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ABSTRACT This paper proposed a finite-time backstepping control for a robotic manipulator under the
presence of actuator fault, saturation constraints, output constraints, and external disturbance to obtain
requirements about the robustness, fast convergence, and high accuracy tracking performance. Tomanage the
above challenges, the proposed control is designed on a transformed model with the backstepping approach
and extended state observer. The transformed model is resulted from converting a constrained system based
on a transformation technique. So, it provides an ability for the proposed control to obtain the prescribed
performance of the output response. Additionally, an extended state observer is conducted to deal with
the lumped uncertainties in the system. The essential characteristic of the proposed control is no required
knowledge of the actuator faults and external disturbance to be available. Furthermore, fractional-order terms
are added in the control laws to enhance the rate of output responses. To demonstrate the advantages of the
proposed control in terms of global asymptotic stability, the Lyapunov approach is used to verify the whole
controlled system in theory. The proposed control is applied to a 2-degree of freedom (DOF) manipulator
and simulated by MATLAB Simulink. Its simulation results are compared to other state-of-the-art methods
to exhibit the effectiveness of the proposed control.

INDEX TERMS Robotic manipulator, transformation technique, fractional-order terms, backstepping
control, fault-tolerant control, output constraints, saturation constraints, external disturbance, Lyapunov
approach.

I. INTRODUCTION
In recent years, robotic manipulators have been widely
investigated in many applications in industrial assembly,
medical assistance, warehouse, etc., because they can replace
human operations in a dangerous environment and carry
heavy payloads [1]. The higher performance and reliability
requirements are put forward in practice. The common
challenges in the robotic manipulator are disturbance/model
uncertainties [2]–[4], high nonlinearity in dynamics [5], input
constraints [6]–[8], and state constraints [4], [9]. In order
to obtain the control requirements under the presence of
the above challenges, various closed-loop controllers such
as model-based feedback control [5], sliding mode con-
trol [10]–[12], backstepping control [8]–[10], [13], adaptive
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control [8]–[10], etc. Additionally, in modern industrial
applications, faults frequently occur in the systems which
operate in the condition of long-term operation [14]. So that,
the robotic manipulator needs to integrate the fault-tolerant
ability to ensure that the system works safely under the
presence of faults in the subsystems.

In practice, the sensors and actuators are key components
of the robotic manipulator system. The working environ-
ment is very complicated with vibration, electromagnetic
interference, etc., which will impact the quality of the
sensors and actuators. As a result, they are two common
faults [15]: actuator fault and sensor faults. Otherwise,
the process fault [16], which involves modeling error and
external disturbance, is a different type of fault. The
reliability of the robotic manipulator depends on the fault
occurrence probability and fault tolerance. The fault-tolerant
control schemes can be classified into two kinds: passive
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fault-tolerant control (FTC) and active FTC. The passive FTC
is developed as on the robust capability of the controllers
such as sliding mode control (SMC) [17]–[19], adaptive
control [19]–[21], etc., against the faults. The fault estimation
is not needed in this approach. So, it gives a fast response
when the fault happens and a simple structure. For example,
Van et al. [18] proposed a novel control method for
tracking control of robotic manipulators under the existence
of the fault components, external disturbance, and viscous
friction. The proposed method was developed based on
a novel adaptive backstepping nonsingular fast terminal
sliding mode control. The lumped uncertainties, including
fault component, external disturbance, and viscous friction,
were managed by adaptive techniques. Wang et al. [19]
provided a novel adaptive integral-type terminal sliding mode
fault-tolerant control for a spacecraft system regardless of
the actuator fault, external disturbance, uncertainties, and
actuator saturation. Adaptive laws were utilized to com-
pensate for the lumped uncertainties. Kang and Wang [21]
studied an adaptive control method for a 5-DOF upper-
limb exoskeleton robot under the existence of the unknown
significant parameter variances and actuator faults. In this
study, an adaptive observer was implemented to provide the
information for updating the adaptive controller. By contrast,
the active FTC is designed based on online fault diagnosis
techniques. The active FTC structure can be reconfigured
based on the results of the fault diagnosis (FD) system. The
active FTC owns the complicated structure and takes more
time to manage the fault. But it can deal well with the high
magnitude faults. The quality of the AFTC is influenced
by the accuracy of the fault estimator (FE) and the system
configuration after faults happen. The FE methods such as
sliding mode observer [14], [22], Kalman filter [23], [24],
nonlinear observer [25]–[27] have been investigated with
various control strategies such as SMCs [24], [25], [27],
backstepping control [28], [29], etc. In [22], a fault-tolerant
control was studied for a class of descriptor stochastic
systems with state-dependent faults. A novel sliding mode
observer was constructed to estimate the state and faults in
the system. Its results were combined with a state-feedback
control to guarantee the closed-loop system was stable.
In [24], Shabbouei Hagh et al. proposed a new hybrid
robust fault-tolerant control for a 3-DOF manipulator. Two
controllers, a linear robust controller in the non-fault situation
and a nonsingular terminal sliding mode control in the faulty
case were used with an adaptive joint unscented Kalman
Filter. The Kalman filter was used for fault detection and
diagnosis. To switch between two controllers, a fuzzy-based
switching system was used. In [25], Van et al. applied a
novel finite time fault-tolerant control for uncertain robot
manipulators with actuator faults. The proposed control
includes a nonsingular fast terminal sliding mode control
with a simple fault diagnosis which is established based
on time delay estimation. In [28], an active fault-tolerant
control was proposed for a class of uncertain SISO nonlinear
flight control systems. The proposed method was developed

based on the adaptive observer, feedback linearization, and
backstepping theory. The fault in the faulty system is
estimated by an adaptive observer. The effectiveness of
the proposed method was evaluated both in theory and in
simulation. Based on the above analysis, the previous studies
have considered the tracking objectives for the systems under
the presence of the modeling error, external disturbance,
or input constraints besides the fault occurrences. In recent
years, the output constraint problems in manipulators have
been interesting to many researchers around the world. To the
best of the authors’ knowledge, there are only a few studies,
which consider these issues in the FTC design.

The output constraints are restrictions of the output
responses, which are produced by the output signals of
the trajectory planning and environmental information. They
usually happen when the robot operates near or with humans
in applications such as polishing, deburring, assembly, etc.,
or working in narrow environments. The role of the output
constraints is to guarantee the satisfaction of constraint
requirements, accuracy, and safety of both humans and
robots. Some techniques have been conducted comprising
of transforming approach [30]–[32] and barrier Lyapunov
function (BLF) [33]–[35] to handle the performance con-
straints problem. The BLF was first presented to cope with
the constant output constraint problem [30] in 2009. The
BLF was proposed for nonlinear systems with the presence
of output constraints [36] and full state constraints [37].
Because of the complication of the BLFs, it is hard to
use this approach for designing and analyzing advanced
controllers, in which finite-time convergence is expected. The
transforming method called prescribed performance control
was presented in [38], which can deal with the performance
constraints by converting the constrained system into the
unconstrained system. On the other hand, the transformed
system possesses potential properties for employing a
controller to cope with finite-time convergence issues.

Additionally, when actuator faults happen, the input
saturation issue will arise and is another critical problem
that needs to be addressed in control design. Because of
the physical limitations in the actuator, it cannot produce
the typically commanded control input. When the actuator
faults happen, the control signal of the other actuators will
be increased to compensate for the faulty actuators and
maintain the control performance of the control system. So,
the actuator faults can cause input saturation issues which
further produce some physical dynamics and even instability
in the control system.

In this paper, a novel finite-time backstepping control is
proposed for prescribed tracking performances of manip-
ulators under the presence of the actuator faults, input
constraints, and external disturbances. To manage the above
challenges, the proposed control design is conducted based
on the transformed model, which is generated by using the
transformation error technique to integrate the prescribed
performance, called output constraint, into the manipulator
dynamics. Then, the backstepping control with fraction order
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terms is conducted to ensure tracking problems and to
enhance the transient response. To deal with the external
disturbance and actuator faults, an extended state observer
is equipped in the finite backstepping control to generate
the final version of the proposed control. To prove the
stability and robustness of the proposed control against the
challenges, in theory, a Lyapunov approach is used to analyze
the whole controlled system. Finally, the proposed control is
applied on a 2-DOF manipulator with MATLAB Simulink.
The comparisons of its results with other methods will
demonstrate the effectiveness of the proposed control.

This paper is organized as follows: Section II presents
manipulator dynamics with the challenges, transformation
techniques, and extended state observer. In Section III, the
proposed control and its stability analysis are exhibited.
In Section IV, some simulation results are discussed to
show the effectiveness of the proposed control. Finally, some
conclusions and future works are summarized.

II. PROBLEM DESCRIPTION
A. PRELIMINARIES
Lemma 1 ([39]): When the continuous positive definite
function
V̇ (t) ≤ −a1V (t)− a2V b (t)+ η,∀t ≥ t0,V (t0) ≥ 0 (1)

where ai(i=1,2) are positive constants, b is a ratio of two odd
positive integers with 0 ≤ b ≤ 1, and 0 < η < ∞, then the
function V (t) converges to zero in finite time, Tf , with any
given time t0.

lim
t→t0

V (t) ≤ min

(
η

(1− θ0) a1
,

(
η

(1− θ0) a2

) 1
b
)

(2)

where 0 < θ0 < 1. The finite time is calculated as follows:

Tf ≤ max
(
t0 +

1
θ0a1 (10 − b)

ln
θ0a1V 1−b (t0)+ a2

a2
,

t0 +
1

a1 (1− b)
ln
a1V 1−b (t0)+ θ0a2

θ0a2

)
(3)

Notion 1: Some definitions used throughout this paper are
presented as follows:

ξ c = |ξ |c sign (ξ) (4)

where c > 0. Some vector definitions are presented as
follows:

ξ = [ξ1, . . . , ξn]T ∈ Rn×1 (5)

ξ c = |ξ |c sgn (ξ)

=
[
|ξ1|

c sign (ξ1) , . . . , |ξn|c sign (ξn)
]
∈ Rn×1 (6)

|ξ |c = diag
([
|ξ1|

c , . . . , |ξn|
c])
∈ Rn×n (7)

sgn (ξ) = [sign (ξ1) , . . . , sign (ξn)]T ∈ Rn×1 (8)

Lemma 2 ([40]): For any real number yi, i = 1, . . . , n if
0 < b1 < 1 and 0 < b2 < 2 then the following inequality
hold:

(|y1| + . . .+ |yn|)b1 ≤ |y1|b1 + . . .+ |yn|b1 (9)(
|y1|2 + . . .+ |yn|2

)b2
≤

(
|y1|b2 + . . .+ |yn|b2

)2
(10)

B. MANIPULATOR DYNAMICS
This study focuses on considering an n-DOF manipulator
under the presence of the actuator faults, input/output con-
straints, and external disturbance. The manipulator dynamics
are presented by derivative formulation of the form [5]

M (q) q̈+ C (q, q̇) q̇+G(q)+ d (t) = τ (11)

where q, q̇, and q̈ ∈ Rn×1 respectively derive position,
angular velocity, and angular acceleration vectors of each
joint; M (q) ∈ Rn×n derives the symmetric and positive
definite inertia matrix; C (q, q̇) ∈ Rn×n presents the matrix
of Coriolis and Centrifugal force; G (q) ∈ Rn×1 denotes
the gravitational vector; τ ∈ Rn×1 presents the control
input vector; d (t) = JT (q) fext ∈ Rn×1 is the external
torque; J (q) ∈ Rn×n presents a nonsingular Jacobian matrix;
fext ∈ Rn×1 exhibits the external disturbance force at the
end-effector.
Assumption 1: The external disturbances and unknown

friction functions are bounded functions.

C. ACTUATOR FAULTS
In practice, the actuator can be separated into four categories:
loss effectiveness, clocked-in-place, floating around trim, and
hard over. In the n-DOF manipulator, n actuators are used to
control the system. The four categories of actuator fault are
exhibited as follows:

τ = αu+ ũ ∈ Rn×1 (12)

where τ ∈ Rn×1 is the applied control, u = [u1, . . . , un]T ∈
Rn×1 presents the control input commanded by the con-
trollers, α = diag

(
[α1, . . . , αn]T

)
∈ Rn×n is the actuator

effectiveness matrix, ũ ∈ Rn×1 is the uncertain fault.

D. INPUT SATURATION
Because of the physical and electrical limitations in actuators,
the control signals are restricted by saturation values. The
saturation control signal of the manipulator is defined as
follows:

sat (ui) =

{
umisign (ui), |ui| > umi
ui, |ui| ≤ umi

(13)

where umi is the maximum value of the ith control input.
The equation (13) can be represented as follows:

sat (u) = u+1u (14)

where sat (u) = [sat (u1) , . . . , sat (un)]T ∈ Rn×1 is
saturation control input vector, 1u = [1u1, . . . ,1un]T ∈
Rn×1 presents the excess vector of the input constrains.

1ui =

{
0, |ui| < umi
umisign (ui)− ui, |ui| ≥ umi

(15)

Remark 1: Because of the physical and electrical limita-
tions on the actuators, the practical control torque produced
by the actuator is restricted. Additionally, the excess limited
saturation input1u and the additive fault ũ are also bounded.
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The manipulator dynamics can be rewritten by integrating
the actuator fault and input saturation. It yields as follows:

M (q) q̈+ C (q, q̇) q̇+G(q)+1d (t) = u (16)

where 1d (t) = d (t)− ũ+ (1− α)u−1u are the lumped
uncertainties consisting of external disturbance, actuator
fault, and excess constrained term.

Let define x1 = q ∈ Rn×1, x2 = q̇ ∈ Rn×1, the uncertain
manipulator dynamics (16) can be expressed as follows{
ẋ1 = x2
ẋ2 =M−1 (x1) [u− C (x1, x2) x2 −G (x1)−1d (t)]

(17)

E. EXTENDED STATE OBSERVER
In order to estimate the lumped uncertainties, an extended
state observer (ESO) is investigated in the manipulator
dynamics (16). Additionally, an extra state x3 is defined to
exhibit the lumped uncertainties,M−1 (x1)1d (t).

Now, the robotic manipulator dynamics (17) is represented
as follows:

ẋ1 = x2
ẋ2 = H (x1, x2)+ B (x1)u+ x3
ẋ3 = δ (t)

(18)

where x3 = −M−1 (x1)1d (t) ∈ Rn×1, B (x1) =
M−1 (x1) ∈ Rn×n, H (x1, x2) = −M−1 (x1) (C (x1, x2) x2
+G (x1)) ∈ Rn×1, and δ (t) ∈ Rn×1 is the derivative of x3.
Assumption 2: Based on Assumption 1 and Remark 1,

the lumped uncertainties are bounded. Furthermore, the time
derivative of the state x3 (t) is supposed to be bounded.
The ESO is designed as follows:
˙̂x1 = x̂2 + σ 1

(
x1 − x̂1

)
˙̂x2 = H

(
x̂1, x̂2

)
+ B

(
x̂1
)
u+ x̂3 + σ 2

(
x1 − x̂1

)
˙̂x3 = σ 3

(
x1 − x̂1

) (19)

where x̂i (i = 1, 2, 3) ∈ Rn×1 is estimated state variables of
the ESO, σ 1 = 3diag ([σ01, σ02]), σ 2 = 3diag

([
σ 2
01, σ

2
02

])
and σ 1 = diag

([
σ 3
01, σ

3
02

])
are observer matrices.

To move on, the following Lemma 3 is introduced to
present the proof of stability analysis of the ESO, which can
be found in [40].
Lemma 3 ([41]): when the manipulator system (18) and the

ESO (19) are considered with a suitable observer gain, β0, the
estimated results, x̂i (i = 1, 2, 3), of the ESO (19) will track
the state responses, xi (i = 1, 2, 3) in the system (18).

F. OUTPUT CONSTRAINTS
For the output tracking error, e1 = x1 − x1d ∈ Rn×1, it will
obtain the predefined performance if the errors satisfy the
below conditions:

−σ1iµ (t) < e1i (t) < σ2iµ (t) (20)

where 0 < σji(j=1,2;i=1,...,n) ≤ 1 are positive constants,
and µ (t) is a predefined performance. The function µ (t) is

selected as follows:

µ (t) = (µ0 − µ∞) exp
(
−κf t

)
+ µ∞ (21)

whereµ0 is an initial value ofµ (t),µ∞ = limt→∞ µ (t) > 0
and κf is a positive constant.
Remark 2: The initial value of µ (t) is selected how the

conditions, −σ1iµ0 < e1i (0) < σ2iµ0, are satisfied.
In order to integrate the errors, e1i (t) with their predefined

performance, a nonlinear transformation [32] scheme is
conducted as follows

e1i (t) = σ2iµ (t)8i (zi (t) , ηi) (22)

where ηi = −σ1i/σ2i, zi is the new error variable, 8i (.) is
an increasing and invertible function with respect to zi (t),
8i (zi (t) , ηi) =

ezi+ηie−zi
ezi+e−zi

, which satisfies the following
conditions

lim
zi(t)→−∞

(8i (zi (t) , ηi)) = ηi

lim
zi(t)→+∞

(8i (zi (t) , ηi)) = 1 (23)

Now, the new error variable, zi (t), can be computed as

zi (t) = 8
−1
i

(
e1i (t)
σ2iµ (t)

, ηi

)
=

1
2
ln
ei (t)+ σ1µ (t)
σ2µ (t)− ei (t)

(24)

Remark 3: When the new variable zi (t) is bounded, the
following inequality holds:

ηi < 8i (zi (t) , ηi) < 1 (25)

By multiplying σ2iµ (t) in three sides of Eq. (25), its result
is presented as follows:

−σ1iµ (t) < σ2iµ (t)8i (zi (t) , ηi) = e1i (t) < σ2iµ (t)

(26)

which implied that the output responses are bounded by the
output constraints, as shown in (20).

The differentiating zi (t) with respect to time is calculated
as follows:

żi =
∂8−1i

∂
(
e1i(t)
e1i(t)

) 1
e1i (t)

(
ė1i (t)− e1i (t)

˙̄µ (t)
µ (t)

)
(27)

where ē1i (t) = σ2µ (t).
By integrating the predefined responses into the manipu-

lator dynamics (17), an unconstrained dynamics is presented
as follows:

ż = Hx2 +9

ẋ2 = M−1 (x1) (u− C (x1, x2) x2 −G (x1)−1d (t)) (28)

where

H = diag

 ∂8−11

∂
(
e11
e11

) 1
e11

. . .
∂8−1n

∂
(
e1n
e1n

) 1
e1n

 ∈ Rn×n
(29)

9 = −H
(
ẋd +

˙̄µ (t)
µ (t)

e1

)
∈ Rn×1 (30)
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III. PROPOSED METHOD
A. CONTROL DESCRIPTION
The objectives of the proposed control are to guarantee
that the output responses of the n-DOF manipulator not
only track the trajectories but also stay inside the prede-
fined boundary around the trajectory while the manipulator
operates under the presence of the input saturation, actuator
faults, and external disturbance. As analyzed in Section II,
the excessed term and faults in the actuator and external
disturbance are presented by the lumped uncertainties,
1d (t). By using the external state observer, the lumped
uncertainties can be approximated and provided for the
finite time backstepping control. The proposed control insists
on finite time backstepping control and ESO (FTBCESO)
is named as finite-time fault-tolerant control. Additionally,
because the proposed control is designed on unconstrained
dynamics (28), it can ensure that the output responses
satisfy the predefined output constraints. The structure of the
proposed control is presented in FIGURE 1.

FIGURE 1. Structure of the finite-time fault-tolerant control.

B. A FINITE TIME BACKSTEPPING CONTROL DESIGN
1) CONTROL DESIGN
The tracking errors in the unconstrained system (28) are
defined as follows:

ez = z

e2 = x2 − α1 ∈ Rn×1 (31)

where α1 ∈ Rn×1 presents the virtual control vector.
The virtual control vector is selected as follows:

α1 = H−1
(
−K10ez −K11eβ2z −9

)
(32)

where K10 ∈ Rn×n and K11 ∈ Rn×n are positive diagonal
matrices; 0 < β2 < 1 is a positive constant.

The control law is chosen as follows:

u (t) = −Hez −K20e2 −K21e
β2
2 + C (x1, x2)α1
+G (x1)+Mα̇1 (33)

where K2i ∈ Rn×n (i = 0, 1) are positive diagonal matrices.
The time derivative of the new variable error, ez, is calcu-

lated as follows:

ėz = ż = Hx2 +9 = H (e2 + α1)+9 (34)

By replacing the virtual control (32) into (34), its result is
presented as follows:

ėz = He2 −K10ez −K11eβ2z (35)

Next, the differential of the velocity error with respect to
time is calculated as follows:

ė2 = ẋ2 − α̇1
= M−1 (x1) (u− C (x1, x2) x2 −G (x1)−1d (t))− α̇1

(36)

By substituting the control law (33) into (36), it yields as
follows:

ė2 = M−1 (x1)

×

(
−Hez−K20e2−K21e

β2
2 −C (x1, x2) e2 −1d (t)

)
(37)

Theorem 1: When the finite time backstepping control
laws in (32) and (33) are conducted on a manipulator whose
dynamics is presented in (17) with the input saturation,
actuator fault, external disturbance, and output constraint,
it guarantees not only the finite-time stability of the
controlled system but also the output constraints of the output
responses. The residual set of the manipulator dynamics
is set by

lim
t−Tr
|V2 (e) ≤ min

{
ϕ

(1− θ0) κ1
,

(
ϕ

(1− θ0) κ2

) 2
1+β2

}
(38)

where 0 < θ0 < 1;

κ1 = min
{
λmin (K10) , λmin

((
K20 −

1
2
In×n

)
M−1

)}
,

κ2 = min
{
λmin (K11) , λmin

(
K21M−

(1+β2)
2

)}
,

and ϕ = 1
2

∥∥1dT1d
∥∥
∞
, e =

[
eTz eT2

]T . The finite time is

Tr≤max


t0+

2
θ0 (1− β2)

ln
θ0κ1V

1+β2
2 (e (t0))+ κ2
κ2

,

t0 +
2

κ1 (1− β2)
ln
κ1V 1−β2 (e (t0))+ θ0κ2

θ0κ2


(39)

where t0 is the initial time, and λmin (.) is minimum of
eigenvalues.

To demonstrate the stability of Theorem 1, a Lyapunov
function is selected as follows:

V2 = V1 +
1
2
eT2Me2 (40)

where V1 = 1
2e

T
z ez.

2) PROOF OF THEOREM 1
By taking the time derivative of the function, V1, it yields as
follows:

V̇1 = eTz ėz = eTz
(
He2 −K10ez −K11eβ2z

)
(41)
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Thus, the differential of the Lyapunov function (40) with
respect to time is calculated as follows:

V̇2 = V̇1 + eT2Mė2 +
1
2
eT2 Ṁe2

= eTz
(
He2 −K10ez −K11eβ2z

)
+ eT2Mė2 +

1
2
eT2 Ṁe2

(42)

When Eq. (37) is replaced into (42), its result is expressed
as follows:

V̇2 = eTz
(
He2 −K10ez −K11eβ2z

)
+

1
2
eT2 Ṁe2

+eT2
(
−Hez −K20e2 −K21e

β2
2

−C (x1, x2) e2 −1d (t))

= −eTz
(
K10ez +K11eβ2z

)
− eT2

(
K20e2 +K21e

β2
2

)
+eT21d (t) (43)

By applying Young’s inequation, eT21d (t) ≤
1
2

(
eT2 e2 +1dT1d

)
and Lemma 2 into the Eq. (43), its result

can be derived as follows:

V̇2 ≤ −eTz
(
K10ez +K11eβ2z

)
−eT2

((
K20 −

1
2
In×n

)
e2 +K21e

β2
2

)
+
1
2
1dT1d

= −eTz K10ez − eT2

(
K20 −

1
2
In×n

)
e2 − eTz K11eβ2z

−eT2K21e
β2
2

+
1
2
1dT1d

≤ −κ1V2 − κ2V
β2
2 + ϕ (44)

where κ1 = min
{
λmin (K10) , λmin

((
K20 −

1
2 In×n

)
M−1

)}
,

κ2 = min
{
λmin (K11) , λmin

(
K21M−

(1+β2)
2

)}
, and

ϕ = 1
2

∥∥1dT1d
∥∥
∞
.

From (44) and Lemma 1, the stability and finite-time
convergence of the controlled system are guaranteed. Fur-
thermore, it also ensures the output responses will satisfy the
output constraints as the state in Remark 3. So, Theorem 1
is demonstrated.
Remark 4: Although the stability, finite-time convergence,

and output constraints of the controlled system are obtained
with the finite-time backstepping control, the accuracy of the
controlled system can be influenced by the lumped uncer-
tainties. As a result, the significant uncertainties can make
the output responses break the predefined performances,
which implies the unsatisfaction of the output constraints.
To enhance the accuracy and guarantee the satisfaction of
the output constraints, an ESO is utilized to deal with
the uncertainties. The control design will be presented
in Section III.C.

C. PROPOSED CONTROL DESIGN
The proposed control laws are selected as follows:

α1 = H−1
(
−K10ez −K11eβ2z −9

)
u (t) = −Hez −K20e2 −K21e

β2
2 + C (x1, x2)α1

+G (x1)+Mα̇1 −Mx̂3 (45)

With the ESO (19) is used to approximate the lumped
uncertainties, x̂3.

Now, the time derivative of the velocity error (37) is
represented as follows:

ė2 =M−1 (x1)
(
−Hez −K20e2 −K21e

β2
2 − C (x1, x2) e2

−Mx̂3 −1d
)

(46)

Theorem 2: Under Assumption 1 and 2, the proposed
control laws (45), the ESO (19), and the output constraints
(20) are applied for the robotic manipulator (11) under
the presence of the input saturation, actuator faults, and
external disturbances. The proposed control will guarantee
that the whole controlled system is uniformly ultimately
bounded stable. The tracking error will stay in an arbitrarily
small region with suitable control parameters. Furthermore,
the output responses always satisfy the predefined output
constraints.
Proof of Theorem 2:
Remark 5: When the ESO (19) is provided for estimating

the lumped uncertainties with the suitable parameters, the
estimation error of ESO,Mx3 −1d, can be made arbitrarily
small. The total approximated error is expressed as follows

ε =
∥∥Mx̂3 −1d

∥∥
∞

(47)

With the proposed control laws (45), the result of time
derivative of the Lyapunov candidate (43) have some
modifications as follows:

V̇2 = −eTz
(
K10ez +K11eβ2z

)
− eT2

(
K20e2 +K21e

β2
2

)
−eT2

(
Mx̂3 −1d

)
(48)

By applying Young’s inequation and (47) for
−eT2

(
Mx̂3 −1d

)
, the Eq. (48) is expressed as follows:

V̇2 ≤ −eTz
(
K10ez +K11eβ2z

)
− eT2

(
K20e2 +K21e

β2
2

)
+
1
2
eT2 e2 +

1
2
ε2

= −eTz
(
K10ez +K11eβ2z

)
−eT2

((
K20 −

1
2
In×n

)
e2 +K21e

β2
2

)
+
1
2
ε2

≤ −κ1V2 − κ2V2 + ϕ (49)

Now, ϕ is defined as ϕ = 1
2ε

2.
From (49) and Lemma 2, we can affirm that all error

variables are uniformly ultimately bounded with finite-
time convergence. The finite time is presented in (39).
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Furthermore, the accuracy of the controlled system is also
improved by the estimated results of the ESO. Thus,
Theorem 2 is proven.
Remark 6: The control gains,Kij (i = 1, 2; j = 0, 1), in the

proposed control are selected how to make sure that the
constants, κi (i = 1, 2), are positive.

IV. SIMULATION
To evaluate further the advantages of the proposed control,
some simulations are conducted for a 2-DOF manipulator on
MATLAB Simulink with a sampling time of 0.001 seconds,
and a solver of ODE3. The total simulation time is 30 seconds.

A. SIMULATION DESCRIPTIONS
FIGURE 2 presents the structure of the 2-DOF manipulator.
Its dynamics parameters are shown in Appendix A. The
structure of the simulation is illustrated in FIGURE 3.

FIGURE 2. Structure of 2-DOF manipulator.

FIGURE 3. Simulation diagram.

The external uncertainties (50) consist of the friction torque
and external torques caused by the external forces at the end-
effector.

d (t) = τF + JTFext (50)

The friction model, including Colomb friction and Viscous
friction mode, is presented as follows:

τF = Fvx2 + Fcsign (x2) (51)

In the last 10 seconds of the simulation period, an external
force, Fx , of 5N is applied at the end-effector along

TABLE 1. Coefficients of the manipulator, uncertainties, and saturation
input.

TABLE 2. Parameters of backstepping control, backstepping control with
extended state observer and proposed control.

the direction of the x-axis. The external force vector
Fext = [Fx , 0]T .
The actuator faults arise in the manipulator as follows:{

αi = 1, t ≤ 15
αi = 0.6, t > 15

(52){
ũi = 0, t < 20
ũi = 5, t ≥ 20

(53)

The coefficients of the manipulator dynamics, the uncer-
tainties, and the predefined output constraints are expressed
in TABLE 1.

Additionally, a backstepping control (BC) and a backstep-
ping control with Extended state observer (BCESO) are also
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FIGURE 4. Output responses of three controllers in a) Joint 1 and
b) Joint 2.

conducted in these simulation scenarios, and their results
will be compared with the proposed control to demonstrate
the effectiveness of the proposed method. The backstepping
control is designed based on the transformed manipulator
dynamics (28). Its results allow us to explore the effects of
the uncertainties on system stability and accuracy and the
satisfaction of the predefined performances of the output
responses. The control laws of this approach are presented
as follows:

α1 = H−1 (−K10ez −9)

u (t) = −Hez −K20e2 + C (x1, x2)α1 +G (x1)+Mα̇1
(54)

The BCESO is designed from the backstepping con-
trol (54) with an extended state observer. Then, the influences
of the input faults and external disturbance to the perfor-
mances of the system can be managed by the compensation
signals, which are resulted by the ESO in the BCESO. The
control laws of this method are expressed as follows:

α1 = H−1 (−K10ez −9)

u (t) = −Hez −K20e2 + C (x1, x2)α1 +G (x1)

+Mα̇1 −Mx̂3 (55)

where x̂3 is calculated by (19).

FIGURE 5. Error efforts and its zooming results of three controllers in
a) Joint 1 and b) Joint 2.

Remark 7: The parameters of all three controllers are
selected by the trial-error method. For the equality of
comparisons, some parameters of the proposed control are
kept from the BCESO and other of the BCESO are inherited
from the BC. To save time cost in selecting control parameter
process, a genetic algorithm is used to find the optimal values
based on predefined criteria. The parameters of the three
controllers are exhibited in IV-B.

B. PERFORMANCE CRITERIA
The following performance indexes are utilized in evaluating
the quality of each control approach.

Integral square error (ISE) index:

ISE =
∑
k

eT1 (k) e1 (k) (56)

Integral absolute error (IAE) index:

IAE =
∑
k

∑
i

|e1i (k)| (57)

C. SIMULATION RESULTS
Based on the working conditions in the simulation descrip-
tion, the manipulator operation is divided into four stages.
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FIGURE 6. Control signals of three controllers in a) Joint 1 and b) Joint 2.

In the first stage, this study considers the effects of the input
saturation, friction torques, and predefined performances on
the output responses with three controllers. It takes place
in the first 10 seconds. Next, the second stage happens in
the next 5 seconds, from the 10th second to 15th seconds,
when the external force is applied at the end-effector along
the direction of the x-axis. In the third stage, from the 15th

second to the 20th second, the loss effectiveness of actuators
is considered. Finally, in the fourth stage, the bias faults are
added in the manipulator from the 20th second to the 30th

second.
FIGURE 4 presents the output responses of each joint

in a 2-DOF manipulator with black lines of reference, blue
dashed lines of BC, blue lines of BCESO, and red lines of
the proposed control. The references are sine signals which
are selected as x1d =

[
π
6 sin (2π ft) π6 sin

(
2π ft + π

3

) ]
(rad) with f = 0.1 (Hz). The initial positions of the two
joints are set up at x1 (0) =

[
π
12 0

]T (rad). The results in
FIGURE 4 prove that the output responses of the controlled
system with three controllers track the references under the
presence of uncertainties. However, the quality of the output
performances of the three controllers is different.

To evaluate the effectiveness of the proposed controllers,
the error efforts at each joint are exhibited in FIGURE 5.
In FIGURE 5, error performances of BC, BCESO, and

FIGURE 7. Output responses of the manipulator and the ESO in a) Joint 1
and b) Joint 2.

TABLE 3. Performance indexes of three controllers from the 2ND second
to the 30th seconds.

proposed control are displayed by black lines, blue lines,
and red lines, respectively. Additionally, the upper boundaries
and lower boundaries are also presented by black dashed
dot lines, and blue dashed dot lines, respectively. For
readability, zooming results of the error efforts in joint 1
and joint 2 are added. In the first stage, the uncertainties are
friction torques. The ESO demonstrated its effectiveness in
compensating the uncertainties. However, this approximation
is not perfect since the ESO did not work well with the
Column friction. The proposed control with the fractional
terms in the control laws has driven the errors to converge
to zero better than the BCESO. In the section stage, an
external disturbance is applied at the end-effector of the
manipulator. Because three controllers are designed based
on the predefined boundaries, and these boundaries approach
the steady-state, their accuracy is enhanced significantly. The
proposed control is still the best solution. In the third stage,
the loss efficiency faults are applied in two joints of the
manipulator. The accuracy of the BC is degraded dramatically
comparing other methods. By using the results of the ESO
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FIGURE 8. Lumped uncertainties and Estimation results of the ESO in
a) Joint 1 and b) Joint 2.

to compensate for these lumped uncertainties, the BCESO
and the FTBCESO still maintain the accuracy of the control
system. In the final stage, the bias faults are added to the
actuators. Now, the lumped uncertainties included the friction
torques, the external disturbances, the loss efficiency faults,
and the bias faults. The accuracy of the controlled systemwith
the BCESO and the FTBCESO does not change. Based on the
above analysis, we can conclude that the ESO can manage
well with the loss efficiency and bias faults in the actuators.

FIGURE 6 present the control signals of three controllers
in two joints. The BC, BCESO, and FTBCESO signals are
plotted by black, blue, and red lines, respectively. When the
working condition is changed in simulation time, the control
signals in three controllers automatically increase to handle

the lumped uncertainties and to guarantee the satisfaction
of the predefined performances and the accuracy in the
controlled system.

FIGURE 7 plots the measured position and the estimation
position of each joint with black lines and red lines,
respectively. The results show that the ESO works well when
the estimated results track the measured ones. As a result,
estimated lumped uncertainties in the ESO approximated the
lumped uncertainties as presented in FIGURE 8.

The performance indexes of three controllers from the
simulation results are shown in TABLE 3. The results of
the BCESO are better than the CBC because the lumped
uncertainties are compensated by the ESO in the BCESO
design. Additionally, the proposed controller provides the
best performance for the manipulator against the challenges.
Its responses are better than the BCESO because the
fractional-order terms in the controller drove the tracking
error convergence in finite time.

V. CONCLUSION
This paper presented a novel finite-time fault tolerance
control for an n-DOF manipulator against the actuator faults,
input saturation, and external disturbance. Additionally,
the proposed control guarantees that the output responses
obtain the predefined performance named output constraints.
To manage the above criteria with the mentioned challenges,
the proposed control design is implemented on a free
constrained manipulator dynamics, which is the result
of integrating the output constraints into the manipula-
tor dynamics by a transformation technique. Additionally,
other problems are also described in the new manipulator
dynamics. Some analysis in the paper pointed out that the
predefined performance is obtained when the new dynamics
are stable. Because the proposed control is constructed
based on a finite-time backstepping control and an extended
state observer, it not only enhances the transient time but
also improves the accuracy of the controlled system. Some
analyses, in theory, are conducted by the Lyapunov approach
to demonstrate the effectiveness of the proposed control.
Furthermore, the proposed control is implemented on a
2-DOF manipulator by MATLAB Simulink. To verify the
superiority of the proposed control, its simulation results are
compared to those of other controllers.

APPENDIX A
The dynamic formulation of the 2-DOF manipulator is
computed by using the Euler-Lagrange approach. Because

M (q) =
[
m1L21 + m2

(
L21 + 2L1L2c2 + L22

)
m2
(
L1L2c2 + L22

)
m2
(
L1L2c2 + L22

)
m2L22

]
,

C (q, q̇) =
[
−m2L1L2s2q̇2 −m2L1L2s2q̇1 − m2L1L2s2q̇2
m2L1L2s2q̇1 0

]
,

G (q) =
[
(m1 + m2)L1gc1 + m2gL2c12

m2gL2c12

]
,
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H = 0.5diag
([

(σ11 + σ21) µ

(e11 + σ21µ) (σ21µ− e11)
(σ12 + σ22) µ

(e12 + σ22µ) (σ22µ− e12)

])
9 = kf (µ∞ − µ0) e−kf t .[

(σ11 + σ21) e11
(e11 + σ21µ) (σ21µ− e11)

(σ12 + σ22) e12
(e12 + σ22µ2) (σ22µ− e12)

]T

the aims of this study are evaluating the effectiveness of the
proposed method with manipulators when the uncertainties
impact it, we assume that all mass exists as a point mass
at the distal end of each link [5]. The inertia matrix,
Coriolis matrix, and Gravity vector are expressed as follows
M (q) ,C (q, q̇) ,G (q), as shown at the bottom of the
previous page and

J (q) =
[
−L1s1 − L2s12 −L2s12
L1c1 + L2c12 L2c12

]
where ci = cos (qi), si = sin (qi), c12 = cos (q1 + q2), and
s12 = sin (q1 + q2) , (i = 1, 2).

APPENDIX B
From the transformation function (24) and (27), the matrix,
H, and vector,9, of the 2-DOF manipulator are calculated as
follows H,9, as shown at the top of the page.
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