The result of
the study is a set of novel partially negative computational
filters that, when applied on oral and dental spectral images,
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produce contrast-enhanced grayscale images with high con-
trast between the lesions and their surroundings. The perfor-
mance of the filters is quantified with Michelson contrast
and is compared to grayscale versions of the RGB-color
images, and grayscale images computed with fully positive
filters from our previous study [10]. The partially negative
filters found are optically implementable, e.g., using method
of [13].

Il. MATERIAL AND METHODS

A spectral reflectance image R(x, y, 1) is a multidimensional
array of size X x ¥ x N, where x € [1,X]andy € [1, Y] are
spatial coordinates, and A is wavelength. Let A;, i € [1, N]
be a wavelength band. The spectral image can be computed
from image acquisition data using the well-known flat-field
correction [7]:

SS(.X, Y, )"l) - Sd(.x, Y, )‘l)
sr(xX, Y, Ai) — sa(x, y, Ai)
where s¢(x, y, A;) is the sample measurement, s,(x, y, A;) is a
reference sample measurement, sq(x, y, A;) is a dark-current
measurement, and finally R,(A;) is the reflectance spectrum
of the reference sample.
The contrast-enhancement method is briefly described in
the flowchart presented in Fig. 1 summarizing the steps taken.

R(x,y, 1) =

X Ry (i), (D)

A. OPTICAL SETUP

We constructed an optical imaging system for dental and oral
spectral imaging. The system mainly consists of a spectral
camera, a halogen light source (Thorlabs OSL2, Thorlabs
Inc., USA), and a chin—forehead rest. In the beginning of the
imaging project, we used Nuance EX (CRI, USA) spectral
camera that supports the spatial resolution of 1392 x 1040
pixels and spectral resolution from 450-950 nm with 10 nm
steps giving 51 spectral bands. Later, the camera was replaced
with Specim IQ (Specim, Spectral Imaging Ltd., Finland),
which has a smaller spatial resolution of 512 x 512 pixels
but an extended spectral resolution from 400—-1000 nm with
204 bands (&3 nm step). Only the spectral images captured
with the latter were used for PCA due to the wider spectral
range and narrower bands. The computational filters gained
from PCA, however, were applied on spectral images origi-
nating from both devices.

During imaging, a test subject places their chin and fore-
head on the rest to prevent involuntary head movements. The
area of interest is illuminated by the halogen light source
via a ring illuminator (FRI61F50, Thorlabs Inc., USA) and
is imaged by the spectral camera attached on its platform.
A reference sample s,(x,y, 1), matt diffuse gray ceramic
sample (“Matt Diff Grey”, Ceram Research, Ltd., UK),
is also imaged for normalization purposes as per (1) once per
imaging geometry.

B. TEST SUBJECTS
The research ethical permission was granted by The Hospi-
tal District of Northern Savo, Kuopio, Finland (413/2016).
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In accordance to the informed consent principle, the volun-
teering test subjects were fully informed about the research
and gave their written consent concerning the imaging and the
use of the acquired spectral images prior to spectral imaging.
This study covers data from a total of 22 test subjects.

For the assessment of caries, the International Caries
Detection and Assessment System II (ICDAS II) [22] was
applied so that first visible sign of non-cavitated caries were
included. Cavitated lesions were excluded.

C. DATABASE

Using the optical setup, we have spectrally imaged the test
subjects, and constructed a database of dental and oral spec-
tral images. The spectral images have been annotated by
experienced dentists (HJ, AK) with a custom-made software.
This study was conducted with 116 annotated spectral images
of 22 test subjects. Spectral images of the face, and maxillary
and mandibular teeth were acquired of each test subject. Parts
of the oral mucosa, or tongue were imaged on case-by-case-
basis as deemed necessary.

The spectral images were segmented manually into
classes, like oral mucosa, enamel, calculus, marginal and
attached gingiva, and gingivitis. These classes allow auto-
matic extraction of the associated spectra. The spectral image
database has been published [21] and is freely available
(https://sites.uef.fi/spectral/odsi-db/).

D. PRINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA) is a widely used sta-
tistical method for finding the directions of maximum vari-
ance from a numerical data set [14], [23]. PCA is used,
e.g., in lossy data compression for excluding unimportant
features [15], in machine learning for preprocessing data [24],
and in machine vision applications for enhancing the visibil-
ity of desired features in an image scene [25].

We used PCA [23] to find the directions of the largest vari-
ances in specifically chosen datasets and treated the resulting
directions (eigenvectors) as computational filters. Mathemat-
ically, a computational filter e(1) applied on a spectral image
R(x, y, A) produces a singular weighted sum image of all band
images of a spectral image:

N
106, y) = Y Rx, Y, A)e(h). @)
i=1

We call this grayscale sum image I(x, y) an inner product
image.

We formed a set of contrast-enhanced images and their
associated computational filters as per Algorithm 1. For train-
ing, 1000 random spectra were selected per class. The classes
were used to form combinations of the spectra of an inter-
esting feature (a lesion) and the spectra of a complementary
type (tissue surrounding the lesion). For example, for a filter
designed to highlight calculus, the spectra of interest would
be of calculus class and the complementing class spectra
of enamel. The process produced an initial set of over two
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FIGURE 1. Computational filter creation and application process: 1) oral and dental spectral imaging and annotation of the spectral images to form a
database [21], 2) extraction of annotated oral and dental spectra to form a class-spectra mapping, 3) creation of pairings of two different classes to form
datasets, 4) principal component analysis to form eigenvectors to separate the spectra in the two given classes in a dataset, 5) application of the
eigenvectors on the spectral images, and visual inspection by dental experts to choose the best performing eigenvectors, 6) collection and storage of the
best performing eigenvectors as a computational filter dataset, 7) creation of images showing optimal separation between the two classes using the
computational filters, 8) rescaling of the intensity range to create contrast-enhanced images.

thousand contrast-enhanced inner product images of varying
improvement levels. Visual evaluation was used to discard
poorly performing computational filters. Finally, the reduced
set was evaluated visually by dental experts, whose obser-
vations were used to select the most interesting filters. The
dental experts noted unexpected contrast enhancements, like
Fordyce’s granules, that were not in the training classes. This
is understandable, however, as PCA is not a classification
algorithm and the eigenvectors affect all features present in
the spectral image.

E. POSTPROCESSING

While the computational filters created with principal com-
ponent analysis can greatly enhance discernibility of low-
contrast features, oftentimes the projection squeezes the
image histogram. Images with such histograms exhibit low
overall contrast. We rectified the low overall contrast by
applying contrast stretching [26] that widens the narrow his-
togram, see Fig. 2. In the Fig. 2c, inner product image of
leukoplakia computed with partially negative filter shows
value range from —0.36 to 1.06. However, the histogram
shows the majority of the pixel intensities lie in range from
—0.06 to 0.08, which as such is a more suitable source range
for scaling the data than the former. Likewise, a positive
filter has produced a histogram, Fig. 2d, showing overall
range from 0 to 0.66, with majority of the intensities in range
from O to 0.10. After selecting the appropriate value range,
the pixel intensities are feature scaled into 8-bit unsigned
integer format for grayscale presentation, that is, into value
range from O to 255. This method of contrast enhancement
is chosen to avoid effects from more advanced methods in
order to evaluate the performance of the computational filters
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Algorithm 1  Generation and  Collection  of

Contrast-Enhancing Partially Negative Filters

Input: Sets of training reflection spectra X; and X, from
Classes 1 and 2, and n test spectral images Ry (x, y, A;),
0 < k < n exhibiting Classes 1 and 2.

Output: Set U of contrast-enhancing partially negative com-
putational filters.

1: Form training matrix X <« stack(Xy, X»)

2: Compute eigenvectors U <— pca(X)

3: fork =0tondo

4:  Project test spectral image

Pr(x, y, i) < 3oLy ROx, v, 4)e(hi)
5:  for all / band images /(x, y) in Pi(x, y, ;) do
6: Perform postprocessing step
1(x,y) < rescale({(x, y))

7: Evaluate visibility of the Classes 1 and 2

8: if Features separable then

9: Store candidate band number L <« (L, [)
10 end if
11:  end for
12: end for

13: return Contrast-enhancing computational filters
Ulw,lelL}

rather than that of various histogram equalization algorithms.
In any case, some scaling is required as the unprocessed inner
product images may contain negative intensity values due
to the filter spectra being partially negative. Such images
are non-physical and cannot be shown on, e.g., a computer
display.

In some cases, the filters produced images that one might
interpret as negatives. These images look unnatural and were
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FIGURE 2. The raw inner product images produced when (a) partially
negative and (b) fully positive filter are applied on a spectral image of a
leukoplakia. The histograms for (c) partially negative and (d) fully positive

filter. The intensity rescaled images are shown in Figs. 5g and 5h, and
their histograms in Fig. 8b.

inverted to look natural. For example, an image showing
black enamel against white gingiva would change to show
white enamel against black gingiva. The inversion can be
performed by negating the computational filter or the pixel
intensities of the computed inner product image, as can be
deduced from (2). Both approaches work equally fine as the
eigenvectors produced with PCA denote the directions of
the largest variances, and their negation does not affect the
meaning of the eigenvector.

The color images used for comparison in Figs. 5, 6, and 7
are computed from the spectral images assuming D65
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standard daylight illuminant and CIE 1931 2° standard
observer [27]. Additionally, their brightness has been
increased by 4+-50%, but they were not altered otherwise in
regard to their histogram or contrast.

F. PERFORMANCE EVALUATION
We evaluated the performance of the computational filters
by inspecting the produced inner product images. Subjective
visual evaluation was supplemented by computing Michelson
contrast

max(ly, ., Ie, ) — min(ly g, Ic ;1)

c= (3)
Is,u + Ic,p,

between the average intensities Iy, ;, and I , of a sample area
I and its immediate surrounding area /. of an inner product
image I(x, y). The sample areas /; are marked with magenta
outlines in the RGB-versions of the lesion images in Figs. 5,
6, and 7, while the surrounding areas /. are marked with
cyan outlines. Direct numeric contrast comparison between
an RGB color image and a grayscale inner product image is
not possible, and therefore the RGB-renders were converted
to grayscale images I,(x,y) by weighting the three color
channels, red Ir(x, y), green IG(x, y), and blue Ip(x, y), by

Iy(x, y) = 0.2991g(x, y) + 0.587Ig(x, y) + 0.1141p(x, y),
4)

as per luminance Y’-channel calculation in [28].

Michelson contrast does not account for the overall con-
trast of the image, which can lead to a situation where the
numerical and visual evaluations disagree. In order to recon-
cile the differences in the qualitative and quantitative results,
we included a penalization term p based on the histogram &
of the image:

255
1

nghn—i—b ©)

where 7 is index of the bin in a 256-bin histogram, #,, is the
number of pixels in a bin, and b a small valued (1 x 1076)
bias term to avoid division-by-zero. Note that we exclude the
first and the last bin from the penalization factor as these are
the black and white areas of the image and in some cases
contain a substantial number of the pixels but do not carry
information of interest. The idea is to penalize images where
the histogram contains many empty bins. If the histogram is
narrow, the image does not utilize the wide range of intensi-
ties available and likely has a poor overall contrast.
The final penalized contrast score ¢, for an image is

cp=—. (6)

The scores are then used to compare the performance and
to determine whether an inner product image has an improved
overall image contrast.
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FIGURE 3. Partially negative computational filters capable of enhancing
the contrast of calculus (filter #2), caries (Filters #1-#3), Fordyce's
granules (Filter #1), gingivitis (Filters #1 and #2), leukoplakia (Filter #1),
and pigmentous lesions (Filter #1).

IIl. RESULTS AND DISCUSSION

We applied PCA on sets of spectra collected from spectral
images based on manually segmented classes (see Fig. 1).
Class pairs like Enamel—Calculus, Enamel—Root, Enamel—
Attrition/Erosion, and Oral mucosa—Ulcer were used as the
basis of the analysis. PCA applied on the spectra produced
204 computational filters, i.e., eigenvectors, per spectral
image by default. These sets contained many uninteresting
filters: the directions with low variance produced mostly
noise when applied on a spectral image and some filters
enhanced clinically uninteresting features. We found that
some of the filters also enhanced other features than that
indicated by the class labels. For example, a computational
filter from Oral mucosa—Ulcer spectral set was found to
enhance the visibility of caries.

Promising filters were selected for further evaluation and
these filters were applied on all spectral images in our
database. This produced several thousand potential inner
product images, which the dental experts (AK, HJ) eval-
uated visually and narrowed down to a clinically interest-
ing set. We then used this set of images to select the best
performing computational filters. These filters are presented
in Fig. 3.

In our earlier work [10], we created optimal light source
spectra to enhance the contrast of various lesions on extracted
human teeth. The optimization was done using particle swarm
optimization (PSO) [29]. These light source spectra can
be used as computational filters. We applied each PSO-
based filter presented in the earlier work on the spectral
images shown in this work and chose the best performing
filters per spectral image (Fig. 4). This blatantly ignores
the original intended target of each filter, but since these
filters were designed using extracted human teeth, we have
no appropriate filter to use with spectral images of oral
mucosal and gingival lesions. The best performing filters
were
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FIGURE 4. Particle Swarm Optimization (PSO) -derived computational

filters for enhancing crown-root separation (Filter A), dark calculus
(Filter B), initial caries (Filter C and D), and white calculus (Filter E).

A) crown-root, contributor-constricted,

B) dark calculus against dentin, contributor-constricted,
C) initial caries against dentin, contributor-constricted,
D) initial caries against enamel, and

E) white calculus against enamel, contributor-constricted.

The performance of these filters was then compared against
the PCA-derived computational filters by comparing penal-
ized Michelson contrasts of annotated lesions against their
surroundings. The filters are presented in Fig. 4

A. EVALUATION OF FILTER PERFORMANCE

Each image set presented and selected for visual and numeric
performance evaluation in Figs. 5, 6, and 7 contains anno-
tations for a sample and its surrounding area. Michelson
contrasts between the mean intensities of the annotated areas
as per (3) are listed in Table 1.

Filter #1 (see Fig. 3) is based on the Enamel— Root
class-pair. PCA-based filters (i.e., eigenvectors) are ordered
according to the amount of variance they explain (first eigen-
vector explains the largest amount of variance, and the last
eigenvector the least). Here, Filter #1 is the second eigenvec-
tor of the dataset. The filter has — among others — three small
local extrema approximately at wavelengths 540 nm, 560 nm
and 580 nm. These extrema correspond the absorption spikes
of hemoglobin [30]. This connection implies that the filter
would — at least to some degree — react to blood vessels.
The filter proved itself an all-rounder being able to enhance
the visibility of oral mucosal lesions (Fordyce’s granules,
leukoplakia, pigmentation), gingivitis, and caries.

Filter #2 is the fourth eigenvector of the Enamel—Calculus
-pair dataset. The filter shares one of the hemoglobin absorp-
tion spikes with Filter #1 at 580 nm as a global minimum.
The filter can be used to enhance the contrast of calculus,
gingivitis, and secondary caries.

Filter #3 is from Oral mucosa—Ulcer set, third eigenvec-
tor. Perhaps unexpectedly, noting the significant difference
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TABLE 1. Michelson contrasts c of the lesion vs. surrounding area in
grayscale versions of the color images, eigenvector (PCA) and particle
swarm optimization (PSO)-based inner product images. Here, F# denotes
filter from Figs. 3, and 4.

Lesion class Gray PCA PSO
c F# c F# c
Calculus 0.008 | #2 0.024 | E  0.049
Fordyce’s granules | 0.065 | #1  0.107 | B 0.204
Gingivitis 0.010 | #1 0073 | D 0.039
Leukoplakia 0.120 | #1 0297 | D  0.299
Pigmentation 0.080 | #1 0.154 | C 0.176
. #1 0425
Root caries 0.374 #3 0444 A 0816
. #1  0.261
Secondary caries 0.059 #0279 A 0.208

TABLE 2. Penalized contrast scores cp (Eq. 6) for the eigenvector (PCA)
and particle swarm optimization (PSO) -based inner product images.
Here, F# denotes filter from Figs. 3 and 4. The scores for the grayscale
versions of the color images have been excluded: their values range from
6.71 x 10~ to 1.44 x 1078,

Lesion class PCA PSO
Fi# Cp F# Cp
Calculus #  0.016 E 0.010
Fordyce’s granules | #1  0.029 | B 0.014
Gingivitis #1  0.035 D 0.019
Leukoplakia #1  0.060 | D 0.044
Pigmentation #1  0.014 | C  0.052
. #1  0.180
Root caries £ 019 A 0.168
. #1  0.092
Secondary caries #0110 A 0.035

in their spectral shapes, it improves the visibility of more
advanced root caries in Fig. 7d, like Filter #1.

Generally, numeric and visual evaluation agree that the
grayscale versions of the color images generally have poorer
contrast compared to the inner product images. The PCA
vs. PSO comparison, on the other hand, seems more chal-
lenging. The PSO images have systematically better Michel-
son contrast values than the PCA images (Table 1) while a
visual subjective evaluation would disagree. This disagree-
ment is solved by penalizing Michelson contrast scores with
(6). As noted earlier, we exclude the first and the last bin
from the penalization factor. For example, the PSO image
for calculus (Fig. 6f), and PCA images of secondary caries
(Figs. 71 and 7h) contain large black areas outside of the
area of the interest, while the images of Fordyce’s granules
(Figs. 5a—5d) and leukoplakia (Figs. Se —5h) contain specular
reflections. These under- and over-saturated areas do not
affect the overall visibility of the lesion and the surrounding
tissue, while they do have an undue influence on the penalized
score. The penalized scores are presented in the Table 2.

The grayscale versions of the color images have very low
penalized scores ranging from 6.71 x 10~ to 1.44 x 1078,
This is caused by many empty histogram bins, which lead to
large penalization factors for these images. As the scores are
so low, all PCA- and PSO-filters present a drastic improve-
ment in overall image contrast. This can be expected as the
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histograms of the grayscale images, Fig 8, show majority of
the pixels lying in the lower half of the intensity range with
values ranging approximately from 25 to 100.

1) FORDYCE'S GRANULES

Filter #1 is expected the react to hemoglobin, which is pre-
sumably causing an effect on the image set of Fordyce’s gran-
ules in Figs. 5a —5d: the PCA inner product image (Fig. 5c)
shows dark surroundings for the granules, presumably due
to blood vessels, while the granules are weakly visible in
the grayscale image (Fig. 5b). The PSO Filter B, however,
seems to produce a more visually pleasing image with more
uniform background shade of gray. The Fordyce’s granules
sample thus shows the difficulty in quantifying the results.
The granules are better discernible from the background in
the PSO-filtered image (Fig. 5d) than in the PCA-filtered
image (Fig. 5¢). This subjective observation is supported by
the Michelson contrast, but the penalized score again favors
PCA. The penalization score increases as the intensity value
range 200 to 254 in histogram (Fig. 8a) contains low number
of pixels in the PSO image.

2) LEUKOPLAKIA

Filter #1’s hemoglobin connection is seen prominently in
case of leukoplakia: the filter shows blood vessels surround-
ing the lesion in Fig. 5g, enhancing the contrast between
the lesion and the surrounding oral mucosa. In comparison,
the grayscale converted image in Fig. 5f has a very low
overall contrast. Filter D gives the best result of the available
PSO-derived filters. The image produced with Filter D is pre-
sented in Fig. Sh. It has an improved contrast compared to the
grayscale image, but the filter does not react to hemoglobin
and therefore the surrounding area remains light gray leading
to lower contrast than with PCA.

Michelson contrasts of leukoplakia and the surrounding
area in PCA- and PSO-filtered images show approximately
2.5x improvement over the original grayscale image, and
their values are very close. The leukoplakia in Figs. 5g and
5h is well visible in both images. The PCA-filter also shows
the blood vessel network on the oral mucosa surrounding the
leukoplakia and an unrelated darker spot above the leuko-
plakia. The darker spot in turn is surrounded by thin white
strains that are less visible in the PSO-filtered image. His-
togram of the PCA-filtered image is slightly more spread out
than the steeper decline in the PSO-filtered image’s histogram
in Fig. 8b, possibly explaining the difference in the penalized
scores.

3) HYPERPIGMENTATION

Like in Fordyce’s granules case, Filter #1 enhances the vis-
ibility of a pigmented lesion in Fig. 5k over the grayscale
image in Fig. 5j, but the filter also reacts to a mechanically
stressed area above a specular reflection ring. In this case,
the lip is stretched over the white chin support to expose
the pigmentation change for the camera. The performance is
compared to PSO-based Filter C, which has peaks at 525 nm
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(i) RGB (j) Gray (k) Filter #1 (1) Filter C

FIGURE 5. Performance comparison on Fordyce’s granules (a-d), leukoplakia (e-h), and pigmented lesion (i-I). The magenta annotations mark the lesion
surface, and the cyan annotations mark the surrounding comparison area.

(d) Calculus, Gray

(g) Gingivitis, RGB (h) Gingivitis, Gray (1) Gingivitis, Filter #1 (j) Gingivitis, Filter D

FIGURE 6. Performance comparison on calculus (c-f) and gingivitis (g-j). The magenta annotations mark the lesion surface, and the cyan annotations
mark the surrounding comparison area.

and 565 nm and as a result does not add extraneous coloration The spectral image region that the pigmentation sample
into the lesion surroundings (Fig. 51). This directly results in has been extracted from has had a poor illumination and the
a more visually pleasing clear view of the pigmentation spot. sample image is thus dark overall (Figs. 5i-51). Michelson
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4

(f) Sec. caries, RGB (g) Sec. caries, Gray

(h) Sec. caries, Filter #1

(i) Sec. caries, Filter #2

(j) Sec. caries, Filter A

FIGURE 7. Performance comparison on root caries (a-e) and secondary caries (f-j). The magenta annotations mark the lesion surface, and the cyan

annotations mark the surrounding comparison area.

contrast (Table 1) and its penalized versions (Table 2) also
favor the PSO-filtered image over the PCA-filtered one. The
penalization factor becomes large for PCA image due to the
very low number of pixels at the value range 150 to 254 as
shown in the histogram in Fig. 8c.

4) RECESSED GINGIVA

Filter #1 is surprisingly versatile, as it can be used to enhance
small structural changes on gingiva in addition to contrast of
various types of lesions on oral mucosa. A structural change
can be seen when comparing a healthy marginal gingiva
in Fig. 6a showing a clear and narrow contour surrounding
the teeth, while the contour is wide and difficult to discern on
a recessed marginal gingiva in Fig. 6b.

5) CALCULUS

While calculus on enamel is naturally visible, PCA-based
filters can greatly enhance the contrast between the two.
Filter #2 was found to be suitable for contrast enhancement
of calculus, as can be seen in Fig. 6e. The PSO-based Filter E
performs well also, but the Fig. 6f is “‘softer”” or blurrier
than the PCA inner product image in Fig. 6e, where the
erosion, for example, seems sharper on top of the incisors.
PSO-based Filter E has band-passes at 420 nm, 590 nm and
640 nm. Sparsity and low number of selected bands lead to
notable blurring effect from the spectral imaging system (see
Sec. I1I-B).

In the non-penalized calculus case, the PCA-filtering
triples and PSO-filtering sextuples the original grayscale
image score. Notably, the PSO-filtered image improves the
visibility of calculus on the left-most and left-center tooth
in Fig. 6f. Marginal gingiva, however, blends with the enamel
and calculus in places. Despite the notable numeric Michel-
son contrast improvement (Table 1), visual evaluation gives
preference to the PCA-filtered inner product image. The PCA
filter has colored the marginal gingiva around the front teeth
dark in Fig. 6e. This is due to gingivitis. Incidentally, it also
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makes the gingiva clearly separated from the enamel and
calculus. Penalization lowers the scores for both PCA- and
PSO-filtering. The effect is stronger on PSO-filtered image,
likely due to the intensity distribution histogram shown
in Fig. 8d. The histogram shows PSO image’s intensity dis-
tribution having a downward trend as the intensity increases.
The PCA image, on the other hand, clearly has a darker and
a lighter area in the image. These two curves likely match the
dark gingiva and light enamel and calculus.

6) GINGITIVIS

Gingivitis is present in two image series: the calculus case
in Figs. 6¢ —6f and dedicated gingivitis case in Figs. 6g —6;.
As Filter #1 contains clear connection to hemoglobin, it is
expected to cause the gingivitis present on the incisor’s gin-
givain Fig. 6e to appear darkened. The PSO-filters D and E do
not react to it at all. As gingivitis causes typical inflammatory
changes, such as increased blood circulation and swelling,
filters reacting to hemoglobin should also enhance the vis-
ibility of gingivitis. Filter #2 shares only one extrema with
the hemoglobin absorption spikes. Effect is therefore seen
more subdued in the gingivitis images from a different test
subject in Figs. 6g— 6j. The contrast optimization process
chose a different PSO-filter for enhancing gingivitis, but the
selected Filter D does not cause visible gingivitis-related
improvements either. Gingivitis is difficult to notice in the
color and grayscale version in Figs. 6g and 6h also. Numer-
ically, gingivitis case is the one of the few cases, where
Michelson contrast supports the PCA inner product image
producing a better image (Table 1). The penalization merely
halves (approximately) the scores, and the main difference in
the histogram (Fig. 8e) between PCA and PSO inner product
images is the location of the maximum.

7) ROOT CARIES
The root caries sample (Fig. 7a) involves exposed and
stained root, in which the smaller dark spots exhibit caries.
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The Michelson contrasts for the grayscale (Fig. 7b) and
PCA-image are close in case of Filter #1 (Fig. 7c). The filter
colors a larger area dark surrounding the annotated caries
spots. It has, however, largely ignored the annotated area on
the molar and the whole deteriorated area is nearly indis-
tinguishable from its surrounding enamel. This inevitably
affects the Michelson contrast as the intensity difference
within the sample area lowers the sample mean (the sample
area in molar is larger than the combined sample area on the
two premolars). The histogram of the PCA-image in Fig. 8f
spreads over the value range while having a larger concen-
tration at value range 75 to 240. Filter #3 darkens the spots
with a closer match to the annotations on the premolars, while
the shade of the molar is more distinguishable than in the
previous case (Fig. 7d). This provides a small increase in the
Michelson contrast in comparison to Filter #1. The histogram,
Fig. 8g, for the PCA-filtered image is a triangle centered
approximately at 100. This halves the Michelson contrast
in the penalized score. The PSO-filtered image, Fig. 7e is
relatively dark overall. Both the caries spots on the premolars
and the deteriorated area on the molar are very dark in con-
trast to the enamel. This results in a very strong Michelson
contrast. As can be expected, the histogram in Figs. 8f and
8g for the PSO image shows very low number of pixels in
the intensity range 180 to 254. Consequently, the penalization
factor grows large, and drops the penalized score down to fifth
of the Michelson contrast.

We attempted to improve the visibility of non-cavitated
caries, Fig. 7, but test data was limited to fairly clear cases of
caries only. Nonetheless, a distinction can be made between
non-cavitated caries and caries-free surfaces. In the root
caries case (Fig. 7d), the caries lesion has clear contrast
against the enamel and root cement and has a clearly defined
area.

8) SECONDARY CARIES

The presented PCA-filters enhanced the visibility of caries.
Filters #1 and #2, and Filter A for comparison, enhanced
the visibility of secondary caries on a seam between enamel
and a dental restoration. The seam is clearly separated from
the enamel and the restoration in Figs. 7h, 7i, and 7j. The
filtered images all perform well. Filters #1 and A seem to
give the dental restoration piece a smoother surface, while
with Filter #2 its surface has more noisy and bright white
coloring camouflaging the restoration as enamel. The dark
seam is longer and narrower on Fig. 7i than on the comparison
images, though.

Numerically, PCA-filtered images present higher Michel-
son contrast. As the lesion is very dark, the differences in the
contrast are likely caused by the brightness of the plastic fill-
ing (the non-lesion comparison area in Fig. 7f). Including the
penalization factor further increases the difference between
the two filter classes. The pixel intensities on the PSO-image
lie on the lower half of the scale in Fig. 8h and 8i (they
are the same distributions). Filter #2 has poorer performance
than Filter #1 of the two as the former forms an intensity
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concentration around intensity value 100 in Fig. 8h, while
the latter does the same approximately at value 75 within a
smaller area giving a wider intensity spread over the scale
in Fig. 8i.

B. TECHNICAL CONSIDERATIONS

The proposed approach requires a spectral imaging system.
Depending on the chosen spectral camera, the image acqui-
sition may be rather slow compared to color digital pho-
tography. Ideally, the found computational spectra could be
implemented optically as an optical filter system attached to
a camera or as a light source allowing quick imaging. It is
important to note, however, that computational approach can
implement arbitrary filters, whereas optical implementations
are limited to smooth spectral shapes without high-frequency
components [13], [31].

In performance evaluation, the images produced with
PSO-filters seem slightly blurry. As these filters select only
few narrow bands, any chromatic aberrations in the spectral
imaging system become evident. In an ideal spectral imaging
system, the image focus remains the same over the wave-
length band range. The focus drifts slightly on the longer
wavelengths in our dataset. This drift is typical for the Nuance
EX spectral camera, which performs wavelength-scanning by
using a liquid crystal tunable filter in front of a monochrome
camera. Additionally, it should be noted that the pigmentation
image set (Figs. 5i-51) has blurry out-of-focus parts. The
spectral image was acquired with a Specim IQ -based imaging
system. Specim IQ spectral camera has a fixed objective lens
with a fixed F-number leading to a short depth-of-field in
close-ups, which in turn results in difficulties in managing
out-of-focus areas when imaging the oral cavity. This is
easier to handle in Nuance EX -based imaging systems as the
camera itself does not have a fixed objective lens.

Physical interpretation of the filter spectra presented
in Fig. 3 is challenging: the filters are partially negative.
Such filters are not directly implementable as optical fil-
ters due to the negative parts in their spectra. For example,
Filter #2 applies positive weights on spectral band images
near 410nm and 700nm, and negative weights on band
images near 590 nm and 970 nm. These negative parts make
further interpretation of the filter spectrum and its effects
challenging.

As PCA is a variance-based statistical method comparable
to clustering techniques, selecting class pairs like enamel-
calculus does not guarantee their separation. Any variations
inside a class are also clustered and may present themselves
as their own filter (e.g., white vs. yellowed enamel). When
a filter separates two features-of-interest, its application to a
full spectral image obviously alters the view of other parts of
the image also. This can be seen in Fig. 7, where all of the
presented filters, #1-#3, can separate caries from the enamel
and restoration, but the coloration of the gingiva is noticeably
different in Figs. 7d and 7i.

Spectral imaging provided detailed visualization of oral
mucosal lesions. There are clear differences between the
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FIGURE 8. Histograms of Fordyce’s granules, leukoplakia, pigmentation, calculus, gingivitis, and root and secondary caries augmented with their
envelope curves. Histograms are from grayscale images (Gray), and from principal component analysis (PCA)-based and particle swarm optimization

(PSO)-based inner product images (see Figs. 5, 6, and 7).

color and inner product images presenting oral mucosal fea-
tures (Fig. 5). Spectral imaging of the oral mucosa is able
to capture information below the epithelium, which is evi-
dent from the Fordyce’s granules being captured, and of the
change in thickness of the epithelium following the mechan-
ical irritation by an orthodontic device, and finally pigmenta-
tion changes in the pigmentous lesion. This can be expected
as normal, non-keratinized, epithelium is not particularly
thick (294 £ 68 um around the shown areas according to
[32]). The wavelengths used have penetrated it and reflected
a signal back. Contrary-wise, the visible and near-infrared
illuminations used in the work (400 nm to 1000 nm) did not
penetrate the gingiva. Acquiring information on structures
below the gingival line and the teeth is necessary for detect-
ing subgingival calculus, which at the moment must still be
detected by probing.

It should be noted — and can be seen in the image series —
that caries becomes noticeable in its advanced stages, which
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in turn makes initial caries difficult to annotate and segment
in the spectral images used for data analysis. This could
perhaps be remedied by close-up imaging of initial caries
site after the site has been identified using an alternative
method. For example, the carious teeth are known to have
lower fluorescence intensity than sound teeth due to changes
in fluorophore content, or in absorption and scattering prop-
erties in the carious layer. Utilizing laser- or light-induced
fluorescence techniques, the carious site could be identi-
fied [33], [34] and spectral image analysis performed with
more confident and detailed segmentation to produce compu-
tational or optical filters that do not rely on fluorescence and
UV-exposure.

IV. CONCLUSION

In this paper, we demonstrate contrast-enhancement of den-
tal and oral lesions by taking advantage of partially nega-
tive computational filters derived from principal component
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analysis of spectral images. The results are promis-
ing, and this study provides a starting point for further
research. Diagnostics system based on spectral imaging
would have several advantages over traditional approaches,
including non-invasiveness, objectivity, speed and cost-
effectiveness. Spectral imaging could be used for planning
treatment for targeted use of preventive care and of oral
health. It could be used for reflection on the disease progres-
sion rates.
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