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ABSTRACT The problem of l2–l∞ controller design for a class of discrete-time descriptor systems is
addressed in this paper. In other words, the controller is designed to ensure the admissibility and the
prescribed l2–l∞ performance for the descriptor control system. The l2–l∞ performance analysis and the
feedback controller design of the descriptor control system are studied by the matrix inequality technique.
Novel design conditions of the feedback controller for the descriptor systems are introduced in terms of
linear matrix inequality (LMI) representations. An RC circuit is applied to explain the effectiveness of the
proposed l2–l∞ control design method.

INDEX TERMS Discrete-time descriptor system, l2–l∞ performance, feedback control, linear matrix
inequalities (LMIs).

I. INTRODUCTION
The descriptor system [1]–[3], also known as singular system,
has provided a unified and useful modeling method for many
real applications, such as electricity, aerospace, and social
economy. Therefore, it is clearly observed that the study on
descriptor system is active over the recent decades and has
made great process [4], [5], in which, as the most important
field, the problem of asymptotic stability and feedback stabi-
lization have been attracted more attention from researchers.
And some results involving the research on system perfor-
mance analysis for descriptor system have been reported,
for instance, in [6], the problem of a reduced-order H∞
controller based on the geometric structures was solved. [7]
discussed the problem of the finite-timeH∞ control for non-
linear descriptor system via state under composed method.
In order to handle the effects of unknown inputs, [8] pre-
sented a systematical reduced-order observer design method
for switched descriptor system. In [9], the design method of
the H∞ observer for the nonlinear discrete-time descriptor
system with time-varying delays and disturbance inputs was
investigated. [10] studied the problem of the adaptive H∞
sliding mode control for nonlinear system. [11] dealt with
the state feedback H∞ control problem for discrete-time
descriptor system. The output tracking control and filtering
problems were investigated for nonlinear descriptor system
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in the discrete-time domain in [12]. In [13], the robust H∞
controller design scheme for uncertain discrete-time descrip-
tor system was addressed in terms of a set of LMI.

We can find that, among the mentioned references above,
the most of the works mainly investigated the H∞ perfor-
mance of the descriptor system. In this work, it takes the
advantage to such a degree that obtaining the accurate statistic
of external disturbance is not required, which can take any
form as long as its energy is bounded. Therefore, it is of
significance in theoretical research and practical applica-
tion [14]–[19]. However, in practice, the other work namely
l2–l∞ performance analysis and design for the descriptor sys-
tem is also of considerable academic value in control theory,
its goal is to ensure that the ratio of maximum value of control
output (filtering error) to bounded energy of disturbances is
required to be less than the given value. That is different
from the research on H∞ performance [20], so this work
becomes very necessary. In the recent years, the study on the
l2–l∞ controller (filter) design is reported in much literature.
In [21], an output feedback controller design scheme for
seismic excitation structures was proposed, which considered
the l2–l∞ performance and the saturation of actuator. Based
on polyhedral uncertainties in the state-space equations, [22]
investigated the l2–l∞ filter design problem for uncertain sys-
tem in both discrete-time and continuous-time domains. [23]
addressed the filter design problem for T-S fuzzy stochastic
system, which aimed to find a more convenient filter design
condition that ensured the mean square asymptotic stability
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and the l2–l∞ performance. For continuous-time nonlinear
uncertain system, [24] discussed the resilient l2–l∞ control
problem.

It can be seen that the study on l2–l∞ control (filtering)
problem has achieved fruitful results [25]. However, it is
worth noting that, to our best knowledge, the l2–l∞ per-
formance has not been developed abundantly in descriptor
system. Due to the special structure of the descriptor system,
it’s difficult to use classical LMI technique to obtain the
l2–l∞ controller of descriptor system. Therefore, there are
still many problems to be solved in the design of l2–l∞
controller for descriptor system.

Based on the above motivation, the l2–l∞ control problem
for the discrete-time descriptor system is dealt with in this
paper, and the feasible controller design method is proposed
to ensure the resulting descriptor system satisfies the given
l2–l∞ performance by using the classical LMI technique. The
contributions are described as the following:

1) This paper aims at the l2–l∞ performance index for the
discrete-time descriptor system, based on this, it pro-
poses the novel performance analysis criteria to ensure
the closed-loop descriptor system is admissible and
meets l2–l∞ performance;

2) For a given closed-loop descriptor system, the proposed
l2–l∞ controller design conditions are given under
strict LMI presentation.

II. PROBLEM FORMULATION AND PRELIMINARIES
The following discrete-time descriptor system is considered,

Ex(k + 1) = Ax(k)+ Bu(k)+ Fw(k)

z(k) = Cx(k) (1)

where x(k) ∈ Rnx and u(k) ∈ Rnu stand for the state variable
and the control input, respectively; w(k) ∈ Rnw refers to the
noise input which belongs to l2[ 0, ∞); z(k) ∈ Rnz stands
for the controlled output; A, B, F , and C are given system
matrices with appropriate dimensions given by f? which will
be introduced in the following of this section. In particular,
E is singular but nonzero and satisfies rank(E) = r < n.
Assumption 1: In this paper, the practical discrete-time sys-

tem described by the descriptor system model (1) is assumed
as:

x1(k + 1) = f1
[
x1(k), x2(k), . . . , xn(k), u(k), w(k)

]
x2(k + 1) = f2

[
x1(k), x2(k), . . . , xn(k), u(k), w(k)

]
...

xr (k + 1) = fr
[
x1(k), x2(k), . . . , xn(k), u(k), w(k)

]
0 = fr+1

[
x1(k), x2(k), . . . , xn(k), u(k), w(k)

]
...

0 = fn
[
x1(k), x2(k), . . . , xn(k), u(k), w(k)

]
z(k) = fz

[
x1(k), x2(k), . . . , xr (k), w(k)

]
where f? represents a linear relationship of x(k) andw(k). The
form means that a property on the system parameter matrices

is E =
[
Ir 0
0 0

]
and C = [Cr 0 ] in the descriptor system

(1). In fact, such a form has a wide range of universality for
the descriptor system (1) such as the RC circuit system [26]
and the RLC circuit systems [27], the Leontief systems [28],
the inverted pendulum balancing systems [29], the open flow
canal systems [30], etc.
Definition 1 ([1]): Given a scalar s > 0, the descriptor

system (1) is admissible if det(sE−A) is not identically zero,
deg(det(sE − A)) = rank(E) and all the roots of det(sE −
A) = 0 lie in the interior of unit disk (i.e., regular, casual, and
stable).

Further, in order to achieve the control tasks for the descrip-
tor system (1), the state feedback controller can be considered
as

u(k) = Kx(k) (2)

where K is controller gain matrix to be determined.
The main objective of this work is to construct controller

(2) to ensure the following requirements are guaranteed:

1) When w(k) = 0, the descriptor system (1) with the
controller (2) is admissible;

2) Under the zero initial condition, the descriptor sys-
tem (1) with the controller (2) satisfies the prescribed
l2–l∞ performance γ , i.e., for any w(k) ∈ l2[ 0, ∞),
the output z(k) guarantees the condition ‖z(k)‖∞ <

γ ‖w(k)‖2 where ‖z(k)‖∞ = supk |z(k)| and ‖w(k)‖
2
2 =∑

∞

k=0 w
T (k)w(k).

Due to the rank deficiency of matrix E , the l2–l∞ control
problem is difficult to solve. In fact, via using results given in
the literature [21]–[24], a nonlinear matrix inequality can be
obtained for the controller design directly. In order to describe
this problem, we introduce the following system:

x(k + 1) = Ax(k)+ Bu(k)+ Fw(k)

z(k) = Cx(k) (3)

Then, by importing the feedback controller described in
(2), the closed-loop system is obtained as

x(k + 1) = (A+ BK )x(k)+ Fw(k)

z(k) = Cx(k) (4)

Furthermore, considering the Lyapunov function
V (x(k)) = xT (k)P−1x(k) with P > 0, the system (4) satisfies
the l2–l∞ performance if the following inequality conditions
hold:[

−P−1 ∗

0 −I

]
+ [A+ BK F ]TP−1[A+ BK F ] < 0 (5)

1
γ 2 [C 0 ]T [C 0 ] <

[
P−1 ∗

0 I

]
. (6)

Hence, by applying the matrix inequality congruence prop-
erty and Schur complement lemma to the matrix inequalities
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(5) and (6), the corresponding LMI-based l2–l∞ controller
design conditions for system (4) can be summarized as: −P ∗ ∗

0 −I ∗

AP+ BN F −P

 < 0 (7)

−P ∗ ∗

0 −I ∗

CP 0 −γ 2I

 < 0 (8)

where N = KP. If there exist some variables P and N which
satisfy the above inequalities (7) and (8), we will get the
l2–l∞ controller gain matrix as K = NP−1 for system (4).

We should note that above approach of analysing the
l2–l∞ performance and designing controller for system (4)
is inapplicable to the descriptor system (1) with the feedback
controller (2). As a matter of fact, the Lyapunov function is
often selected byV (x(k)) = xT (k)ETPEx(k) withETPE ≥ 0
for the descriptor system (1) with the feedback controller (2),
then the l2–l∞ performance analysis criteria corresponding to
one in (5) and (6) can be described as[

−ETPE ∗

0 −I

]
+ [A+ BK F ]TP[A+ BK F ] < 0 (9)

1
γ 2 [C 0 ]T [C 0 ] <

[
ETPE ∗

0 I

]
. (10)

Based on the l2–l∞ performance analysis criteria in (9)
and (10), it is difficult to acquire design conditions for the
descriptor system (1) with the controller in (2). The key to
this problem is that

1) Since ETPE ≥ 0, it leads to that the Schur complement
lemma cannot be applied on (9) and (10) as (7) and (8),
respectively;

2) If the matrix inequality decoupling property [31] is
adopted to (9) and separate the matrix P for the term
[A + BK F ]TP[A + BK F ], it is difficult to get a
linear coupling between decision variables because E
is singular.

We can clearly observe if these presented results on
l2–l∞ performance research in literature [21]–[24] are
directly applied to the design of the controller for descrip-
tor system, corresponding design conditions are difficult to
be obtained via strict LMI framework. Based on this, the
feedback control problem for the descriptor system is first
addressed, and then, the design conditions for the feedback
controller are deduced to satisfy the prescribed l2–l∞ perfor-
mance by the solvability of a set of LMIs.

For the sake of convenience, the following lemma is pre-
sented, which is important to the results of this paper.
Lemma 1 ([31]): The two next problems are equivalent.
i) Find P = PT such that

T + ATPA < 0. (11)

ii) Find P = PT , L, and G such that[
T + ATLT + LA ∗

−LT + GA −G− GT + P

]
< 0. (12)

III. MAIN RESULTS
In the following, we introduce the augmented descriptor rep-
resentation approach to represent the descriptor system (1)
with the controller (2). First of all, based on the form of
the feedback controller presented in (2), one can effortlessly
give

0 = Kx(k)− u(k). (13)

Furthermore, combining the descriptor system (1) with
(13), one leads to

Ex(k + 1) = Ax(k)+ Bu(k)+ Fw(k)

0 · u(k + 1) = Kx(k)− u(k)

z(k) = Cx(k) (14)

Then, denoting an augmented vector as η(k) =

[ xT (k) uT (k) ]T , (14) can be represented by the following
augmented descriptor system:

Eη(k + 1) = Aη(k)+ Fw(k)
z(k) = Cη(k) (15)

where

E =
[
E 0
0 0

]
, A =

[
A B
K −I

]
F =

[
F
0

]
, C = [C 0 ].

Then, based on such an augmented system, the final goal of
this paper can be determined to find the controller gain matrix
K introduced in (2) to ensure that the augmented descriptor
system (15) is admissible with prescribed l2–l∞ performance.

Without loss of generality, the corresponding performance
analysis criteria are given before the controller design condi-
tions are presented.
Theorem 1: Consider the descriptor system (15), for a

known scalar γ > 0, if there exist matrices P , L, G, and
K , such that

ETPE ≥ 0 (16)[
� ∗

−[LT 0 ]+ G[A F ] − G − GT + P + CTC

]
< 0

(17)

where � = diag{−ETPE − CTC,−γ 2 I } + [ LT 0 ]T

[A F ]+ [A F ]T [ LT 0 ], the descriptor system (15) is
admissible with the prescribed l2–l∞ performance γ .

Proof: Firstly, selecting a special Lyapunov function as

V (η(k)) = ηT (k)ET (P + CTC)Eη(k), ETPE ≥ 0

(18)

we have

V (η(k + 1))−V (η(k))

= ηT (k + 1)ET (P + CTC)Eη(k + 1)

− ηT (k)ET (P + CTC)Eη(k). (19)
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Let’s focus on the following inequality condition:

ηT (k + 1)ET (P + CTC)Eη(k + 1)

− ηT (k)ET (P + CTC)Eη(k) < γ 2wT (k)w(k). (20)

And we can easily find from (20), when the external dis-
turbance w(k) = 0, one follows

V (η(k + 1))−V (η(k)) < 0 (21)

which means that the descriptor system (15) is admissible.
Therefore, from the above, we know that under the condi-

tion ofw(k) = 0, if (20) holds, the system is admissible. Next,
in order to verify the l2–l∞ performance with w(k) 6= 0 from
(20), considering the special system structure, we rewrite (20)
as

ηT (k + 1)ETPEη(k + 1)− ηT (k)ETPEη(k)
+ ηT (k + 1)ETCTCEη(k + 1)− ηT (k)ETCTCEη(k)

= ηT (k + 1)ETPEη(k + 1)− ηT (k)ETPEη(k)
+ ηT (k + 1)CTCη(k + 1)− ηT (k)CTCη(k)

< γ 2wT (k)w(k). (22)

Then, consider the structure of system (15), one can be
obtained that

ηT (k + 1)ETPEη(k + 1)− ηT (k)ETPEη(k)
+ zT (k + 1)z(k + 1)− zT (k) z(k) < γ 2wT (k)w(k). (23)

Further, taking sum on both sides of (23) from 0 to k − 1
yields

k−1∑
j=0

(
ηT (j+ 1)ETPEη(j+ 1)− ηT (j)ETPEη(j)

)

+

k−1∑
j=0

(
zT (j+ 1)z(j+ 1)− zT (j) z(j)

)

< γ 2
k−1∑
j=0

wT (j)w(j) (24)

which is

ηT (k)ETPEη(k)− ηT (0)ETPEη(0)

+ zT (k) z(k) − zT (0)z(0) < γ 2
k−1∑
j=0

wT (j)w(j). (25)

In fact, under the zero initial condition, (25) means

ηT (k)ETPEη(k)+ zT (k) z(k) < γ 2
k−1∑
j=0

wT (j)w(j). (26)

Because of the fact
k−1∑
j=0

wT (j)w(j) ≤
∞∑
k=0

wT (k)w(k), (26)

gives

ηT (k)ETPEη(k)+ zT (k) z(k) < γ 2
∞∑
k=0

wT (k)w(k). (27)

From the condition that ETPE ≥ 0 in (18), it leads to
ηT (k)ETPEη(k) ≥ 0. Based on this, consider the inequal-
ity (27), the following inequality condition will be easily
established:

zT (k) z(k) < γ 2
∞∑
k=0

wT (k)w(k) (28)

which means ‖z(k)‖∞ < γ ‖w(k)‖2 for any external distur-
bance w(k) ∈ l2[ 0, ∞) when η(0) = 0.
The above discussion shows that the inequality condition

(20) can be viewed as an analysis condition to detect whether
or not the considered feedback descriptor system with known
parameters is admissible and meets required l2–l∞ perfor-
mance, which can be organized into

µT (k)[A F ]T (P + CTC)[A F ]µ(k)

+µT (k)
[
−ET (P + CTC)E 0

0 − γ 2I

]
µ(k) < 0 (29)

where µ(k) =
[
η(k)
w(k)

]
.

Then, a sufficient condition that ensures the above inequal-
ity holds is described as follows,[
−ET (P + CTC)E ∗

0 −γ 2I

]
+ [A F ]T (P + CTC)[A F ] < 0. (30)

So far, we have that (30) can ensure that the preparatory
condition (20) holds, and thus guarantee the l2–l∞ perfor-
mance γ for the descriptor system (15). Then, by applying
the Lemma 1 to (30), we have the strict LMI condition (17).
The proof is completed. �
Remark 1: In the l2–l∞ performance analysis for the

descriptor system (15), a useful Lyapunov function is con-
structed in (18). In contrast to traditional function ETPE ,
the function (18) has changed the Lyapunov matrix P for
the establishment of the l2–l∞ performance, under which the
novel performance analysis criteria of the l2–l∞ performance
for the descriptor system (15) are presented by two matrix
inequalities (16) and (17). It should be noted that a constraint
ETPE ≥ 0 is necessary for deducing the l2− l∞ performance
analysis condition (see (28)). In fact, since CTC ≥ 0, which
with ETPE ≥ 0 can ensure ET (P + CTC)E ≥ 0 for the
Lyapunov function (18).

Such a construction form of the augmented system (15)
with feedback controller (2) is helpful to the analysis of
l2–l∞ performance for the feedback system. If we adopt the
constructionmethod similar to system (4), it will bring certain
difficulties to the subsequent controller design. Our ultimate
goal is to find the optimal l2–l∞ controller based on the
solvability of the strict LMIs, so the construction method of
this augmented system is necessary. Moreover, due to the
particularity of equation (13), the structure of system (15)
retains the characteristics of descriptor system, which is the
extension of system (1), so that the analysis of the system (1)
with the controller (2) is not affected.
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Next, since we already know that the criterion for the l2–l∞
performance analysis for the descriptor system (15) is intro-
duced in Theorem 1, so we will propose the corresponding
design condition for the controller given in (2), i.e., determine
the controller K , Lyapunov matrix P , and relevant matrix
variables L and G in (16) and (17) to ensure the descriptor
system (15) guarantees the given l2–l∞ performance γ .
Theorem 2: Consider the descriptor system (15), for a

known scalar γ > 0, if there exist matrices P1, P2, P3, N ,
L, L1, L2, G1, and G2 satisfying the following two matrix
inequalities:

ETP1 E ≥ 0 (31)
91 ∗ ∗ ∗ ∗

92 He{L2B− L} ∗ ∗ ∗

(L1F)T (L2F)T − γ 2I ∗ ∗

93 94 G1F 95 ∗

96 97 G2F 98 99

 < 0 (32)

where

91 = −ETP1 E − CTC + He{L1 A+ BN }

92 = L2 A+ N + (L1 B− BL)T

93 = G1 A+ BN − LT1
94 = G1 B− BL − LT2
95 = −G1 − GT1 + P1 + CTC

96 = G2 A+ N − (BL)T

97 = G2 B− L − LT

98 = −G2 − (BL)T + P2

99 = −L − LT + P3

the descriptor system (15) is admissible with the prescribed
l2–l∞ performance γ . Further, the l2–l∞ controller gain
matrix is constructed as

K = L−1N . (33)

Proof : According to the inequality conditions (16) and
(17) in Theorem 1, we can detect whether the given
l2–l∞ performance level γ for the descriptor system (15) is
guaranteed through the solvability of the matrix inequalities
(16) and (17).

Now, let’s consider these matrix variables P , L, and G by
the following form:

P =
[
P1 ∗

P2 P3

]
, L =

[
L1 BL
L2 L

]
, G =

[
G1 BL
G2 L

]
.

(34)

Substitute (34) into (16) and (17) and defining N = LK ,
the LMI-based l2–l∞ controller design conditions (31) and
(32) can be acquired directly. �
Remark 2: From the inequality (17), we can see

that the system matrix A is multiplied by L and G,
respectively. By taking into account the matrix form of A =[
A B
K −I

]
in (15), the structure of the matrix variables L

and G is considered in (34) where B in L and G is used to

adjust the matrix dimension. Indeed, the structure in L and
G inevitably leads to a certain degree of design conservatism
due to the repetition of the matrix variable L, however, the
matrix variables L1, L2, G1, and G2 are free that can also pro-
duce some relaxation for the controller design. The structure
of the matrix variables L and G has been widely used in the
design of the descriptor system [32], [33].
Remark 3: One should point out that if the constraint

condition on the Lyapunov matrix (31) is not counted, the
l2–l∞ controller design condition in Theorem 2 residues (32).
Relative to the conventional design results (7) and (8), the pro-
posed l2–l∞ controller design condition has been summarized
as a single matrix inequality, it can bring convenience to the
design.
Remark 4: Theorem 2 provides useful design methods

for l2–l∞ control problem of the descriptor system (15),
especially, the l2–l∞ controller design conditions (31) and
(32) are strict LMIs (the semi-definite matrix inequality (31)
can be organized into a strict LMI through constructing the
matrixP1 with a reasonable structure, see [34] for the details).
Relative to the conventional design results (7) and (8), the pro-
posed l2–l∞ controller design conditions are more effective
for the descriptor system, it can bring convenience to the
design.
Remark 5: In Theorem 2, the LMI-based design schemes

are introduced to guarantee l2–l∞ performance for the
descriptor system (15). From the proof of Theorem 2, one
can know that the LMI-based design schemes are obtained
with the help of Lemma 1 because −ETPE − CTC ≤ 0.
In the study on the problem of controller design for descriptor
system via LMI technique, Lemma 1 has been effectively
applied [32], [34]. The focus of this paper is to give LMI
representation of the design conditions of the l2–l∞ controller
for discrete-time descriptor system. In fact, the extensive
research has been devoted to extended LMI characterizations
of Lemma 1 for the problem of stability and system per-
formance in [35], which will provide further analysis and
design for discrete-time descriptor system with the l2–l∞
performance.
Remark 6: It should be noted that matrix inequality con-

ditions in Theorem 2 can be solved in polynomial time
with complexity proportional to C = D3L where D and
L means the number of undetermined variables and lines
of the matrix inequalities to be solved. Therefore, we can
analyse the numerical complexity by calculating D and L.
The numbers of variables and the numbers of lines in The-
orem 2 are DTh2 =

5
2nxnx +

3
2nunu +

1
2nx +

1
2nu, LTh2 =

2nx + 2nu + nw + r .

IV. EXAMPLE
In this section, we aim to validate the feasibility and the
effectiveness of the proposed methods by introducing the
RC circuit shown in Fig. 1. From the Kirchhoff’s laws, one
can obtain Cv̇ = −Gv + iR and 0 = −v − m(iR) where
m ≤ m(iR)/iR ≤ m with m ≥ 0. That has appeared in [26],
[36], in which m(iR) is only sector constrained. In summary,
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FIGURE 1. The RC circuit.

FIGURE 2. Responses of system states.

an augmented equation can be described as

v̇ = −
G
C
v+

1
C
iR

0 = −v−8(iR)− miR (35)

where 8(iR) = m(iR) − miR. Denote x(t) =

[ x1(t) x2(t) ]T = [ v(t) iR(t) ]T , z(t) = x1(t) = v(t) ,
u(t) = −8(iR), and consider the disturbance, (54) may be
expressed as

Ecẋ(t) = Acx(t)+ Bcu(t) + Fcw(t)

z(t) = Ccx(t) (36)

In (55), considering m = 1 and choose these parameters
by C = 0.2F and G = 1S respectively, we have

Ec =
[
1 0
0 0

]
, Ac =

[
−1/0.2 1/0.2
−1 − 1

]
Bc =

[
0
1

]
, Fc =

[
2
0

]
, Cc = [ 5 0 ] (37)

and for the convenience of demonstrating the different
algorithms.

For the above continuous-time system, by using the dis-
cretization process with h = 0.05s, a discrete-time descriptor
system with the following parameters can be obtained

E =
[
1 0
0 0

]
, A =

[
0.75 0.25
−0.05 − 0.05

]
, B =

[
0

0.05

]
F =

[
0.1
0

]
,C = [ 5 0 ]. (38)

FIGURE 3. Response of z(k).

FIGURE 4. Ratio of
√

zT (k) z(k)/
∑∞

k=0 wT (k)w(k).

This detailed discretization process can be seen in
Appendix at end of this paper.

In the next, we will design the controller defined in (2)
for system (38) by using the design schemes provided in
Theorem 2. It ensures the system (38) with the determined
controller meets the given l2–l∞ index γ .

By choosing γ = 2.0 and applying the MATLAB LMI
Control Toolbox to solve (31) and (32) for the considered
system (38), the related matrix variables can be obtained by
L = −3.9640, N = [−10.9829 − 12.5189 ]. Moreover,
by (33), one gives the l2–l∞ controller gain as

K = [ 2.7706 3.1581 ]. (39)

By considering x(0) = [ 0 0 ]T and w(k) =
cos(0.3k)e−0.02k , we will respectively simulate the descriptor
system (38) with the controller.

Based on the controller gain (39) for the descriptor system
(38): The simulation results of x1(k) and x2(k) are illustrated
in Fig. 2. Fig. 3 shows the simulation result of z(k). Fig. 4

shows the trend of ratio of
√
zT (k)z(k)/

∑
∞

k=0 w
T (k)w(k),

which clearly appears to be decreasing at a macro level. And
we can see the maximum value 0.3793 is less than the given
performance index 2.0.

The results indicate the designed l2–l∞ controllers achieve
the prescribed control tasks for the descriptor system (38).
In addition, it should be noted that when Lemma 1 is applied
in Theorem 1, a structure of the auxiliary matrix variable
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[LT 0 ]T is selected. Of course, the auxiliarymatrix variable
with the structure [LT MT ]T can also be considered
in the controller design. One notes that the matrix variable
M also is coupled with the system matrix A, then which
can certainly be constructed as M = [M L ]. However,
if we use the structure of the matrix variable to be [M L ]
in Theorem 2 and design the l2–l∞ controller for the above
system (38), the corresponding condition is feasible only for
larger γ , compared with the γ in our current Theorem 2. That
means the structure of [LT 0 ]T used in the presented
Theorem 2 is better for design conservatism.

A. COMPARATIVE EXPLANATIONS
This paper gives useful l2–l∞ controller design schemes for
discrete-time descriptor system. Compared with the existing
design methods for l2–l∞ performance [21]–[24], the main
advantages of the proposed results in this paper can be sum-
marized as the next: 1) The conditions presented in Theorem 2
are effective and feasible for the l2–l∞ controller design of
descriptor system (38); 2) The conditions (31) and (32) are
strict LMIs, which can easily solved by using the MATLAB
LMI Control Toolbox.

V. CONCLUSION
The l2–l∞ control problem for discrete-time descriptor sys-
tem has been investigated in this work. The resultant control
system is formulated via augmented descriptor representation
approach. And in this paper, for the known controller gain
matrices, we have given the analysis for the l2–l∞ perfor-
mance for the descriptor control system to detect whether or
not the known controllers can ensure the feedback descriptor
system guarantees the admissibility and meets the required
l2–l∞ performance index γ . Then, based on the analysis cri-
teria, the corresponding controller design scheme is proposed
according to the solution of the strict LMIs, which can ensure
the discrete-time descriptor system is admissible with the
prescribed l2–l∞ performance. The RC circuit has been pre-
sented to explain the effectiveness of the proposed method.
So in the future work, we will extend the proposed results
to the l2–l∞ feedback control for the nonlinear descriptor
systems [37]–[42].
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