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ABSTRACT Today, advanced driver-assistance systems (ADAS) come up with different abilities. One of
them is the adaptive cruise control (ACC) system. The ACC system is a continuation of research on cruise
control (CC) system, which integrates spacing control with the existing velocity control on the CC system.
The vehicles with an ACC system guarantee traffic safety while at the same time ensure a well-driving sense.
Many studies have demonstrated numerous control techniques applied as ACC controllers to accomplish
uncertainty and perturbation issues. Nevertheless, most of the existing papers assumed the model vehicle
dynamics as a linear time-invariant (LTI) system while designing the ACC controller. This paper proposed
an ACC controller using the gain scheduling technique to deal with the model vehicle dynamics as a linear
parameter varying (LPV) system. The passenger vehicle’s mass varies during ACC operation depending on
how many passengers or loads on the vehicle’s trunks. Later, the vehicle’s mass is estimated by recursive least
square (RLS) with a forgetting factor. Then, the disk margin is utilized to provide the high-level robustness
at each operating or “frozen’ point. The robustness performance will be analyzed using the worst-case gain
metric while the uncertainty is modeled by integral quadratic constraints (IQC). The LPV system behavior,
such as the rate vehicle’s mass, is also considered in the analysis. The effectiveness algorithm is validated
through joint simulation between Matlab/Simulink and PreScan. The last, the comparison performance
between gain scheduling and fixed gain ACC controller is evaluated.

INDEX TERMS Adaptive cruise control, advanced driver assistance systems, cruise control, gain scheduling
controller, linear parameter varying system, spacing control.

NOMENCLATURE €ve, Csc Error velocity and error distance.
By max Maximum brake pressure. u, x Control signal and rate of control
Th.max Maximum throttle. signal.
m, m Actual and estimated mass of the u, u Lower and upper boundary of the
vehicle. control signal.
Osafe> Orel, 80 Safe distance, relative distance, X X Lower and upper boundary of the
and minimum distance between control signal rate.
vehicles. (®)yc, (8)sc  Subscripts ve and sc defined veloc-
Vref > Vx,h Longitudinal reference velocity ity control and spacing control
and actual of velocity of host mode.
vehicle.
Ig Time gap between vehicles. I. INTRODUCTION
Xa Position of target or other vehicles The expeditious technology development of advanced driver-
in front of the host vehicle. assistance systems (ADAS) delivers the driverless vehicle
Xn Position of the host vehicle.

to be a reality. The society of automotive engineers (SAE)

separated the level automation of ADAS to be five levels [1].
Atlevel 4 or 5, ADAS is expected to diminish or even abolish
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society, such as safe driving, pleasant driving sense, and
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saving time travel [2]-[6]. Based on [7], [8], ADAS has three
subsystems: perception, planning, and control. The control
subsystem is responsible for delivering a proper command
for throttle, brake, and steering to render the vehicle follow
the reference trajectory set by the user or driver. It defines
how the vehicle will interact and behave with the surround-
ing environment. Therefore, the control subsystem ultimately
performs an indispensable role, albeit it cannot work in a
solitary subsystem. Nevertheless, the perception and planning
become worthless if the controller fails to follow the reference
trajectory [8]. The control system architecture in the ADAS
is apportioned into longitudinal and lateral control [9]. In this
work, we concentrated on longitudinal control.

The major problem of longitudinal control is split into
two parts: what type of longitudinal dynamics and control
strategy need to be used [6]. The longitudinal dynamics are
referred to the mathematic equation of vehicle models such
as kinematic, linear dynamics, or nonlinear dynamics. At the
same time, control strategies are frequently chosen to depend
on the vehicle model considered and the uncertainties are
faced. The early stage of longitudinal control applications
is cruise control (CC), where the vehicle will follow the
velocity command by the driver. Later on, adaptive cruise
control (ACC) come up with a new feature to preserve the
distance between the vehicles at a proper safe distance and
maintain the vehicle velocity within the velocity command at
the same time.

Currently, there are a bunch of existing works that con-
cern on ACC controller. Wang et al. designed non-singular
terminal sliding mode control (NTSMC) with radial basis
function (RBF) to handle the nonlinear vehicle dynamics
under less accurate model vehicle dynamics and able to
reduce the chattering effect [10]. The other works using RBF-
based controller with amplitude saturation controller (ASC)
is proposed by [11] where the RBF-based controller will
replace the ASC task as a controller with a smooth tran-
sition after several online learning. Their subsequent work
proposed a deep belief network semi-supervised controller-
based (DBNSSC) also succeed to replace the main controller
after several online learning [12]. Lin and Gorges presented a
robust MPC (RMPC) as ACC controller with two steps design
the controller: a linear feedback control is designed offline,
and an online optimization is solved each time with different
models to decouple the performance and robustness [13].
Another work using MPC framework as ACC controller is
proposed in [14]-[18] to achieve fuel efficiency, comfort,
and safety on ACC mode. Jiang et al. presented an ACC
control law called a linear exponential-of-quadratic Gaus-
sian (LEQG) with risk-sensitive parameters that rendered
six-vehicle behaviors and two control modes (expensive and
inexpensive control mode) [19]. Liberis et al. proposed the
predictor-based with integral action to guarantee stability,
zero steady-state, string stability, and non-negative impulse
response for ACC feedback controller to handle actuator and
sensor delay [20]. In the following works, their utilized a
partial derivative equation (PDE) as ACC controller, and the
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Aw-Rascle-Zhang-type (ARZ-type) model is considered as
traffic flow model [21]. The proposed method succeeded in
achieving performance metrics such as fuel consumption,
total travel time, and comfort.

Furthermore, various spacing policies are formulated in
order to achieve road efficiency with ACC system. Wu et al.
presented a survey of different kinds of ACC spacing policies
and found that all these spacing policies failed to ensure
stability (internal stability, string stability, and traffic flow sta-
bility), safety, and comfort at the same time [22]. Therefore,
a trade-off between stability, safety, and comfort are required.
Yang et al. proposed variable time gaps between vehicles
to improve the vehicle safety and driving experience when
deceleration in emergency conditions [23]. Besides road effi-
ciency, several existing works focused on energy consump-
tion. Chen et al. proposed model-free and real-time ecolog-
ical ACC (eco-ACC) based on action-dependent heuristic
dynamic programming (ADHDP) controller to accomplish
safety, comfortable driving, improve long-life battery, and
energy consumption for car-following scenario [24]. The
other works of eco-ACC with objective energy consumption
applications are presented in [25]-[32].

Further, to enhance the ACC system, Dang et al. integrated
the ACC and lane-change systems (LCACC) with consider-
ing the risk of lane change analysis and performed in driver-
in-loop [33]. Xu et al. integrated ACC with lane-keeping (LK)
by utilizing control barrier functions (CBFs) [34]. Another
work combined ACC system and collision avoidance (CA)
presented in [35] and [36]. Plessen et al. performed ACC
system with obstacle avoidance (OA) using a combination of
linear time-varying MPC and geometry corridor planning to
allow the vehicle to perform with four driving modes: ACC,
obstacle avoidance (multiple static and dynamic objects),
obstacle-free road tracking, and emergency braking [37].
Cheng et al. integrated an ACC system with direct yaw
moment control (DYC) to guarantee driving experience while
driving on a curved road [38].

In addition, some work formulized ACC controller using
intelligent control strategy and data-driven based. Li et al.
used reinforcement learning (RL) algorithms to solve the
drift counteraction optimal control (DCOC) problem in order
to find optimal control law for ACC system with mul-
tiple constraints such as safety, comfort, and fuel econ-
omy [39]. The other works using RL on ACC controller
are given in [26] and [40]. Another work using learning-
based methods such as recurrent neural networks (RNN) to
handle interference vehicles during cut-in is presented in [41].
Chen et al. analyzed the trade-off ACC system such as safety,
comfort, and traffic efficiency based on large amounts of
real road data and it bring a guide for engineers to set
the ACC parameters based on a data-driven method [42].
The other work using data-driven on ACC are presented
by [43], [44].

After a conscientious literature review, a critical issue is
missed from the attention worthy of ameliorating for ACC
systems, which are listed in the following.
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(1) All work reviewed earlier, on the ACC system, assumed
the model vehicle dynamics is a linear time-invariant
(LTT) system, which is a severe flaw. The model vehicle
dynamics are linear parameter varying (LPV) systems.
This issue is unexplored during the development of
longitudinal vehicle controllers.

(2) Several existing works are considering the LPV sys-
tem on the ADAS applications using gain schedul-
ing controller published in journals and conferences.
Even so, the objective of the concerns of the existing
work on velocity tracking [45]-[47], trajectory track-
ing [6], [48], 49], and spacing policy [50]. Need to be
underlined, if we address the ACC controller, then we
design the controller that has two modes, namely veloc-
ity and distance tracking not only velocity tracking.

(3) Most of the existing works considered scheduled vari-
able as linear and angular velocity [6], [48], con-
trol signal saturation [45], vehicle’s velocity and road
grade [46], [47], [49], and time gap [50]. None of all
existing works are considering the vehicle’s mass as
scheduled variable. The vehicle’s mass changed during
operation depend on how many passengers or loads are
on the vehicle and is worthy of further investigation.

(4) Some existing work lacks robustness analysis and
often analyzes the robustness system at each oper-
ating or ‘““frozen” point based on the analysis LTI
system. It missed apprehending LPV system behav-
ior [51], [52].

Concerning the above problems, this paper proposes the
ACC system using a gain scheduling controller for the LPV
system, where the mass of vehicles varied during ACC opera-
tion and provides robustness analysis and LPV system’s per-
formance. Need to be highlighted, this paper focused on the
passenger vehicles type with the ACC system. Consequently,
the purpose is not always to achieve a small distance between
vehicles, and also, not all passenger vehicles will move in the
platoon. The proportional-derivative with low-pass filter (PD)
gain scheduling is selected as the ACC controller strategy
and tuned based on the linear model vehicle dynamics at the
frozen points. The linear model vehicle dynamics is attained
by using system identification. The primary contribution of
this paper compared with the existing works is summarized
as follows.

(1) The ACC system based on gain scheduling controller
for LPV system is proposed for both control modes in
ACC system, namely velocity and distance tracking.

(2) Unlike the existing work, in this paper, the varying
parameter or scheduling variable is the vehicle’s mass.
The mass of passenger vehicles will vary during oper-
ation depends on how many passengers are inside the
vehicle and the loads in the vehicle’s trunk.

(3) The disk margin is applied instead of classical gain and
phase margins to provide a high level of robustness
at each frozen point. The robustness analysis must
be carried out since the controller gains are tuned
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TABLE 1. TIS sensor specifications.

Parameters TIS 1 TIS 2 Unit
Range 30 150 Meter
Time sampling 25 25 Hertz
Elevation beam angle 9 9 Degree
Azimuth beam angle 80 9 Degree
Maximum detection object 32 32 -

based on linear model vehicle dynamics at the frozen
points, while in the simulation, we applied a highly
nonlinear model vehicle dynamics provided by PreS-
can. Then, the worst-case gain metric is adopted to
examine the robust performance of the LPV system,
where the uncertainty is registered by integral quadratic
constraints (IQC).

The remaining section of the paper is organized in this
manner. Section II addresses the problem formulation of
this paper. Section III discusses the LPV system. The gain
scheduling controller and robustness analysis used in this
paper are explained in Section IV. Section V presented the
robustness analysis and simulation results. The conclusion is
given in Section VI.

Il. PROBLEM FORMULATION

In this section, the vehicle dynamics are explained. Next, the
sensor specifications and performance are presented. Then,
the low-level controller architecture is shown. After that, the
proposed upper-level controller is explained. The last, the
control objectives are given.

A. VEHICLE DYNAMICS

The simulation is done by incorporating Matlab/Simulink and
PreScan. PreScan provided the nonlinear vehicle dynamics
that consisted of engine, transmission, chassis, shift logic, and
switch between automatic and manual shift. The simulation
architecture is shown in Figure 1. In this work, the SUV with
seven seats is chosen as a vehicle with an ACC system.

B. SENSING

In this paper, two technology-independent sensors (TIS) are
equipped on the vehicle, which then has different range
works, one for long-range and the others for short-range.
In PreScan, TIS is proposed to validate and verify the active
scanning sensor such as radar, lidar, and other laser scan
sensors [53]. Hence, TIS operated with the same principles
such as radar and lidar. Table 1 shows the TIS sensor specifi-
cations. The range of sensors is commonly selected as regard
of the ACC applications. Figure 2 shows the performance
of the TIS sensor. The longitudinal range error is getting
smaller when the object gets closer since the noise on range
measurement is multiplicative.

C. LOW-LEVEL CONTROLLER
The low-level controller (LLC) converted the desired accel-
eration from the upper-level controller (ULC) into throttle or
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FIGURE 1. Simulation architecture.

brake. It consists of switching logic, a throttle controller, and
a braking controller. Figure 3 show the architecture of LLC.
The detail of the LLC and its performance can be seen in [54].

D. UPPER-LEVEL CONTROLLER

In the ACC system, the ULC has two controller modes:
velocity control and spacing control. Most of the paper used
fixed controller gains on both velocity and spacing con-
trollers. Fixed controller gains are effective to deal with the
LTI system. Despite that, it has inadequately performance
to deal with the LPV system. The detail regarding the LPV
system can be referred to Section III. In this paper, we used
the gain scheduling controller to deal with LPV system,
as shown in Figure 4. As a result, the controller gains on
the velocity and spacing controllers changed based on the
scheduled variable, namely the vehicle’s mass. The vehicle’s
mass is estimated by RLS with a forgetting factor. The lookup
table of the controller gains block has consisted of controller
gains obtained in offline. When the vehicle’s mass is changed,
then the controller gains will be updated by this block. The
velocity and spacing controllers generated the control signals,
namely desired acceleration. The switching logic selected
those control signals to deliver to the LLC. The switching
logic in ULC will determine which vehicle mode either CC
or ACC.

E. CONTROL OBJECTIVES

The longitudinal controller objectives are divided into the
ULC and LLC objectives. The ULC should be met in the
following condition.

1) PERFORMANCE
In ACC, the vehicle should be able to maintain the safe
distance as defined in (1) while at the same time also maintain
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the velocity to stay within the user or driver limit as defined
in (2).

6safe(t) =6+ tgvx,h(t) (D
[I_l)fgo Ievc(t) = Vref (1) — Vx,h(t)I £0 2

2) COLLISION AVOIDANCE
When the preceding vehicle stopped, then the distance

between host and preceding vehicle is non-negative such as
defined by,

Sre1(t) = Xa(t) — Xp(1) = 8o 3)

3) ASYMPTOTIC TIME GAP SYNCHRONIZATION

The safe distance in (1) is depending on time gap and velocity
of the vehicle. At steady state condition, it should be satisfied
with the below condition.

Jim_ ey (r) = Ssare(t) = 8rer ()] = 0 “)

4) COMFORT

The great driving experience is crucial in passenger vehicle.
Therefore, the ULC should be designed by following the
below constraints.

u(t) € [u(o), &), u(t) < a(r) 5)
X0 € [x0. 0] x0 = 3 ©)

The LLC objective is to identify whichever vehicle must
apply the throttle and brake. After that, the desired accelera-
tion from ULC will convert to throttle or brake pedal position.

Remark 1: The relative distance and relative velocity
between vehicles can be measured using TIS. The actual
velocity of the vehicle can be measured accurately by the
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wheel-speed sensor, such as odometry. The actual acceler-
ation of the vehicle can be obtained from the acceleration
sensor. The minimum distance is set as big as 6o = 5 meters.

Remark 2: Referredto (5) and (6), the vehicle system exhib-
ited nonlinearity. Further, in PreScan, several dead zones
are applied in the actuator of the vehicle dynamics. Those
problems can degrade the controller performance, especially
if our controller has integral terms. Nevertheless, those issues
are out of the scope of this work. The readers are invited to
read recent publications to handle those issues using fuzzy
structure to avoid offline identification and identify the dead
zones parameter in [55] to improve controller performance
under actuator dead zones.

IIl. LINEAR PARAMETER VARYING SYSTEM
Given a nonlinear system that shown as follows,

X =f(x,u
y=2gx,u @)

where x € R™, u € R™ and y € R are the state, input, and
output of the system. Let 9 and ¥ are defined as the unknown
time-varying parameters and its rate that assumed lied on
hyperrectangle, ¥, Yy e R, ny > Ny. Ny, Ny, ny, and ny are
the set of strictly positive integer members, ny, ny, iy, ny €
Z*+. Eventually, the scheduled parameter, ¢, should be able to
measure, or an estimation technique is necessary to perform.
In practice, the estimated value consisted of the error part,
as shown in the following.

Dit) = 0i(0) + vi),  Vie{l,2,... ny)

dit) = D) + 0ie), Vie{l,2,...,np} (8
where v(t), U(t) € R™ is the error or uncertain part. We sup-
posed that v(¢) and U(r) are small so that ¥;(¢) 2 9.
However, several case must be considered v(¢) and v(t) as

done by [56]. After that, the equation (7) can be written as
nonlinear parameter varying (NPV) system as follows,

X =f(x,u, (1)
y =g, u, (1) &)
Need to be highlighted, the parameter & implicitly influ-
enced the NPV system in (9).
The LPV system has a linear form system and has a certain
range value of ¥ that change over time during the operation

depends on . Therefore, the equation (9) can be transformed
to the LPV system with x(0) = 0 as follows,

X(1) = A@@®) x(1) + B (9(1)) u(t)
y(t) = C (@ (0) x(t) + D (9 (1)) u(r) (10)

Also, the equation (10) can be written as,

ya) [A (®(1) |B (@ (1)) }

G@®) = ut) | C @)D @)

where the matrices A € R*>*" B ¢ R»*™, C e R,
and D € R™*™ are a function of 9¥(¢) then the model

Y
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becomes the time-varying. For the affine case,

{e} = {Ao, Bo, Co, Do} + {A1, B1, C1, D1} 91(2)
+{A2, B2, C2, D2} 02(t) + - - - + {Ap, Bp, Cp, Dp} 0p(2)
{Ao, Bo, Co, Do} +

BER . p
2 {Ai, Bi, Ci, Di} 9i(0), Z %) =1,0;(1) >0

i=1 i=1

(12)

where {e} refers to {#} = {A (P()),B (1)), C (¥(2)),
D (9(t))} and p = 2" is the constructed hyperrectangle with
2" vertexes and ny number of scheduling parameters. Sev-
eral existing works proposed trapezoidal polytope, triangle
polytope, and two-vertices to reduce the conservatism in LPV
system [57]. The domain of interest is defined as a compact
domain, 2, where the ¥ (¢) and 19(t) are well defined, then we
have,

() € Q1 = {9k() € [Dwk. Yupic ] Yk € {1,2, ..., ny}}
Zék(t) e = {l?k(t) € [ﬁlh,k, ﬁub,k] ,Vke{l,2,..., nﬂ}}
(13)

where ¥, < Uy and 1911, < ﬁub are defined as the lower and
upper bound of ¥ (¢) and z§‘(t).

The performance of LPV system can be assessed by
induced L, norm. For a given finite energy to the input signals
that satisfies Vi (¢) € €2, the induced L, norm calculates
the maximum gain or the largest amplification of the LPV
system.

Definition I: Induced L, norm.

o0
Defined |y, = [yTywde and ull, =
0

o
f u® (t)u(t)dt. Moreover, u is bounded signals, u € L,
0

that satisfies |lu|l, < co. The induced L, norm of the system
in (11) is defined as,

Iyl
u0,ueLy, 92y x(©)=0 lell2

G @)l = (14)

The induced L, norm required the “‘quadratic storage func-
tion” to provide the sufficient condition to upper bound of the
induced L, norm gain of the system in (11). The sufficient
condition is given in term of LMIs in Lemma 1.

Lemma 1 [58]: Bounded real lemma or Kalman—
Yakubovich—Popov lemma.

Suppose A (¥(¢)) is Hurwitz and the system G (9 (%)) satis-
fies with conditions V& (¢) € Q and V& (¢) € Q5. The system
in (11) is exponentially stable and |G (J(?))|lo < ¢ if and
only if hold the following condition.

P@@®) =P@@) >0

(® PE@O)BO)T 1 [ @)’
B@@)" P @) —el D @)

- } [C(ﬁ(t)) D(ﬁ(t))] <0
(15)
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where (o) = A@@) P@) + P@0))AW®@) +
dP (9(1), #(t)) and & is a positive real number. The
P (0(1), D (1)) is defined as follows,

: AP (9(1)) .
P (9(1). D) =Y %ﬂm (16)

i=1
The proof of equation (15) can be seen in [58].

IV. GAIN SCHEDULING CONTROLLER

In this section, we will explain the gain scheduling which is
used for ULC. Then, the robustness analysis for LPV systems
will be presented.

A. PROPORTIONAL-DERIVATIVE GAIN SCHEDULING
The design process of the gain scheduling controller is shown
in the following.
1. Given a bounded domain of interest, we determined
several frozen points to cover it.
2. We performed the linearizing technique of the nonlin-
ear systems at each frozen point.
We tuned the controller gain at each frozen point.
4. We designed the gain scheduling architecture by ensur-
ing a smooth transition between each gain.

b

The output feedback control law for system (10) can be
defined as,

u(t) = K (9(r)) C (9(2)) x(1) (I7)
where

K (0(1) = Ko + K191(t) + K202(8) + - - - + Kp9p(2)

p p
K (9(1) € { Ko+ ) Kii(0), Y 9i(t) = 1, 9:(t) = 0
i=1 i=1

(18)

K is the output feedback gain matrix. The closed-loop
system can be obtained from (10) and (17) as follows,

x(t) = Aq (9(1)) x(1) (19)
where
At (0(1)) = Acr,0 +Act,101(8) + Ac 202(2)

-+ A pUp(t)
Ac,i (0(1) = Ai (0(1)) + Bi (9(1)) K (9(1)) C (9(2))

p p
A (1)) € A0+ Y A iDit), Y Di(t)=1, 9i(t)=0
i=1 i=1

(20)

Consider the PD as the control algorithm, then equa-
tion (17) can be written as follows,

u(t) = kp (9(1)) e(t) + kq (9(1)) é(1) 2

For the sake of comprehensibility, the equation (21) can be
rewritten in the following.

u(t) = kp (9(2)) y(t) + ka (9(2)) y(1) (22)
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If y(¢) = C (¥(¢)) x(¢) and the equation (22) can be written
as follows,

u(t) = ky (9(1)) C (9(1)) x(1) + ka (9(1)) C (F(1)) x(1)
(23)

From (19) and (22), the closed-loop systems with PD
controller is given by,

(1) = [A@ @) + B @) ky (9(1)) C (9(1)] x(2)
+B (9(1) ka (9(1)) C (¥ (1)) x(1) (24)

The equation (24) can be written in compact form as fol-
lows,

O (F(1) x(1) = At (9(2)) x(2) or x(1) = Acta (V1)) x(2)
(25)

where

Aca (0(1) = © @)~ A (9(1)),
© @) =1—-B@) ks (9(1)) C(H(r)), and
A (0(1)) =A@ D) + B @(1) kp (9(1) C (1)) -

Remark 3: The closed-loop stability is not affected by the
reference signal so the reference signal is assumed to be
in (22).

In this paper, the scheduled variable is represented by the
mass of the vehicle as shown in the following.

9@t) = m(r) (26)

The mass of the passenger vehicle frequently changed
depend on the passengers and loads. Therefore, the mass of
the vehicle should be correctly estimated. We followed work
from [59], [60] that have been done to solve the vehicle’s mass
estimation issue.

B. DISK MARGIN

The robustness is crucial to consider when designing the con-
troller because we cannot perfectly model the actual vehicle.
The vehicle has an exceptionally complex nonlinear system,
decreased performance year by year, and manufactured pro-
cess variation. The tragic reality is, we tuned the controller
gain based on the model that has uncertainty. As a result,
the controller has poor performance and risk of instability.
Figure 5 shows the interconnection between the nominal
system and uncertainty on the LTI system. The disk margin
is introduced by [51], [61] to answer the classical gain and
phase margins limitation. It can capture the perturbation on
both gain and phase that coincided in the system. The disk
margin defined the system’s margin as a disk in the complex
plane, as shown in Figure 6a. The whole blue region is the
stable region, including the nominal system and uncertainty
in gain and phase variation. The A is defined as follows,

A € S (amax, ) = (27)
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The equation (27) is under the assumption ‘amax%| < 1.
The term of A € S (omax, §) mean that A lied on the area
of set S (amax, 8). Afterwards, disk center and radius are
calculated as follows,

_ Vmax + Vmin

Caisk = e e

’ rdiSk -

2 2

The maximum and minimum intercept points on real axis
of the disk is defined as the maximum and minimum gain
margins and can be calculated as follows,

2 + omax (1 —6) 2 — amax (1 —8)

Vimin = S (29
2 — amax (1 +9) Vimin 2 + amax (1 46) 29

Moreover, the maximum and the minimum phase margin
can be obtained by,

1 <1 =+ Ymax Ymin
COS _—
Ymax + Vmin

+o00, for otherwise

@min = —Pmax 30)

In the case of ¢max = 400, it means that the feedback
system is stable for any phase variation.

Lemma 2 [61]: Disk margin condition.

Suppose the § is skew parameter of the disk margin and
the closed loop of the nominal system is stable then the disk
margin is shown as,

Ymax =

) , for rgisk < caisk

¢max =

s—1]!
max = || T(s) + T 31
00

where T'(s) is defined as sensitivity function of the system in
Figure 6b. The proof of equation (31) can be seemingly seen
in [61].

Definition 2: Supposed A is LTI system and lied on the set
S (0max, 8) such that A € S (@max, 6). By using small gain
theorem, the closed loop system will stable for all ||Alls <
kpy and kpyr = “‘“2““ when balanced case § = 0.

The equations (29) and (30) are expressed only for the safe
area of gain or phase variation. It is related to the classical
gain and phase margins. The connection between the gain and
phase variations can be computed by,

6= COS_l ( )/2 ~+ Ymax Ymin ) (32)
¥ (Ymax + Ymin)

where ¢ € [@Pmin, Pmax] 1S the phase variation for a certain
value of ¥ € [¥min, Ymax]- Moreover, the safe area of the set
A € S (max, 6) can be rewritten as,

iOgisk 1—3
1 + amaxel disk =5

05 148
1 — amaxeledlsk -

A €S (0tmax, 8) = (33)
where Ogisr € [0, ]. The parameter § controlled the different
amount of the gain variation where positive value will give
more gain variation and otherwise. The parameter apax con-
trolled the size of disk and determined how large the gain and
phase variation that can be tolerated.

Remark 4: The disk margin is more conservative than the
classical gain and phase margin. However, it provided a high
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level of robustness. As the authors of this paper, we believe
that the system such as aircraft and autonomous vehicle
requires a high level of robustness analysis. Hence, that is
the background of our stance to use disk margin instead of
classical gain and phase margin.

C. WORST CASE GAIN

The G in the Figure 5 change to be G (J(¢)) due to LPV
system as shown in Figure 7. The dynamics interconnection
in Figure 7 can be written as follows,

¢ [ %] = A (P(1) x(1)+By (9(0) w(0) + By (9(0)) u(r)
1) = € (9(0) x(1) + Dyt (90 w(1)
+D12 (9(1)) u(t)
§(1) = Ca (90) x(0) + Doy (1)) w(@)
D2 (1)) () (34)

The A is assumed LTI system and satisfies the IQC where
A is defined by (¥, M), A € (¥, M). Figure 7 show that
the input and output signals of A are filtered by stable linear
system V. If A € (W, M) then the signal z respects the below
constraint for 7 > 0,

T

/ A0 Mz(t)dt = 0 (35)

0

The dashed block of A in Figure 7 indicated that A will
not be included for the analysis. Let w = Av is assumed as
external signal that subject to the constraint on signal z as
shown in (35). Since is LTI system then it follows F(s) A(s) =
A(s)F(s) where F(s) is any stable system. Due to w = Av
then Fw = AFv and signal z is defined as follows,

~[E A e
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Definition 3 [51]: Suppose A is LTI system and defined by
IQC such that A € (‘éIJ, M). Moreover, the symmetric matrix
"Igc 0 | | and W is defined by (36) then
A satisfies for (35) and || Al < K10C-

Lemma 3 [52]: Extended bounded real lemma.

Supposed the system in (34) is written in term of
F, (G (®(t)), A) and be well posed. Let A be an LTI where
A e (¥, M). Then, the upper bounded worst-case gain of
I1Fy (G (D)), A)lloo < €igc if and only if satisfies with the
following condition.

PO@®)=P0@) >0,1>0

is givenby M =

(o) P (1)) By (9(1)) P (9(1)) By (9(1))
B ()T P (1)) 0 0
By (0(1)T P (9(1)) 0 —e1ocl

C; @)

+1 | DI @) | M [C1 (¥@) D1y (9() D12 (9(1)) ]
D ()T

C, (0 (1)"

+——| Da @ (@)T

#10C | Dy, (9 (1)T

<0 (37)

where (o) = A @ENT P@ () + P@@)A @) +
oP (19(t), z?(t)) and g;gc is a positive real number. The
A (9(t)) is Hurwitz and the system G (J(¢)) satisfies with
conditions V& (1) € i and V&) € . The proof of
equation (37) can be seen in [52]. Therefore, the robust-
ness analysis for LPV system required to find the variables
P () = P(@)T > 0,1 > 0,and gjgc < oo that lead
the Lemma 3 feasible.

Remark 5: Lemma 3 is an extended version of Lemma 1,
which delivers the advantage that the worst-case gain met-
ric is able to analyze the robust performance under uncer-
tain conditions on the LPV system. As a result, we utilized
Lemma 1 to analyze the nominal system and Lemma 3 to
analyze the system with uncertainty.

[C2 (9()) D21 (9(1)) D2 (9(1))]

V. SIMULATION AND DISCUSSION

A. IDENTIFICATION

The vehicle type is SUV with seven seats. The linear model

vehicle dynamics at each frozen point is obtained by System

identification toolbox in Matlab. The vehicle’s mass varied
from 1820 kg (without passenger or nominal mass) to 3120 kg

(with full load) during operation. These values are called

the extreme frozen point representing the lowest and highest

vehicle’s mass during operation. Then, we have three regions
condition, as shown in Table 2. The identification can be done
with the following steps:

Step 1: We collected the input and output data. In this work,
the input data is desired acceleration, ay g5, and the
output data is the actual acceleration of the vehicles,
ay.

Step 2: The relation between input and output data are
approximated by the linear first-order model that
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FIGURE 3. Low-level controller architecture.

exposed in transfer function as shown in (38).

ax(s) kg (@)
ax,des(s) T + 176 (V@) s

Step 3: We used System identification toolbox to obtain
the parameters kg and tg. After we completed
for vehicle’s mass 1820 kg, we repeated from
Step 1 to obtain the parameters for vehicle’s mass
3120 kg.

Figure 8 shows the comparison between actual and model
response with step input at the extreme frozen point. The
model is acquired from identification fit with the actual
response as big as 84.47% and 82.49%.

From (4) and (38), the state space form of LPV system can
be rendered as follows,

(38)

ax (1) —ti;' @@y 0 07 [ax®
() | = 1 0 0 vy (1)
80 Ig 1 0 o
5! (9(1)
+ 0 ut — 6)
0

ke (0() 0 } ax(1)

0 ke |0

w@® | |0
-1
where u(t) = ay 405 and the transmission delay between ULC
and LLC, 0, is accurately modelled by the third order Padé
approximation [62].
Remark 6: The value of region 2 in Table 2 lied between
the region 1 and region 3.

B. PD CONTROLLER

The controller gains are tuned with the intention to fulfil the
ULC objective in Section II. In addition, the ACC controller
has two modes as velocity and distance tracking, which ACC
control law defined as follows,

u(s) = min (uyc(s), Usc(s))

ki (e)S
U(e)(8) = (kp,(.) + ] +(t;s) e)(s) (40)

The (o) refers to spacing control (sc) or velocity control
(vc). The controller gains in (40) are obtained based on the
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TABLE 2. Vehicle work specification.

Parameters Region 1 Region 2 Region 3
d=m 1820 1820 < ¥ <3120 3120
-2.9669
ke 1.0371 10° U+1.5771 0.6514
4.6154
T 0.4156 0 ¥+0.3316 0.4756
6 rand(0,0.1) rand(0,0.1) rand(0,0.1)
ty 1 1 1
ty 0.2 0.2 0.2
kp.e 1.5 76923 51 0.1 2.5
10
ka s 23 11'5385 ¥+0.2 3.8
10
kp ve 1.3 4'3(())477 ¥+0.516 1.86
%
ka e 0.27 —+0.088 0.4
10
e. | Velocity e
controller
) 4
i Lookup table of Switching |,
controller gains logic —
Fepse-Kise 1
Spacing e

controller

FIGURE 4. Proposed upper-level controller architecture.

linear vehicle dynamics in (39) and its values are shown in
Table 2.

C. ROBUSTNESS ANALYSIS

1) DISK MARGIN

In this part, we evaluated that the controller gains in Table 2
have sufficient margins to handle the uncertainty due to the
linear model from identification cannot perfectly figure out
the actual vehicle behavior. The disk margin will check the
stability margins at each frozen point for both ACC controller
modes.

a: DISK MARGIN ON SPACING CONTROLLER

We found that the smallest disk margin for each frozen point
in the domain of interest, V() € 1, occurred when the
vehicle’s mass is 2600 kg (region 2) as shown in Figure 9.
The magnitude gain margin is 2.89 (9.23 dB) and phase
margin is 51.9? at frequency 4.7 rad/s which can handle the
maximum system delay is around 0.19 seconds as shown
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FIGURE 6. Disk margin representation.

in Figure 10. However, these values only for gain or phase
variation. Figure 11 shows the range of gain and phase vari-
ations when vehicle’s mass is 2600 kg. It can observe that
the limit gain variation will reduce if the demand of phase
variation increases as shown in Figure 11, specifically in the
black marked point. Further details, when the phase variation
absence then the feedback loop can handle gain variation as
big as 9.23 dB. However, in the black marked point, when the
phase variation is around 42.82° then the feedback loop can
only handle gain variation as big as 5.23 dB. Furthermore,
based on Lemma 2 and Definition 2, we can find the smallest
bound of uncertainty for each frozen point in the domain
of interest, VU (t) € €21 as big as kpy = 0.4864 so that
Ao < 0.4864.

b: DISK MARGIN ON VELOCITY CONTROLLER

Same as spacing controller, the smallest disk margin for each
frozen point in the domain of interest, Vi (¢) € 21, occurred
when the vehicle’s mass is 2600 kg. The gain margin is 3.3
(10.46 dB) and phase margin is 56.6° at frequency 1.75 rad/s
which can handle the maximum system delay is around
0.56 seconds. Based on Lemma 2 and Definition 2, we can
find the smallest bound of uncertainty for each frozen point in
the domain of interest, V' (t) € 21, as big as kpy = 0.5385
so that ||All, < kpm = 0.5385.
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FIGURE 8. Comparison between actual and model with step input.
(a) vehicle’s mass 1820 kg and (b) vehicle’s mass 3120 kg.

2) WORST-CASE GAIN

Even if the disk margin evaluated stability margin at each
frozen point, it still could not ensure the stability margin of
a complete LPV system. It is because of the disk margin
analysis without considers the effect of (). Therefore, the
worst-case gain metric with IQC will analyze and evaluate the
robust performance considering the effect of (). As men-
tioned in Section IV.D, the uncertainty is represented by IQC
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FIGURE 9. Disk margin at each frozen point.

Phase margin (degrees)

so that A € (V,M) where ¥ = [ and M as defined
in Definition 3. Same as disk margin, the worst-case gain
analysis also analyzed both control modes of ACC controller.

a: WORST-CASE GAIN ON SPACING CONTROLLER

At nominal system, kjpc = 0, and |19(t)| < 00, the upper
bound of L, gain is 7.4687 based on Lemma 1. Further,
when «joc = 0.2, the upper bound of worst-case gain is
10.4954 based on Lemma 3. Figure 12 shows that the upper
bound of gain gradually raise up to kj9c = 0.3. When
kipc > 0.36, the feasible solution on Lemma 3 cannot be
found as shown in Figure 12.

Now, we consider the rate change as big as |19(t)| <
100 kg. First, we need to define the basis function required
for bounded rate change analysis in the LPV system. There
are no rules to choose the basis function despite choosing as
simple as possible due to the computation loads. In this work,
we examined three different basis functions as follows,

Ppr1 (0(2)) = Po + P19
Pya (9(1)) = Py + P10 + Poo?
Py3 (9(1)) = Py + P19 + Pro? + P! (41)

Figure 13 shows the upper bound of worst-case L, gain
under |15‘(t)| < 100 kg for three different basis functions.
Comparing with Figure 12, the feasible solution on Lemma 3
increases up to xkjgoc = 0.44 for basis function 1 and basis
function 2 while kjpc = 0.445 for basis function 3. We can
conclude that using low- and high-order basis functions are
not yielding significant improvement. For each basis func-
tion, the upper bound of L, gain gradually raises to kjoc =
0.4.

To analyze the effect of scheduled variable rate change,
we set kjpc = 0.1, and rate change varied from 25 kg to
125 kg. Figure 14 shows the upper bound of worst-case Lp
gain for different rate changes. The upper bound of worst-
case L, gain gets large when the rate changes increase for
three different basis functions.
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b: WORST-CASE GAIN ON VELOCITY CONTROLLER

On velocity controller, when kjgoc > 0.41, the feasible
solution on Lemma 3 cannot be found for unbounded rate
change,. Comparing with unbounded rate change |z9(t)| <
00, the bounded rate change |1'9(t)| < 100 kg show that the
feasible solution on Lemma 3 increases up to kjgc = 0.502
for basis function 1 and basis function 2 while k;pc = 0.509
for basis function 3. Same as spacing controller, the usage
of high order basis function brings a slightly different result.
The upper bound of worst-case L, get large when the variation
of the rate change is immense. It occurred for three different
basis functions.

Both robustness analyses, disk margin and worst-case gain,
have an upper bound of uncertainty. We can conclude that
kigc < kpy - Figure 12 and Figure 13 show that when the
upper bound of uncertainty «pc close to kpys then the upper
bound of worst-case L gain led to infinity. It is indicated by
Lemma 3 that it fails to find a feasible solution.

Remark 7: In robustness analysis, the uncertainty, A,
is modeled as multiplicative and placed in the system’s input.
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FIGURE 13. Worst-case gain with different basis function under bounded
vehicle’s mass rate.

D. SIMULATION

In the last step, we implemented our ACC controller through
Matlab/Simulink integrated with PreScan. In this work,
we assumed that the AVs operated as self-driving taxis for
ride-sharing. Hence, several phases in the simulation scenario
will be explained in the following.

1. In the beginning, the vehicle is empty (1820 kg) and
goes to pick up the passengers.

2. After picking up the passengers, the vehicle’s mass
changed to 2150 kg.

3. When arrived at the passenger’s destination, the vehi-
cle’s mass back to 1820 kg and goes to pick up other
passengers.

4. Again, after picking up the passengers, the vehicle’s
mass changed to 2950 kg.

5. When arrived at the passenger’s destination, the vehi-
cle’s mass back to 1820 kg and pick up other passen-
gers.
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FIGURE 15. Velocity of the host vehicle using PD gain scheduling.

Table 3 shows several settings and constraints in this sce-
nario.

1) ACC WITH PD GAIN SCHEDULING
The results of ACC controller using PD gain scheduling are
explained in the following.

a: PHASE 1

The host vehicle with an initial velocity of 20 m/s and mass of
1820 kg headed to passenger’s location as shown in Figure 15.
There was a vehicle, called actor 1, in front of the host vehicle
with relative distance as far as 85 meters as shown in Fig-
ure 16. The legend 6,1 in Figure 16 indicated the relative
distance between host vehicle and actor 1 where is calculated
based on (3). Therefore, we can observe that host vehicle in
the CC mode. At this mode, our controller shows a satisfy
velocity tracking performance in Figure 15. It indicated with
the host vehicle’s velocity is able to track reference velocity.
Later on, actor 1 decelerated from velocity 35 m/s to 20 m/s.
At 10 seconds in Figure 15, the host vehicle changed its mode
into spacing control where the host vehicle started to decel-
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TABLE 3. Simulation settings.

Parameters Value Unit
B, max 0-150 bar
T max 0-100 %
u,u -6,2 ms?
XX -15,1.5 ms>
Simulation rate 100 Hz
150 T T T T
Phase 1 Phase 2 Phase 3 Phase 4 Phase 5
. 100
£
o Osate
é — Jrel 1
‘E hrel 2
o 50 _5re| 3
—lg 4
/ /_\ / /‘\ e 5
0 h . . . n
0 50 100 150 200 250 300

Time (s)

FIGURE 16. Distance tracking of the host vehicle using PD gain
scheduling.

erate as a means to maintain a safe distance. At this mode,
our controller objective is distance tracking which previously
defined in (4). As a result, the host vehicle’s velocity does not
track the reference velocity anymore. We can deduce that the
error velocity between reference velocity and host vehicle’s
velocity is getting bigger when the host vehicle changed into
spacing control mode and otherwise. It is because both modes
have a different objective as defined in (2) and (4). Figure 16
shows that the host vehicle is able to maintain a safe distance
even if the actor 1 changed its velocity. Around 45 seconds,
the host vehicle decelerated to 0 m/s due to its arrived at
passenger’s location and ready to carry passengers to another
location.

b: PHASE 2

After picked up passengers, the vehicle’s mass changed to
2150 kg. Need to be highlighted, the vehicle in front of
the host vehicle changed to be actor 2. Actor 1 in phase
1 has left the host vehicle far away because the host vehicle
needs to stop to pick up the passengers. At the beginning of
phase 2, the host vehicle was in the spacing control mode.
Then the actor 2 accelerated to its velocity 35 m/s. Figure 15
and Figure 16 show during phase 2 that the host vehicle
maintains its distance during spacing control mode, and its
velocity stays within the reference velocity during CC mode.
At around 104 seconds, the host vehicle decelerated to O m/s
due to its arrival at the passenger’s destination and ready to
pick up other passengers.

c: PHASE 3

Bear in mind, the vehicle’s mass back to 1820 kg after
phase 2. Similar to phase 2, the vehicle in front of the host
vehicle changed to be actor 3. Actor 3 accelerated in the
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FIGURE 17. Evolution distance error of the host vehicle using PD gain
scheduling.

beginning then moved with a constant velocity as big as
20 m/s. On the other hand, the host vehicle started with
0 m/s velocities so that the relative distance between the host
vehicle and actor 3 is big, as shown in Figure 16. As a result,
the host vehicle was in CC mode initially and changed after
a few seconds into spacing control mode to maintain a safe
distance. Around 160 seconds, the host vehicle decelerated to
0 m/s due to its arrival at the passenger’s location and ready
to carry passengers to another location.

d: PHASE 4

Again, after picking up passengers, the vehicle’s mass
changed to 2950 kg, and the vehicle in front of the host vehi-
cle changed to actor 4. In this phase, the host vehicle and actor
4 have the same velocity at the beginning, as big as 0 m/s,
and separate as far as 25 meters, as shown in Figure 15 and
Figure 16. In this phase, the host vehicle is fully in spacing
control mode. Actor 4 performs more often acceleration and
deceleration than previous actors. We can observe that the
host vehicle is able to maintain a safe distance, as shown in
Figure 16. However, there is a small magnitude (red circle)
when actor 4 does hard braking. It is because the vehicle with
ACC system using a time gap 1 second. The time gap 1 second
in this work is too small and makes velocity oscillation when
the preceding vehicle does hard braking. Commonly, time
gap for vehicle ACC-based in range 1-2 seconds. Hence, add
more time gaps can solve this issue. Another way, we can
use the CACC system where it only requires a small time gap
of less than 1 second albeit needs a communication device
to communicate with other vehicles. At around 240 seconds,
the host vehicle decelerated to O m/s due to its arrival at
passenger’s destination and ready to pick up other passengers.

e: PHASE 5
In this phase, the host vehicle performs similar to
phases 1 and 3.

Overall, Figure 15 and Figure 16 show that our switching
strategy, as defined in (40), successfully generates a smooth
transition between CC and spacing control mode. Figure 17
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FIGURE 19. Evolution of controller gains.

shows the evolution distance error. We can observe that dis-
tance error converges close to zero during spacing control
mode. The legend ey 1 in Figure 17 can be calculated using
equation (4) respect to actor 1.

Figure 18 shows the vehicle’s mass estimation and the
error estimation. The RLS with the forgetting factor algo-
rithm succeeds in estimating the vehicle’s mass with small
error estimation and time convergence when the vehicle’s
mass is changed. Figure 19 shows the evolution of controller
gains. The controller gains adaptively changed based on the
vehicle’s mass during ACC operation.

Remark 8: We stated again that this work is not concen-
trated on vehicle mass estimation. We focused on developing
the ACC controller using the gain scheduling technique and
analyzed the controller robustness under the LPV system. The
vehicle’s mass estimation is required because we assumed
that the vehicle’s mass varied during ACC operation. Further
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FIGURE 20. Velocity of the host vehicle using fixed controller gains.

detail about the vehicle’s mass estimation can be referred to
in [59], [60].

Remark 9: In this paper, the RLS with the forgetting fac-
tor is used to estimate the vehicle’s mass. In Figure 15,
the vehicle will stop to pick up or drop passengers. In this
period, we reinitialized the estimation algorithm to improve
the estimation accuracy and convergence time.

2) ACC WITH FIXED PD CONTROLLER GAIN

Herein, the fixed controller gains are set as shown in Table 3
when the vehicle’s mass is 1820 kg (without passenger). As a
result, Phase 1 and Phase 3 in Figure 20 will show similar
to Phase 1 and Phase 3 in Figure 15. However, Phase 2 and
Phase 4 will be completely different due to the vehicle’s mass
being changed.

a: PHASE 2

After picked up passengers, the vehicle’s mass changed to
2150 kg. The vehicle in front of the host vehicle changed
to be actor 2. The host vehicle was in the spacing control
mode, then changed into CC mode when actor 2 accelerated.
It seems all things are similar to Phase 2 using gain schedul-
ing. However, Figure 21 show the performance tracking when
the host vehicle in spacing control mode degraded (red circle)
compared Figure 16. The error is around 7 meters, as shown
in Figure 22. The negative sign in Figure 22 indicates that
relative distance is smaller than safe distance. This behavior
leads to host vehicles having crash possibilities with other
vehicles. At around 104 seconds, the host vehicle decelerated
to 0 m/s due to its arrival at passenger’s destination and ready
to pick up other passengers.

b: PHASE 4

The vehicle’s mass changed far from the nominal (without
passenger) to be 2950 kg, and the vehicle in front of the
host vehicle changed to be actor 4. Figure 21 show that the
host vehicle has poor tracking performance and leads to crash
with actor 4. It is proven in Figure 21 where 84 4 value is
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FIGURE 22. Evolution distance error of the host vehicle using fixed
controller gains.

zero. Figure 22 show the e, 4 value is less than zero which is
violated the spacing control mode objective as defined in (4).

Both ACC simulations for different controller settings such
as PD gain scheduling and fixed PD controller gain are done
by the same treatment including scenario, sensor settings, and
simulation settings. The only difference is the controller gain
on PD gain scheduling varied depend on the vehicle’s mass
during the ACC operation. Conversely, fixed PD controller
gain used fixed nominal controller gain at vehicle’s mass
1820 kg during the ACC operation. The host vehicle with
PD gain scheduling has not degraded performance under
different vehicle’s mass for both ACC modes. However,
the contrast results are shown by the host vehicle with fixed
PD controller gain where the host vehicle has crashed with
actor 4 in phase 4. Moreover, the simulation confirmed that
the host vehicle with PD gain scheduling can handle larger
uncertainty than the fixed PD gain controller. It appropriated
with robustness analysis, either disk margin or worst-case
gain, that confirmed controller gain is robust for several
frozen points and vehicle’s mass rate changes.

VI. CONCLUSION
This paper focuses on the passenger vehicle type that operates
like a self-driving taxi with ACC features under varying
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vehicle mass. As a result, the LPV system is adopted instead
of the LTI system. The simulation is done by joint PreScan
with Matlab/Simulink. PreScan provided the highly non-
linear vehicle, scenario, and sensor model while control
algorithm, decision making, and target tracking are built in
Matlab/Simulink. Due to the LPV system based on the linear
model which then an identification method is utilized. A PD
gain scheduling is designed based on those linear models.
After that, disk margin is used to analyze the stability margin
of the LPV system at each frozen point. Moreover, the robust
performance margin of the LPV system is measured by the
worst-case gain where the uncertainty is modeled by IQC.
The superior performance of PD gain scheduling is shown
by comparing it to PD fixed-gain controller through sim-
ulation. In the future, we will investigate and analyze the
vehicle with cooperative-ACC feature under varying time
gaps and vehicle mass with addressed the string stability
criteria.
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