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ABSTRACT Ear detection represents one of the key components of contemporary ear recognition systems.
While significant progress has been made in the area of ear detection over recent years, most of the
improvements are direct results of advances in the field of visual object detection. Only a limited number of
techniques presented in the literature are domain–specific and designed explicitly with ear detection in mind.
In this paper, we aim to address this gap and present a novel detection approach that does not rely only on
general ear (object) appearance, but also exploits contextual information, i.e., face–part locations, to ensure
accurate and robust ear detection with images captured in a wide variety of imaging conditions. The proposed
approach is based on a Context–aware Ear Detection Network (ContexedNet) and poses ear detection as a
semantic image segmentation problem. ContexedNet consists of two processing paths: i) a context–provider
that extracts probability maps corresponding to the locations of facial parts from the input image, and
ii) a dedicated ear segmentation model that integrates the computed probability maps into a context–aware
segmentation-based ear detection procedure. ContexedNet is evaluated in rigorous experiments on the AWE
and UBEAR datasets and shown to ensure competitive performance when evaluated against state–of–the–
art ear detection models from the literature. Additionally, because the proposed contextualization is model
agnostic, it can also be utilized with other ear detection techniques to improve performance.

INDEX TERMS Ear detection, ear biometrics, biometrics, deep learning.

I. INTRODUCTION
Ear detection is a crucial component and typically the first
step in modern ear recognition systems. Poorly designed
ear detection models adversely affect the performance of
all downstream tasks of the recognition system, including
normalization procedures, feature extraction techniques and
classification approaches. Designing efficient and robust ear
detection techniques is, therefore, critical for the overall
performance of biometric ear recognition systems, as also
emphasized by visible research in this area [1]–[4].

Recent work on ear detection focuses mainly on deep
learning models and in particular on convolutional neu-
ral networks (CNNs). At the coarsest level this work
can be partitioned into two main groups: i) detection
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techniques [5]–[7] and ii) segmentation approaches [1], [8].
Detection techniques build on advances in the area of
visual object detection and include techniques designed
around recent detection frameworks, such as region pro-
posal CNNs (R-CNNs) [9], [10], masked region proposals
CNNs (Masked R-CNNs) [11] and related models [12]–[14].
Segmentation-based methods, on the other hand, approach
ear detection as a segmentation problem and exploit advances
made in the area of semantic image segmentation [15]–[17].
Both detection and segmentation–based solutions have been
shown to ensure competitive performance for ear detection
on a wide variety of datasets and imaging conditions [1],
[6], [7]. However, most of the techniques presented in the
literature so far are generic and not designed specifically for
ear detection. In other words, existing models exploit visual
ear appearances for the detections/segmentation procedure,
but treat ears as any other objects in the process. No specific
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information unique to the problem of ear detection is typically
utilized, leading to suboptimal detection performance.

To address this gap, we present in this paper a novel
approach to ear detection that in addition to ear appear-
ance also relies on contextual information to boost per-
formance. Specifically, the proposed approach models the
anatomy of the human head and incorporates informa-
tion about the location of facial parts into the ear detec-
tion procedure. As a result, additional constraints are taken
into account during the detection/segmentation step, which
contributes towards improved performance. The detection
framework, called Context-aware Ear Detection Network
(ContexedNet), falls into the group of segmentation–based
approaches discussed above and exhibits the following
characteristics:
• Pixel-Level Detection:Competing detectionmodels typ-
ically return only a bounding box of the ear region
and often assume that a single ear is present in the
image [6], [7]. ContexedNet, on the other hand, produces
pixel–level segmentation masks of an arbitrary number
of ears and, hence, is more general and works under
minimal assumptions.

• Specificity and Robustness: ContexedNet is conditioned
on information about face–part locations and is, there-
fore, designed specifically for the problem of ear detec-
tion - not general object detection. As demonstrated
in the experimental section, the proposed model also
ensures better robustness to challenging imaging con-
ditions, which makes it applicable in ear recognition
systems operating in unconstrained settings.

• Modularity: ContexedNet consists of two main compo-
nents: i) a context–provider that extracts information on
facial part locations from the given input images, and
ii) a segmentation model that integrates the extracted
information into a context–aware detection procedure.
In this work, both components are implemented with
recent CNN models from the literature. However,
the proposed contextualization is model agnostic and
can be implemented with any model with suitable char-
acteristics. ContexedNet can, therefore, be expected
to further improve with future advancements in either
face–part detection or semantic image segmentation.

To demonstrate the applicability of ContexedNet for ear
detection,1 experiments are conducted on the AWE [1]
and UBEAR [18] datasets and comparisons with compet-
ing methods from the literature are presented. Experimen-
tal results show that ContexedNet achieves state–of–the–
art performance on all experimental datasets, but also that
the proposed contextualization is beneficial and helps to
improve the performance of different baseline (segmentation)
models.

1Note that the term detection is used in this paper to refer to the detection
of the region–of–interest (ROI) in the ear image and corresponds to a
segmentation task when used in the context of ContexedNet. We note that in
the computer vision literature the term is typically used to describe bounding
box detection tasks.

In summary, the main contributions of this paper are:
• A novel framework for ear detection, called Contexed-
Net, that incorporates contextual information into the
detection procedure by modeling human head anatomy
and (implicitly) constrains ear detection results to the
vicinity of predefined facial parts.

• A model contextualization procedure that forms the
basis for ContexedNet and can be used in related prob-
lem domains and with different base/backbone models.

• A comprehensive experimental assessment and analysis
of the proposed framework and contextualization proce-
dure as well as a rigorous comparative evaluation with
existing state-of-the-art techniques. To ensure repro-
ducibility of the reported results, all code and models
are made publicly available.2

The rest of the paper is structured as follows: In Section II
relevant prior work is discussed. In Section III ContexedNet
is introduced and its main characteristics are elaborated on.
The experimental evaluation of the proposed detection model
is presented in Section IV. The paper concludes with a sum-
mary of the main findings and directions for future work
in Section VI.

II. RELATED WORK
A considerable amount of prior work addressed the prob-
lem of ear detection, as summarized by recent surveys on
this topic [2], [3], [19]. This prior work can in general be
divided into three main groups: i) image–processing tech-
niques, ii) learning–based methods, and iii) deep–learning
models. Details on the three groups are given below.

A. IMAGE–PROCESSING TECHNIQUES
Techniques from this group rely on the low–level image–
processing operations that try to highlight edge information,
identify shapes or match ear characteristics to predefined
ear templates in either the original pixel domain or some
transformed space [20]–[23]. A common characteristic of this
group of techniques is that they are computationally simple,
rely on relatively strong assumptions (e.g., presence of one
ear, full profile image input, etc.) and often degrade in per-
formance when applied in challenging imaging conditions,
where large variations in ear appearances can be expected.
Arbab–Zavar and Nixon [20], for example used the Hough

transform to identify elliptically shaped regions that corre-
spond to ears in the input images. A conceptually similar
approach was later also described by Prajwal et al. in [21].
In [22], [23], the Canny edge detector was used to extract
edges from ear images and the curves corresponding to
the outer helix of the ears were used as features to iden-
tify ear regions in images. An approach based on the dis-
tance transform and template matching was introduced by
Prakash et al. [24]. The same authors also proposed solutions
that analyzed graphs constructed from an edge map of the
ear image [25], [26] and an approach relying on skin–color

2http://awe.fri.uni-lj.si/ [After review!]
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filtering [27]. In [28], a detection technique based on the
image ray transform was proposed. The transform first high-
lights the tubular structures of the ear and later exploits the
highlighted structures for ear detection. Relevant techniques
from this group also include [29], [30].

As can be seen from the above discussion, early ear
detection techniques tried to model visual ear characteris-
tics explicitly and use the modeled characteristics for the
detection procedure. The approach proposed in this work
is similar to the surveyed techniques in that it also tries to
exploit visual ear characteristics for detection, but instead of
using hand–crafted approaches to do so, it learns relevant
characteristics for ear detection directly from the training
data, leading to better overall detection performance.

B. LEARNING–BASED METHODS
The second group of techniques relies on learning–based
methods for ear detection. Techniques from this group
treat ear detection as a classification problem, where
image patches sampled from the input images are typi-
cally classified into one of two classes: ears and others
objects. Learning–based methods represent an evolution of
image–processing based techniques that shifted in focus from
designing descriptive features to designing efficient classifi-
cation models for ear detection. Techniques from this group
typically result in better performance than image–processing
methods and are capable of handling a wider range of appear-
ance variability, but require a considerable amount of data for
training [31], [32].

Islam et al. [33] proposed an AdaBoost–based approach
to ear detection that falls into this group of methods.
The approach, inspired by the seminal Viola–Jones algo-
rithm [34], relies on low–level Haar features for image
(or patch) representation and a cascaded Adaboost classi-
fier for the detection. An improved version of the approach
was later presented by Abaza et al. in [35] and also by
Liu and Liu in [36]where a skin colormodel was incorporated
into the detection procedure, to further improve performance.
A variation of the same idea was also discussed in [37].

Our detection approach is similar conceptually to
learning–based models in that it also aims to learn a classifier
(though at the pixel–level) that is capable of identifying image
pixels that belong to ear regions. However, it relies on a more
recent class of machine learning models (i.e., CNNs) that
are able to exploit more descriptive image features (and not
only low–level texture descriptors) and consequently handle
a wider range of image variability.

C. DEEP–LEARNING MODELS
Most recent ear detection techniques from the literature
rely on deep learning. While in essence, this group is also
learning–based, themain difference with the group, discussed
in the previous section, is in the way the detection problem
is approached. While learning–based methods use a separate
stage for feature extraction (or data representation) and patch
classification, and typically utilize manually engineered or

hand–crafted features for detection, deep learning models
jointly learn image features as well as a classifier for detection
in an (usually) end–to–end manner.

Zhang and Mu [7], for example, proposed an ear detection
approach based on Faster Region-based Convolutional Neu-
ral Networks (Faster R-CNNs). The model built on advances
in the domain of general object detection and was shown to
ensure highly competitive results on the UBEAR [18] and
UND dataset (J2 Collection) [38]. Another conceptually sim-
ilar approach was later presented by El–Naggar et al. in [39]
and again demonstrated the power of the Faster R-CNN
framework for ear detection.

Tomczyk and Szczepaniak [40] presented a solution for ear
detection based on geometric deep learning. The proposed
model allows for the application of CNNs on graphs and
defines convolutional filters with the use of Gaussian mixture
models (GMMs). Based on this concept, the authors design
a competitive detection framework that exhibits considerable
robustness to rotations (i.e., it is rotation equivariant) as well
as other desirable characteristics.

Raveane et al. [41] described a CNN-based approach to
ear detection that utilizes a multi–path model topology and
detection grouping to identify ear regions in the images. The
main idea behind this approach is to look for ears at multiple
scales akin to the contextual modules used in modern object
detection frameworks, such as [42], [43], with the goal of
improving detection performance. A similar idea was also
explored byKamboj et al. in [6], which applied generic object
detection models with contextual modules for the task of ear
detection. These works are related to the approach proposed
in this paper in that they also exploit contextual information
(multi–scale view of ears), but they rely on conceptually
different approaches within standard detection frameworks.
CentexedNet, on the other hand, builds on advances in seman-
tic segmentation and relies (for the most part) on a different
type of context, defined by face part locations.

Specifically, ContexedNet extends our previous work on
segmentation–based ear detection with PED–CED [1] to also
consider high–level contextual information in addition to the
raw input image. While in [1], an auto-encoder like model
was used and a single image served as the input for segment-
ing the ear region, CentexedNet improves on this framework
by also incorporating predictions about the head anatomy
into the segmentation procedure. As we show in the exper-
imental section, such an approach leads to highly competi-
tive segmentation/detection results and reduces semantically
unreasonable errors, where ears are detected in the image
background or other body parts.

III. CONTEXT-AWARE EAR DETECTION
Using contextual information to improve the performance
of various vision tasks has a rich history in computer
vision [44]–[46] and has led to successful applications in
object recognition, tracking [47], [48], biometrics [49]–[51],
video analytics [52], surveillance and security [53] and even
affective computing [54]. In the object detection literature,
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contextual information is commonly accounted for through a
multi-scale analysis, where objects of interest are examined
at different scales, as illustrated in Figure 1(a).3 This type of
approach allows modern detection models to learn not only
from object appearances but to also consider contextual infor-
mation, i.e., from the surroundings of the object. For Con-
texedNet, described in this section, we consider a different
approach and do not utilize only such standard spatial context.
Instead, we propose to incorporate cues on face part locations
into the detection procedure. Such cues have a geometrical
motivation, as illustrated in Figure 1(b), and provide strong
priors on the location of ears in the images. We note st this
point that the main contribution of this paper is not in a new
network or model architecture, but in the overall framework
that infuses contextual information on face-part locations
into the ear detection/ssegmentation procedure. As already
emphasized in the introductory section, the framework itself
is model agnostic and can be used with any recent backbone
segmentation model. Details on ContexedNet are given in the
following sections.

FIGURE 1. Standard object detection frameworks model (spatial) context
through a multi-scale analysis, as shown on the left. ContexedNet uses a
different strategy and exploits information about face part locations to
model context, as illustrated on the right. Note how the face parts
precondition the location of the ear region. The figure is illustrative and
best viewed in color.

A. OVERVIEW OF ContexedNet
A high-level overview of ContexedNet is presented
in Figure 2. The model consists of two distinct processing
paths: (i) a context provider that extracts feature maps encod-
ing information on face-part locations, and (ii) a dedicated
segmentation model that takes both, the raw input image as
well as the generated feature maps as input and predicts a
segmentation mask corresponding to the ear region(s).

Formally, the model can be described as follows. Given an
input RGB image x ∈ Rw×h×3 from some training setX with
corresponding segmentation targets y ∈ Rw×h, where X =
{(xi, yi)}Ni=1 and N is the number of training examples,4 the

3The image shown was taken from the Flickr page of Maria Rantanen and
was modified from its original appearance. The image is distributed under
the Creative Commons license.

4Note that we drop the sample subscript i in the following discussion to
keep the notation uncluttered.

goal of ContexedNet is to learn a mapping ψ parameterized
by θψ , such that the predicted output

ŷ = ψ(x; θψ ) ∈ Rw×h, (1)

is as close to the ground truth y as possible for every sample
in X . ContexedNet achieves this by first modeling constella-
tions of face parts with an auxiliary context-provider η that
generates an intermediate representation xctg from x, i.e.,

xctx = η(l)(x; θη) ∈ Rw×h×cf , (2)

where cf is the number of feature maps and the superscript l
indicates the xctx is derived from the l-th layer of η. Next,
it feeds the generated representations together with the input
image to the segmentation network ζ that then produces the
final segmentation result, i.e.:

ŷ = ζ (x||xctx; θζ ), (3)

where || denotes the concatenation operator and θψ =

[θη, θζ ]. The main components and outputs generated within
ContexedNet are marked in Figure 2. Details on the two pro-
cessing paths of ContexedNet are described in the following
sections.

B. THE CONTEXT PROVIDER
To extract information on face–part locations from the input
image x, the context provider is designed around a face
parser η that generates a parsing map p ∈ Rw×h×cf from x
with cf segmented facial components. While any face parser
can be utilized for this purpose, we select DeepLabV3+ [17]
as the base model for our implementation due to its state–
of–the–art performance and the fact that an open source
implementation is readily available. The model is trained
independently of the segmentation path of ContexedNet using
a standard binary cross–entropy loss for each facial compo-
nent, i.e. [55]–[57],

L(cp)
bce (p, p̂; θη) = −

cf∑
i=1

pi log(p̂i)+ (1− pi) log(1− p̂i), (4)

where pi stands for the i-th facial part (i.e., the i-th channel) of
the ground truth parsing map p, p̂i denotes the corresponding
prediction, and the superscript cp denotes the fact that the loss
is associated with the context provider of ContexedNet. The
number of facial parts cf is an open hyper–parameter of the
context provider and depends on the annotations present in
the training data.

The parsing map p generated by η consists of cf binary
(face–parts) masks. To avoid a binary encoding of face–part
locations and ensure consistent (i.e., intensity) inputs for the
segmentation path of ContexedNet, the probability output of
the context provider for each of the cf channels is used as
the intermediate feature representation xctx of the face parts.
A few illustrative examples of the feature maps (for the neck,
the eyebrows, the nose, the mouth and the neck) generated
with the presented procedure are shown in Figure 3.
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FIGURE 2. High-level overview of the ContexedNet ear detection framework. ContexedNet represents a two-path deep
learning framework, where the first path (shown at the top) extracts contextual information in the form of feature maps
encoding facial-part locations, and the second path (shown at the bottom) uses these feature maps jointly with the input
image for segmentation of the ear region. The framework is model agnostic and can be implemented with any
base/backbone model in either of the two processing paths. The main novelty of the framework comes from the
contextualization procedure that infuses cues on face-part locations into the segmentation procedure and, therefore, has a
strong geometric motivation.

FIGURE 3. Examples of the intermediate feature representations, xctx ,
that encode face–part locations. Shown are feature maps for (from left to
right): the skin, the eyebrows, the nose, the mouth, and the neck. The
probability output of the face parser is used as the feature representation
to ensure that face–part locations are not encoded in binary form. Shown
are 5 out of the cf generated representations.

C. CONTEXT–AWARE SEGMENTATION NETWORK
Once the feature representations xctx are generated, they are
fed as an additional input to the segmentation path of Con-
texedNet. Here, the feature representations are concatenated
with the original RGB image x and used to constrain the ear
detection/segmentation model, so it generates semantically
reasonable predictions and avoids erroneous results, where
segmentation masks are predicted in image areas without the
correct context. The segmentation path is trained based on
concatenated inputs xcon = x||xctx ∈ Rw×h×(cf+3) again
using a standard binary cross–entropy loss, i.e. [55], [59]:

L(sp)
bce (y, ŷ; θζ ) = −

cf∑
i=1

y log(ŷ)+ (1− y) log(1− ŷ), (5)

where y and ŷ are the ground truth ear segmentation mask
and the corresponding model prediction, respectively. The
superscript sp indicates that the loss is associated with
the segmentation path of ContexedNet. Once the model is

trained, ear segmentation masks are generated in accordance
with Eq. (3).

For the implementation of the segmentation path, we again
use a DeepLabV3+ model and explore different back-
bones for its implementation. However, note that in gen-
eral the outlined context–aware segmentation procedure
is model agnostic, so any segmentation model could be
used for the implementation. Nonetheless, DeepLabV3+
was selected as the backbone for our experiments because:
(i) source code for the model is publicly available (impor-
tant for reproducibility), (ii) it ensures state-of-the-art
results for a wide variety of segmentation tasks [17], and
(iii) the fact that the model heavily relies on atrous con-
volutions that help to capture spatial context similarly to
context modules typically used with contemporary detection
models.

D. TRAINING PROCEDURE AND DEPLOYMENT
ContexedNet is trained using a two-stage procedure. In the
first stage, we learn to predict cf representations that encode
face-part locations by minimizing the training objective from
Eq. (4) over a datasets with suitable ground truth annota-
tions. This training step optimizes the parameters θη of the
face parser η. In the second stage, we learn to predict the
final segmentation masks based on the input image x and
the extracted contextual information xctx by minimizing the
loss from Eq. (5). This second stage results in optimized
parameters θζ for the context-aware segmentation model ζ .
Once the two models are learnt, the final segmentation mask
ŷ corresponding to the ear region in the image is generated
based on Eq. (3).
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TABLE 1. Properties of the three datasets used in the experiments. CelebAMask-HQ is utilized for training the context provider, AWE for training and
testing of the segmentation model, and UBEAR for testing only. The experimental protocol is provided in the bottom row of the table.

FIGURE 4. Samples images and corresponding pixel–level ground truth masks from: (a) the AWE-W dataset, and (b) the UBEAR 1.0 dataset. Note that
the images feature in these datasets were not collected in constrained conditions, as this is the case with many existing ear datasets. As result,
the images exhibit considerable appearance variability that makes them challenging for ear detection/segmentation.

IV. EXPERIMENTAL SETUP
Several experiments were designed to evaluate the perfor-
mance of the proposed ContexedNet. A summary of the setup
used for these experiments is presented in the reminder of this
section.

A. DATASETS AND EXPERIMENTAL SPLITS
Three datasets were selected for the experimental evaluation:
CelebAMask-HQ [58], Annotated Web Ears (AWE) [1], and
UBEAR 1.0 [18]. A high-level overview of the datasets and
the experimental protocol used is provided in Table 1.

The first experimental dataset, CelebAMask-HQ, contains
30, 000 images of size 512 × 512 pixels with pixel–level
annotations of 19 face components and accessories. Images
in this dataset were collected from the web and feature a wide
range of appearance variability. CelebAMask-HQ is used to
train the context provider of ContexedNet.

The second dataset, AWE, consists of 1000 ear images of
100 subjects, captured in unconstrained conditions, as illus-
trated in Figure 4(a). Images in this datasets were again
collected from theweb and comewith pixel–level annotations
of the ear region. Because the acquisition conditions vary
from image to image, theAWEdata exhibits variability across
environments (outdoor vs. indoor), illumination conditions,
occlusions, image quality, but also demographic factors, such
as age, gender and ethnicity. These characteristics make it
highly challenging for the task of ear detection/segmentation.
Images from the AWE dataset are used to train (750 images)
and test (250 images) the segmentation model of Contexed-
Net, with the train and test split being subject and image
disjoint.

The last dataset used in the experiments is UBEAR. This
dataset was captured in an indoor environment under room
lighting, but in an uncooperative scenario, where the subjects
did not pose in perfect profile view during data acquisition.
The UBEAR images, therefore, vary in terms of pose, blur
and overall image quality, as shown in Figure 4(b). Similarly
to AWE, UBEAR also comes with pixel–level annotations
(i.e., binary masks) of the ear region. UBEAR is used in the
experiments for the performance evaluation to demonstrate
how ContexedNet generalizes to other data characteristics
and to compare the performance of the proposed framework
to standard bounding-box based ear detectors..

B. PERFORMANCE MEASURES
Results are reported using two performancemeasures in order
to facilitate comparisons with previously published works,
i.e., overall segmentation accuracy (Acc) and mean inter-
section over union (mIoU). Accuracy is typically defined in
the ear–detection literature as the ratio between the number
of correct detections and the overall number of annotated
ear areas. However, the criterion for deciding on correct or
incorrect predictions varies in the literature. Here, we use
the definition from [1], where accuracy is defined through
a segmentation tasks and consider both the number of cor-
rectly classified ear pixels as well as the number of correctly
classified non–ear pixels, averaged over all n test images,
i.e. [63], [64]:

Acc =
1
n

n∑
i=1

TPi + TNi
di

, (6)
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FIGURE 5. Comparison of the training characteristics for the three backbone models, ResNet [60], MobileNet [61] and Xception [62] with (in blue) and
without (in red) contextual information. Results are presented in terms of the (training) cross–entropy loss and the mIoU on the validation data. Note how
the addition of contextual information helps with the convergence of the segmentation model both in terms of pace as well all as performance reached.
Best viewed in color.

where di denotes the number of pixels, TPi stands for the
number of true positives, i.e., the number of pixels correctly
classified as part of the ear, TNi stands for the number of
true negatives, i.e., the number of pixels correctly classified
as non-ear pixels, in the i-th image. However, because this
measure is not weighted by the representation of classes
(i.e., the ground truth number of ear and non–ear pixels), it is
impacted most by the majority class. i.e., the background.

We, therefore, also report the mean intersection over
union (IoU) for the experiments, which is defined as fol-
lows [65], [66]:

mIoU =
1
n

n∑
i=1

TPi
TPi + FPi + FNi

, (7)

where n again denotes the number of test images, and FPi
and FNi denote the number of false positives (i.e., ear pixels
classified as non-ear pixels) and the number of false negatives
(i.e., non-ear pixels classified as ear pixels), for the i-th test
image, respectively. A value of 1 means that the detected
and annotated ear areas overlap perfectly, while a value
of 0 indicates a completely failed detection, i.e. no detection
at all or a detection outside the actual ear area.

Additionally, we also report precision, recall and F1 scores
for the ear segmentation task in order to provide better overall
understanding of the performance of our models and to com-
pare it more easily with other works from the literature. Here,
precision, recall and F1 are defined as follows [66], [67]:

Precision =
1
n

n∑
i=1

TPi
TPi + FPi

, (8)

Recall =
1
n

n∑
i=1

TPi
TPi + FNi

(9)

and

F1 = 2 ·
Precision · Recall
Precision+ Recall

. (10)

C. IMPLEMENTATION DETAILS
The experiments were conducted on a personal desktop com-
puter with a GeForce Titan Xp with 12GiB of VRAM. For
the training procedure, stochastic gradient descent (SGD)
was used with a momentum of 0.9 and a weight decay of
5 × 10−4. The batch size was set to 4 and the learning

rate to 7 × 10−3 for all models. The training images were
cropped to a fixed size of 512 × 512, and the average value
computed over the whole training set was subtracted for each
channel. The training was run for 50 epochs with the stopping
criteria of loss value not decreasing anymore. The context
provider of ContexedNet was implemented with cf = 19
feature maps at the output. The code (written in PyTorch)
used for the experiments is made publicly available to foster
reproducibility from: http://awe.fri.uni-lj.si/.

V. RESULTS
To demonstrate the merits of ContexedNet and capitalize on
the importance of contextual information for the overall per-
formance of the proposed ear detection solution, this section
presents experimental results that: (i) highlight the impact
of the proposed contextualization with three different base-
line segmentation models, (ii) illustrate the effect of context
on ear segmentation performance in a fine–grained analysis
involving multiple covariates, (iii) present qualitative exam-
ples of successful and failed detections, (iv) analyze some
of the framework’s main characteristics, and (iv) compare
the proposed approach to state–of–the–art solutions from the
literature.

A. IMPACT OF CONTEXTUAL INFORMATION
The first series of experiments explores the impact of the con-
text provider on the performance of ContexedNet’s segmenta-
tion model. To this end, the DeepLabV3+model [17] used in
the segmentation path of ContexedNet is implemented using
three different backbones, i.e., ResNet [60], MobileNet [61]
and Xception [62]. Publicly available code is used as the basis
for implementing these backbones.5

1) TRAINING CHARACTERISTICS AND TEST TIME
PERFORMANCE
In Figure 5 we visualize the training characteristics of the
models trained with and without the context provider. As can
be seen, all three backbonemodels exhibit significantly better
convergence when used with contextual information. Given
the same training data, the context–supported models not
only converge faster, but (in most cases) also reach a better

5Available from: https://github.com/jfzhang95/pytorch-deeplab-xception
and https://github.com/switchablenorms/CelebAMask-HQ
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TABLE 2. Computational complexity of the training procedure when learning the three backbone models of ContexedNet’s segmentation path with and
without context. Run–time complexity is also given. Results are reported for the experimental hardware used, i.e., an NVIDIA GeForce Titan XP
with 12GiB of VRAM. The symbols h, m and s stand for hours, minutes and seconds, respectively.

TABLE 3. Impact of contextual information on the segmentation performance of three DeepLabV3+ backbones using the test set of AWE. Results are
reported for models trained with (w Ctx.) and without (w/o Ctx.) context.

optimum than the models trained without context, as shown
by the mIoU scores in Figure 5.

The overall processing time needed for training and testing
of the models with our experimental hardware is given in
Table 2. Note that training the context provider takes around
a day. Once the model is trained and feature maps encoding
face part locations are added as input to the segmentation
model a gain of around 10 minutes is observed when train-
ing the context–aware segmentation models. At run–time,
the additional processing needed to compute the contextual
information results in an increase of the computational time
of 2× to 3×, and takes around 0.11s for the segmentation
model with the ResNet backbone, 0.09s for the MobileNet
backbone and 0.12s for the Xception backbone on average.

2) PERFORMANCE ASSESSMENT
Next, we evaluate the three DeepLabV3+ backbone models
on the test part of the AWE dataset with the goal of assessing
the impact of contextual information on the overall segmenta-
tion performance. Again, backbones trained with and without
contextual information are considered for this experiment.

The results in Table 3 show that context has a considerable
impact on both mIoU as well as accuracy scores of all three
testedmodels. The largest performance difference is observed
with the Xception model, where the mIoU is improved by
10.17 percentage points through the contextualization, and
the smallest with the MobileNet model with an improvement
of 0.96 percentage points in terms of mIoU, as additionally
illustrated in Figure 6. A jump of 3.75 percentage points is
seen with the ResNet model, which also performs best overall
among all tested backbones with an mIoU score of 81.46%

FIGURE 6. Impact of context on the three backbones considered in the
experiments in terms of mIoU scores.

when contextual information is included in the segmentation
procedure. Consistent relative performance improvements
are also observed for the tested backbone models when look-
ing at the accuracy, precision, recall and F1 scores.

The presented results clearly show that contextual infor-
mation is beneficial for ear segmentation and results in con-
sistent performance improvements over context–free models.
Additionally, performance gains are observed with all back-
bone models, suggesting that the proposed contextualization
generalizes well over different CNN architectures.

3) COVARIATE ANALYSIS
To further investigate the impact of contextual informa-
tion, we conduct a fine–grained performance analysis on the
test part of the AWE dataset. Specifically, we explore the
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TABLE 4. Impact of contextual information on the segmentation bias across seven (demographic and non-demographic) covariates. Results are presented
in terms of MAD scores, where smaller scores imply less biased results. Note that the integration of context reduces segmentation bias in the majority of
cases, as also evidenced by the average MAD score.

segmentation performance of the three DeepLabV3+ back-
bone models, ResNet, Xception and MobileNet, trained with
and without contextual information in the presence of differ-
ent covariates. The results of this experiment are presented in
the form of box–and–whiskers plots in Figure 7. Seven groups
of covariates are considered, i.e., ethnicity, gender, presence
of occlusions, presence of accessories, and head rotations in
terms of yaw, roll and pitch.

Several interesting observations can be made from the pre-
sented results: (i) for an overwhelmingmajority of subgroups,
the inclusion of contextual information consistently improves
the median mIoU scores across all three backbones and
(equally important) improves the distribution of the scores by
reducing the dispersion over the test images, (ii) the contex-
tualization has the biggest (positive) impact on the Xception
backbone, followed in order by the ResNet and MobileNet
models, where improvements are observed for the majority
of subgroups considered, (iii) in absolute terms, the context–
aware ResNet is again the most competitive among the tested
backbones across all covariates, (iv) the integration of contex-
tual information results in the biggest performance gains (on
average) in the most challenging conditions, e.g., in the pres-
ence of significant occlusions (Figure 7c), as well as across
different head rotations (Figures 7e to 7g), (v) performance
gains are also observed across demographic factors, ethnicity
and gender, where IoU scores are improved significantly
for some of the subgroups that performed weaker without
contextual information (Figures 7a and 7b).

4) BIAS ANALYSIS
The result, presented in the previous section, demonstrated
the impact of contextual information on the performance
of the segmentation model in terms of absolute gains.
However, another critical issue with contemporary machine
learning models is bias [68]–[72]. Machine learning mod-
els are expected to produce consistent results regardless
of the demographic characteristics associated with the test
images and to perform equally well for images with different
non-demographic characteristics. To investigate the impact of
the contextual information used in ContexedNet with respect
to segmentation bias6 mean absolute deviations (MAD) are

6When associated with demographic factors, bias is often related to the
notion of fairness in machine learning. It is also often described with the term
differential outcome to imply that different data characteristics may result in
different performance [68].

computed across the covariate groups analyzed in Figure 7.
Specifically, let C denote a given covariate class/group
(e.g, ethnicity) and let mIoUc represent the mIoU score
associated with the c-th label from C (e.g., Asian) then the
corresponding MAD can be defined as follows:

MAD =
1
|C|

∑
c∈C
|mIoUc − mIoU |, (11)

where |C| denotes the cardinality of C, and mIoU stands for
the mean mIoU score for the covariate class C. Lower values
of MAD indicate lower bias. MAD takes a value of 0 in the
ideal case when no bias is present.

The MAD scores for the seven covariate groups analyzed
are presented in Table 4. Note that the inclusion of contex-
tual information significantly reduces the overall segmenta-
tion bias for the majority of image subgroups. The average
MAD score for ResNet is reduced by 10.8%, by 25.2% for
MobileNet and by 7.8% for Xception when context is used.
This observation points to the fact that contextual information
is not only useful to improve performance, but also con-
tributes towards more consistent results across various image
characteristics.

5) QUALITATIVE EVALUATION
The evaluations presented so far demonstrated the impor-
tance of contextual information for the overall segmentation
performance of ContexedNet. Among the tested backbones,
the ResNet model achieved the best overall performance and
is, therefore, also used in most of the following experiments.

To further illustrate the value of contextual information,
a comparison of the ResNet–based segmentation path trained
with and without context is presented in Figure 8. This qual-
itative analysis is done with a few (challenging) test images
collected from theweb, so the test data is completely indepen-
dent from the AWE dataset. Segmentation results produced
by the model trained without context are shown in red, results
with context in blue, and overlapping regions are shown in
pink. As can be seen, the use of contextual information signif-
icantly improves performance. Without context, ear regions
are often detected in semantically unreasonable areas that do
resemble ears in terms of visual appearance, but are located
in areas without meaningful context. With the integration of
contextual cues such erroneous segmentations do not happen
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FIGURE 7. Fine–grained analysis of the impact of contextual information on the performance of three backbone models used for the
implementation of DeepLabV3, i.e., ResNet, MobileNet and Xception. The models are trained with and without contextual information on the
AWE dataset. Seven groups of covariates with the following number of images are considered: (a) Ethnicity (White - 458, Asian - 167, Black -
80, Other – 45), (b) Gender (Female – 69, Male – 681), (c) Occlussions (None – 488, Mild – 206, Significant – 56), (d) Accessories (None – 682,
Present – 68), (e) Head yaw (Profile – 113, Middle – 429, Frontal – 208), (f) Head roll (None – 469, Mild – 246, Significant – 35), (g) Head pitch
(None – 418, Mild – 298, Significant – 34). IoU scores are shown on the y–axes and covariate groups on the x–axes. Best viewed in color.

(or happen less often) due to the strong prior provided by the
face part locations.

In Figure 9, a few additional example images are shown,
where the context–free model completely fails to detect
ear regions, while the proposed context–aware model not

only successfully detects ear regions, but also generates
high-quality segmentation masks that very well capture
ear locations. We again attribute this behavior to the
global approach used with ContexedNet, where semanti-
cally meaningful contextual information is exploited by the
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FIGURE 8. Comparison of the segmentation path of ContexedNet trained with and without contextual information. Results are presented with the ResNet
backbone model used for implementation of DeepLabV3. Predictions marked red correspond to results without contextual information, predictions in
blue correspond to results produced with contextual information, and pink areas correspond to overlapping regions. The figure is best viewed in color.

FIGURE 9. Example images, where the context–free model completely fails, while the model trained with contextual information is still able to
successfully detect ears and generate high–quality segmentation masks – shown in blue.

segmentation procedure instead of learning only from (spa-
tially local) ear appearances.

B. ContexedNet ANALYSIS
The second series of experiments analyzes some of the main
characteristics of the proposed ContexedNet framework. Sev-
eral experiments are presented, including: (i) an ablation
study, (ii) an analysis of the impact of backbone models
used for the implementation of ContexedNet, and (iii) an
investigation into the use of face detection as a preprocessing
step to ear segmentation.

1) ABLATION STUDY
The proposed ContexedNet uses a two-path approach to
segment ear regions from the input images. To demonstrate
the importance of this two-path procedure, we conduct a
simple ablation study and implement an additional single
path model that predicts the ear region as well as all other
face parts in a single computing step. This one-path model
essentially consists of only the context provider that in one
of the output channels also produces segmentation maps of
the ear region. Thus, the model still considers contextual
information, but does not rely on a separate ear segmentation
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TABLE 5. Comparison of one-path and two-path approaches to
context-aware ear segmentation on the test data of AWE. The one-path
approach is implemented only with the context provider, the two-path
approach is the proposed ContexedNet, which also offers superior
performance.

FIGURE 10. Visual comparison of segmentation results produced by the
one-path (i.e., the Context Provider - marked light blue), and the two-path
(ContexedNet - marked magenta) models.

model when generating the final results. A comparison of
the two-path approach of ContexedNet and the implemented
one-path solution is presented in Table 5.

As can be seen, the complete two-path ContexedNet model
convincingly outperforms the one-path procedure. While the
simpler one-path approach has obvious run-time advantages
due to the use of a single-step pipeline, it is only able to pro-
vide coarse segmentation results. Conversely, the proposed
ContexedNet not only makes efficient use of the contextual
information generated by the context provider, but also acts
as a sort of refinement network for the output of the first path
that produces finer and more accurate segmentations, as also
illustrated in Figure 10.

2) BACKBONE EVALUATION
As suggested earlier, the contextualization proposed in this
paper is general and can be used with any backbone model
in either of the two paths of ContexedNet. We illustrate
this flexibility by implementing the entire pipeline with a
SegNet model and use SegNet for both, the context provider
as well as the context-aware segmentation network. The
SegNet based implementation of ContexedNet is compared
to the best performing DeepLabV3+ based version (using
ResNet) in Table 6. The results generated on the test part
of AWE show that the proposed contextualization (marked
w. Ctx.) contributes to considerable performance improve-
ments regardless of the backbone model used. We observe a
somewhat larger relative performance gain with SegNet, but

TABLE 6. Comparison of ContexedNet variants implemented with two
different backbone models, i.e., DeepLabV3+ (ResNet based) and SegNet
on the AWE test data. Note that regardless of the backbone model used,
the proposed contextualization contributes to improved segmentation
performance.

TABLE 7. Impact of face detection on segmentation performance. Results
are reported on the AWE test data for models trained with (w Ctx.) and
without (w/o Ctx.) contextual information in the form of face-part
locations.

in absolute terms the ContexedNet version implemented with
DeepLabV3+ still yields the overall better results due to the
superior baseline performance of the DeepLab model.

3) CONTEXT EXPLORATION
ContexedNet uses contextual information in the form of
face-part locations to improve segmentation performance.
Additionally, the DeepLabV3+ based version also exploits
atrous convolutions that capture spatial context to aid the seg-
mentation procedure. However, existing ear detection tech-
niques typically rely on a separate face detection step to first
constrain the spatial area in the input images before attempt-
ing ear detection/segmentation. This face detection step can
be considered as another source of contextual information
that restricts the spatial area of the input images that needs
to be examined for the presence of ears. In the next experi-
ment we, therefore, investigate whether face detection further
contributes towards the performance of ContexedNet. To this
end, we manually crop the face regions from the input images
and train ContexedNet with cropped inputs. This procedure
simulates face detection in an oracle type of setting, where
perfect face detection results are assumed. We test the trained
model with cropped test images from the AWE dataset and
report results in Table 7. Here, results are again reported with
and without the context provider for the DeepLabV3+ based
version of ContexedNet.

Interestingly, restricting the search space of ContexedNet
to the cropped facial area does not have a significant effect on
performance. While minor differences in the individual per-
formance scores are observed, these are very minute and have
a limited impact on operational aspects of the segmentation
model. When looking at the impact of the contextualization
procedure, we see that the added information on face-part
locations (marked w Ctx.) is beneficial even if the facial
area is cropped. However, overall the added computational
overhead and limited performance gains in general do not
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TABLE 8. Performance comparison with the state–of–the–art on the AWE
dataset. All competing models are segmentation based. The results
demonstrate the importance of contextual information for
segmentation–based ear detection.

justify using a face detection approach as a preprocessing
step to ear segmentation with ContexedNet. The proposed
model alone is sufficient to ensure competitive performance,
as shown by our experiments.

C. COMPARISON TO THE STATE–OF–THE–ART
In the last series of experiments, we compare ContexedNet
to competing solutions from the literature on the AWE and
UBEAR datasets. The ResNet-based DeepLabV3+ model is
used as the backbone for ContexedNet’s segmentation path
due to its favorable performance compared to the two other
backbones explored in the previous sections.

1) RESULTS ON THE AWE DATASET
For the comparison on the AWE dataset, three state-of-the-art
models are implemented, i.e., SegNet [73], PED–CED [1]
and the DeepLab model from [17]. These models pose ear
detection as a segmentation problem and are, therefore,
directly comparable to the proposed ContexedNet – imple-
mented with the ResNet-based DeepLabV3+model for these
experiments. The results in Table 8 show that all models result
in comparable accuracy due to the impact of themajority class
(i.e., the background) on this performance score. However,
convincing improvements are observed when looking at the
more informative mIoU scores and the precision, recall and
F1 values, which are focused only on the ear segmentation
performance and not the background.With these performance
measures, ContexedNet significantly outperforms PED–CED
and also ensures a considerable improvements over DeepLab,
which represents a context–free segmentation model. These
results clearly demonstrate the added value of contextual
information for the task of ear detection/segmentation and the
superiority of the proposed ContexedNet.

2) RESULTS ON THE UBEAR DATASET
To further validate the performance of ContexedNet,
we compare the model with competing solutions on
the UBEAR dataset [18]. Specifically, we use the best
performing segmentation–based approach from the exper-
iments in Table 8, DeepLab, as well as two state–of–
the–art bounding-box based ear detectors, i.e., MS–Faster
R–CNN [7] and CED–Net [6]. Both MS–Faster R–CNN
and CED-Net represent variants of the Faster R–CNN object
detector. However, the latter also considers spatial context
(as illustrated in Figure 1(a)) and is, therefore, context–aware,

FIGURE 11. Example bounding-box ear detection results on sample
images from the UBEAR dataset. Note that bounding boxes were fitted to
the segmentation masks generated by ContexedNet. The blue annotations
correspond to the ground truth, the red ones to the output of
ContexedNet and the magenta annotations to the overlap between the
two. The figure is best viewed in color.

similarly to ContexedNet. Additionally, we also include
results for the Single Shot Multi Box Detector (SSD) [74]
and the original Faster R–CNN model [75], again trained
for (bounding box) ear detection. Results for these two
models are borrowed from [6]. MS–Faster R–CNN, CED–
Net, SSD and Faster R–CNN return bounding boxes and
not pixel–level segmentation masks, Table 9, therefore,
reports detection-based performance scores computed based
on bounding box information and not based on segmentation
masks. Pixel–level accuracy, precision, recall and F1 scores
are not reported, as they do not apply to this detection setting.
To make the segmentation models, DeepLab and Contexed-
Net, comparable to the detection procedures, a bounding
box is fitted to the generated segmentation masks prior to
computing performance scores. Training and testing of the
segmentation models is done in accordance with the exper-
imental setup from Table 1, where half of the data is used
for training and validation, and half for the final performance
evaluation, similarly to [6]. Results are reported for two IoU
thresholds, i.e., 1IoU = 0.6 and 1IoU = 0.7.
Table 9 shows that among the tested models CED–Net and

MS–Faster R–CNN perform best in terms of the generated
accuracy scores, which suggests that these models are highly
successful in detecting ears in UBEAR images. The proposed
ContexedNet also achieves highly competitive performance
despite not being trained for bounding-box detection at all.7

Our framework again benefits from the proposed contex-
tualization and convincingly outperforms the context-free
DeepLab model with respect to the accuracy score. We also
observe superior performance when comparing ContexedNet
to the SSD and Faster R-CNN (bounding-box) ear detectors,

7Note again that bounding boxes were fitted to the generated segmentation
masks. The correspondence with the ground truth annotations has, therefore,
not been learned as with the competing detection techniques.
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TABLE 9. Comparative evaluation on the UBEAR dataset. The results were generated in accordance with the experimental protocol presented in Table 1.
Note that the reported results were computed based on bounding–boxes and not pixel-level segmentation masks (based on which ContexedNet was
trained) to allow for a fair comparison.

where our framework has a clear edge. Similar observations
can also be made when looking at the precision, recall and
F1 scores that again point to the impressive performance of
ContexedNet. To put the reported quantitative results into
perspective, we show in Figure 11 a few example detection
results – with fitted bounding boxes for ContexedNet. Note
how (despite the fitting procedure) the bounding-boxes cor-
respond reasonably well to the annotated ground truth.

VI. CONCLUSION
In this paper, a novel context–aware ear detection frame-
work, called ContexedNet, was presented. The framework
exploits information on face-part locations to improve ear
detection/segmentation performance and improves on exist-
ing segmentation–based solutions to ear detection by learning
from contextual cues in addition to ear appearances. The
model was tested in comprehensive experiments on the AWE
and UBEAR datasets. Experimental results suggest that the
use of contextual information not only improves detection
performance compared to context–free models, but also that
the contextualization has a beneficial effect on reducing
segmentation bias across various (demographic and non–
demographic) covariates. Additionally, the model was shown
to ensure competitive performance when compared to state-
of–the–art solutions from the literature both on AWE as well
as UBEAR.

As part of our future work on this topic, we plan to
strengthen the integration of the context provider in the over-
all processing pipeline (using multi–task learning, for exam-
ple), so it is trainable in an end–to–end manner. Additionally,
we plan to incorporate additional learning objectives and
criteria that can further constrain the segmentation procedure.
The developed detection approach will also be incorporated
into an ear recognition system, where the pixel–level out-
put produced by ContexedNet will be used during feature
learning.
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