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ABSTRACT Direction of arrival (DOA) estimation, as the main technology of passive radio monitoring
and positioning, has been deeply investigated. However, the DOA for distributed sources is challenging
to estimate in environments with impulsive noise. Although many methods have been proposed for DOA
estimation,most of them assume that array output signals containGaussian noise. Therefore, the performance
of these methods is often poor for alpha-stable distributed impulsive noise. Furthermore, subspace-based
DOA estimation methods for distributed sources require a two-dimensional (2D) peak search, which
increases the consumption of system computing resources. In this paper, a Q-function-based kernel function
is proposed, and its properties are derived. On this basis, a novel DOA estimation method is proposed for
coherently distributed (CD) sources in impulsive noise. To reduce computational complexity, a Lagrangian
quadratic optimization function is derived by approximating the generalized arraymanifold of the CD source.
By solving this optimization function, a 2D peak search can be reduced to several one-dimensional (1D)
peak searches. The simulation results illustrate that the accuracy and robustness of the proposed method
outperform those of existing methods.

INDEX TERMS DOA estimation, distributed sources, impulsive noise, alpha-stable distribution.

I. INTRODUCTION
Considerable progress has been made in direction of
arrival (DOA) estimation, an important research field of pas-
sive radio monitoring and positioning, in recent decades,
driven by the needs of military and civil fields. Conse-
quently, numerous branches of DOA estimation have been
derived for different engineering and technical fields [1]–[4].
As a milestone of super-resolution DOA estimation, Schmidt
introduced the subspace technology into DOA estimation
and proposed the multiple signal classification (MUSIC)
algorithm [5]. To reduce the computational complexity of
MUSIC due to spectral peak search, Roy proposed the
estimating signal parameter via rotational invariance tech-
niques (ESPRIT) algorithm [6]. Since the rotation invari-
ance of the signal subspace is utilized, ESPRIT avoids a
peak search, thereby improving efficiency. Further, many
improved algorithms based on MUSIC and ESPRIT have
been proposed in [7]–[11]. Additionally, these methods focus
on the ‘‘point source’’, which assumes that there is only a
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direct wave with concentrated energy between the source and
the array without angular spread [12]–[14]. In most scenar-
ios, the point source model is reasonable and can produce
correct DOA estimation results. Nevertheless, as the space
electromagnetic environment becomes increasingly complex,
multipath propagation generally exists in the process of sig-
nal propagation [15]. Many realistic examples, in which the
point source assumption is unreasonable, such as undersea
echo detection and localization of acoustic sources by a
microphone array, have been identified. For subspace-based
algorithms, noise subspace is occupied by the signal sub-
space multipath propagation results. In other words, the noise
subspace cannot be effectively obtained. This disadvantage
causes the performance of the MUSIC to degrade signifi-
cantly or even makes it invalid.

To avoid this drawback, researchers have proposed a spa-
tially distributed source model. From the perspective of time-
varying signal changes, distributed sources are classified into
coherently distributed sources and incoherently distributed
sources. If the signal components of a source incident to the
receiving array through multiple paths are fully correlated,
the source is a coherently distributed (CD) source. In contrast,
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if these components are uncorrelated, the source is an inco-
herently distributed (ID) source.

By extending the subspace technology to the distributed
source model, [17] proposed the distributed signal parameter
estimator (DSPE) to realize DOA estimation. Theoretically,
the DSPE can be considered an extension of MUSIC for dis-
tributed sources. To estimate DOAs, the DSPE and MUSIC
need to perform a two-dimensional (2D) and one-dimensional
(1D) peak search, respectively. Therefore, the execution effi-
ciency of the DSPE is much lower than that of MUSIC.
This disadvantage limits the application of the DSPE in
practice. Bengtsson proposed a low-complexity root-MUSIC
algorithm [15], which uses two point sources to approximate
a distributed source and uses low-complexity algorithms to
estimate the DOAs of the two point sources. The mean of
the DOAs of the two point sources is considered the center
DOA. Zoubir proposed a robust Capon beamforming method
for ID sources [18]. This method calculates the autocorre-
lation matrix of the received signals and searches peaks to
estimate the center DOA. References [19] proposed a beam-
forming algorithm, which performs Cholesky decomposition
on the autocorrelation matrix of the distributed source sig-
nals and applies peak search to estimate the center DOA.
By simplifying the steering vector of the CD source to the
Schur-Hadamard product between the steering vector of the
point source and the real vector and deriving the rotation
invariant structure of the subarrays, [20] proposed a gener-
alized ESPRIT algorithm for DOA estimation. Distributed
sources have also been addressed in [21]–[27].

In practical applications and theoretical analysis, it is
usually assumed that a wireless channel contains Gaussian
noise. However, studies have revealed that some natural
or human-made noise is typically impulsive, for example,
low-frequency atmospheric noise, noise due to sea waves
and mountain discontinuities, and underwater acoustic sig-
nals [28]. In this case, impulsive noise lacks a finite covari-
ance; therefore, the performance of subspace-based DOA
estimation algorithms [4], [29]–[31] degrades significantly
and cannot produce reasonable results in impulsive noise
environments. In contrast to Gaussian noise, the probabil-
ity density function (PDF) of the alpha-stable distribution
has heavy tails, so it is suitable for describing impulsive
noise. Many theories have been proposed to improve the
performance of DOA estimation in impulsive noise environ-
ments. Among them, fractional lower-order statistics (FLOS)
[32]–[34] and correntropy [35], [35]–[38] are the most rep-
resentative. Based on these theories, fractional lower-order
moment-based MUSIC (FLOM-MUSIC) [39], phased
fractional lower-order moment-based MUSIC (PFLOM-
MUSIC) [40], correntropy-based correlation MUSIC
(CRCO-MUSIC) [41], and generalized autocorrentropy-
based DSPE (GCO-DSPE) [42] algorithms are derived.
FLOM-MUSIC and PFLOM-MUSIC adopt the fractional
exponential to ensure the boundedness of the covariance of
sample data. CRCO-MUSIC and the GCO-DSPE use the
attenuation characteristics of the exponential operation to

effectively eliminate the influence of impulsive noise and
improve the accuracy and robustness of DOA estimation.
However, the selection of the exponential of FLOS and the
kernel size of the correntropy requires prior knowledge of
arrays and signals, which is not easy to obtain. Another
disadvantage is that to ensure the accuracy of DOA esti-
mation, these algorithms require a large amount of sample
data. Therefore, these algorithms are subject to considerable
restrictions in practice.

In this paper, the estimates of the spread angle and central
DOA for distributed sources in impulsive noise are investi-
gated. The main contributions of this work are summarized
as follows:
• To improve the accuracy and effectiveness of DOA esti-
mation of CD sources under impulsive noise conditions,
a new Q-function-based impulsive noise suppression
operator is deduced, and its properties are analyzed and
proved. Further, a novel DOA estimation method is pro-
posed by combining this operator with the DSPE.

• Since the proposed algorithm requires a 2D peak search
to obtain the estimates of the spread angle and cen-
tral DOA, which entails high computational complexity,
this paper approximates the generalized array manifold
of CD sources and constructs a Lagrangian quadratic
optimization function. By solving this quadratic opti-
mization function, the estimates of the spread angle
and central DOA are simplified as a 1D peak
search.

This paper is organized as follows: The alpha-stable
distribution, signal model of the CD source, and DSPE
algorithm are presented in Section II. A new Q-function-
based impulsive noise suppression operator is deduced in
Section III based on the characteristics of the Q-function,
and its properties are analyzed and proved. Further, to reduce
the computational complexity of the proposed algorithm,
in Section IV, we approximate the generalized array mani-
fold of CD sources, and the 2D peak search is transformed
into several 1D peak searches via quadratic optimization.
Section V presents simulation results that verify the perfor-
mance of different algorithms, and Section VI gives some
conclusions.

II. PROBLEM FORMULATION
A. SIGNAL MODEL
The multipath scattering energy of the distributed source
presents a certain spatial distribution around the central DOA.
Therefore, the distributed source can be regarded as a beam
of densely distributed point sources in space. Considering L
distributed sources incident into a uniform linear array (ULA)
with M elements, and assuming that the scattering point
source is continuous, the array output observation can be
expressed as

x(t) =
L∑
i=1

∫
θ∈2

a (θ) si
(
θ,ψ i, t

)
dθ + n (t) (1)
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where si
(
θ,ψ i, t

)
is the angular signal density of the

ith source, ψ i involves the spread angle and central DOA,
a(θ ) =

[
1, e−j2πd/λ sin(θ), · · · , e−j2π (M−1)d/λ sin(θ)

]T
is the

steering vector of the ULA, n (t) is the noise vector, and the
range of the observation angle is 2 = [−π/2, π/2].
For CD sources, the angular signal density can be

represented as

si
(
θ,ψ i, t

)
= χ

(
θ,ψ i, t

)
ζi(t) (2)

where χ
(
θ,ψ i, t

)
is a complex-valued deterministic angular

signal density function, and ζi is a random variable. Eq. (1)
can be rewritten as

x (t) =
L∑
i=1

ζi(t)b
(
ψ i
)
+ n (t) (3)

in which, b(ψ i), namely, a generalized steering vector,
is given by

b(ψ i) =
∫
θ∈2

a (θ)χ
(
θ,ψ i

)
dθ (4)

where i = 1, 2, · · · ,L.
As expressed by Eq. (4), the generalized steering vector

b(ψ i) is the integral of a(θ ) over θ .
If we can further define the generalized array manifold

matrix as B(ψ) = [b(ψ1), b(ψ2), · · · , b(ψL)], under the
assumption that the noise and signal are uncorrelated, the cor-
relation matrix of x(t) is given by

R = E
{
x(t)xH (t)

}
= BE

{
s(t)sH (t)

}
BH + Rnn

= BΓBH + Rnn = Rss(ψ)+ Rnn (5)

where Rss(ψ) is a noise-free correlation matrix, and Rnn is
noise correlation matrix. Γ will be diagonal [43] and its
(i, j)th entry is defined as E{ζi(t)ζj∗(t)}.
If we define the angular cross-correlation kernel (ACCK)

as

ρij(θ, θ ′,ψ i,ψ j) = E[si
(
θ,ψ i

)
s∗j (θ

′,ψ j)] (6)

then Rss(ψ) can be re-expressed as

Rss (ψ) =
L∑
i=1

L∑
j=1

∫
θ∈2

∫
θ ′∈2

a (θ)

×ρij
(
θ, θ ′,ψ i,ψ j

)
aH
(
θ ′
)
dθ ′dθ (7)

Assume that the array output signals from different CD
sources are uncorrelated; then, the ACCK can be simplified
to

ρij
(
θ, θ ′,ψ i,ψ j

)
= δij · µi

(
θ, θ ′,ψ i

)
(8)

where δij denotes the Kronecker delta and
µi
(
θ, θ ′,ψ i

)
= E[si

(
θ,ψ i

)
s∗i
(
θ ′,ψ i

)
] (9)

is the angular autocorrelation kernel (AACK) of the
ith source. Thus, Eq. (7) can be rewritten as

Rss (ψ) =
L∑
i=1

∫
θ∈2

∫
θ ′∈2

a (θ)µi
(
θ, θ ′,ψ i

)
aH
(
θ ′
)
dθ ′dθ

(10)

B. THE DSPE ALGORITHM
Consider conventional super-resolution subspace-based tech-
niques, where the covariance matrix of the array output sig-
nals can be decomposed into noise and signal subspaces via
singular value decomposition (SVD). If we denote the noise
subspace and signal subspaces as Un and Us, respectively,
then, the 2D space spectrum of the distributed source can be
expressed as

P(ψ̂)=
1∫

θ∈2

∫
θ ′∈2

a (θ)Unµ∗ (θ, θ ′,ψ)UH
n aH (θ ′) dθ ′dθ

(11)

The spread angle and central DOA can be estimated by the
following criterion.

ψ̂ = argmax
ψ

1

tr
[
UH
n B(ψ)Un

] (12)

where tr(·) denotes the trace of a matrix, and B(ψ) can be
expressed as

B(ψ) =
∫
θ∈2

∫
θ ′∈2

a (θ)µ∗
(
θ, θ ′,ψ

)
aH
(
θ ′
)
dθ ′dθ (13)

For CD sources, the 2D spatial spectrum can be expressed
as

P =
1∥∥bH (ψ)Un∥∥2 = 1

bH (ψ)UnUH
n b(ψ)

(14)

The criterion for estimating the angular spread and central
DOA can be represented as

ψ̂ = argmax
ψ

1
bH (ψ)UnUH

n b(ψ)
(15)

This algorithm is referred to as the DSPE [17].
However, to estimate the unknown parameter vector ψ ,

a 2D peak search must be performed, which leads to high
computational complexity and additional economic resource
consumption.

In practical applications, since the joint probability density
function is unknown and only a finite number of data samples
are available, R only can be obtained by employed N data
samples as follows

R̂ =
1
N

N∑
t=1

x(t) xH (t) (16)

C. ALPHA-STABLE DISTRIBUTION
The alpha-stable distribution, whose PDF has heavy tails, is a
continuous probability distribution developed by Paul Pierre
Levy [44]. As an effective theoretical tool, the alpha-stable
distribution is usually applied to describe the impulsive noise.
The thickness of the tails of the alpha-stable distribution can
be controlled via the parameter α; thus, the distribution is a
flexible modeling tool.

Alpha-stable distribution is usually described by its char-
acteristic function [45], [46]

ϕ(u) = exp
{
jµu− γ |u|α

[
jβω(u, α)sgn(u)+ 1

]}
(17)
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where

sgn(u) =


1 u > 0
0 u = 0
−1 u < 0

(18)

and

ω(u, α) =


2
π
log |u| α = 1

tan
(πα

2

)
α 6= 1

(19)

where 0 < α ≤ 2 is the characteristic exponent.−1 ≤ β ≤ 1
is the symmetric parameter used to determine the sign and
degree of asymmetry. −∞ < µ < +∞ is the location
parameter. In particular, if β = 0, this distribution is referred
to as the symmetric alpha-stable (SαS) distribution, which is
symmetric about µ. γ > 0 is the dispersion, which can be
applied to measure the dispersion of sample data. The alpha-
stable distribution has two important properties that have a
crucial role in the modeling of uncertainty [28].

1) Generalized central limit theorem: Let Y1,Y2, · · · ,
YN be independent and identical distribution (i.i.d.)
random variables and N → ∞, Y is the limit in the
distribution of normalized sums of the form

Sα =
Y1 + Y2 + · · · + YN

aN
− bN (20)

if and only if the distribution of Y is stable. Further,
if {Yi}Ni=1 have finite variance and are i.i.d., the limit
distribution is Gaussian.

2) Stability property: Let Y1 and Y2 be i.i.d. random
variables with the same distribution as Y ; for arbitrary
constants d1 and d2, there are constants a1 and a2 such
that

d1Y1 + d2Y2
1
= a1Y + a2 (21)

Eq. (21) can be interpreted as a1Y+a2 and d1Y1+d2Y2
have the same distribution.

Fig. 1 shows the comparison of alpha-stable distributed
impulsive noise and Gaussian noise. Distinct spikes in the
impulsive noise are observed, but the Gaussian noise fluctu-
ates within a small range of the mean value.

III. PROPOSED SOLUTION TO ADDRESS IMPULSIVE
NOISE
Since the impulsive noise lacks a finite covariance, the per-
formance of the super-resolution subspace-based DOA esti-
mation method will be severely degraded, and reasonable
estimation results cannot be obtained. Therefore, this section
focuses on suppressing the impulsive noise of array output
signals and improving the accuracy of DOA estimation for
CD sources.

A. Q-FUNCTION AND ITS PROPERTIES
Considering the standard normal random variable X , the
Q-function [47] Q(x) can be given by

P(X > x) = Q(x) (22)

FIGURE 1. Comparison of impulsive noise and Gaussian noise.

Formally, the Q-function is also usually expressed in the
form of the following integral

Q(x) =
1
√
2π

∫
+∞

x
exp

(
−
t2

2

)
dt (23)

Further, the Q-function can be calculated by the error
function

Q(x) =
1
√
π

∫
+∞

x/
√
2
exp(−t2)dt

=
1
2

[
1− erf

(
x
√
2

)]
(24)

where erf(·) is the error function.
It can be deduced that the domain of the Q-function is

(−∞,+∞), and the range is [0, 1]. Therefore, if x con-
tains outliers (impulsive noise), the Q-function can map the
amplitude of the sample data to the limited interval [0, 1],
which means that the Q-function can suppress impulsive
noise. However, from the perspective of signal parameter
estimation theory, the impulsive noise suppression effect of
the Q-function also has shortcomings: for negative sample
data with large outliers, the outputs of the Q-function are
nearly 1, and the outputs of the Q-function corresponding
to small negative sample data are nearly 0. In this case,
the characteristics of the effective signals contained in the
sample data cannot be reasonably shown. The Q-function is
asymmetric: if the moduli of two sample data are equal but
their signs are opposite, and after the Q-function is applied,
the values of the data are not equal. This result will affect the
performance of parameter estimation.

B. Q-FUNCTION-BASED KERNEL FUNCTION
Considering that the Q-function has the ability to suppress
impulsive noise, this paper expands the Q-function as the
Q-function-based (QFB) impulsive noise suppression oper-
ator. The QFB operator is defined by

fQFB(x) =
2
√
2π

∫
+∞

h(x)
exp

(
−
t2

2

)
dt (25)
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Inspired by the Hampel identifier [48], in Eq. (25), h(x) is
expressed as |x|

πmed(|x|) , and med(·) is the median operator.

Additionally, we list eight main properties of the QFB
operator.

(1) The QFB operator is an even function symmetric with
respect to x = 0, and it reaches the maximum at x = 0.
(2) The QFB operator is bounded: 0 < fQFB(x) ≤ 1.
(3) The QFB operator is a kernel function.
proof: According to property (2), fQFB(x) is bounded,

so it is a positive definite function. Furthermore, from prop-
erty (1), we know that fQFB(x) is symmetric. Therefore,
fQFB(x) is a kernel function that is referred to as the QFB
kernel. �
(4) Consider that X (t) is a random process, then

C(t1, t2) = E{fQFB(X (t1)− X (t2))}

= E

{
2
√
2π

∫
+∞

|X (t1)−X (t2)|
πmed(|X (t1)−X (t2)|)

e−
t2
2 dt

}
(26)

is a reproducing kernel.
proof: Since fQFB(X (t1)− X (t2)) is symmetric, C(t1, t2)

is also a symmetric function. Moreover, since fQFB(X (t1) −
X (t2)) satisfies the positive definite condition, for any set of
real numbers {d1, d2, · · · , dn} that are not all zero

n∑
i=1

n∑
j=1

didjfQFB(Xi(t1)− Xj(t2)) > 0 (27)

Because the strictly positive definite function for two ran-
dom variables is greater than zero,

E

 n∑
i=1

n∑
j=1

didjfQFB(Xi(t1)− Xj(t2))

 > 0

⇒

n∑
i=1

n∑
j=1

didjE
[
fQFB(Xi(t1)− Xj(t2))

]
=

n∑
i=1

n∑
j=1

cicjC(t1, t2) > 0 (28)

Therefore, C(t1, t2) satisfies not only positive definiteness
but also boundedness. According to the Moore-Aronszajn
theorem [49], for each real symmetric positive definite func-
tion of two real-valued random variables, there is a unique
Hilbert space with the kernel function as the reproduc-
ing kernel [50], [51]. Therefore, C(t1, t2) is a reproducing
kernel. �

(5) Let X and Y be two random variables; C(X ,Y ) is a
second-order statistic of the mapped feature space data.

proof: For the QFB kernel, we can obtain

C(X ,Y ) = E[ϕT(X ), ϕ(Y )] (29)

where ϕ(·) denotes a nonlinear mapping, which is induced by
the QFB kernel.

Further analysis shows that

C(X ,Y ) = fQFB(0)− E[fQFB(X − Y )] > 0 (30)

We can obtain a mean square cost function induced by the
QFB kernel in the feature space

J (X ,Y ) =
1
2
E
[
‖ϕ(X ) − ϕ(Y )‖2

]
(31)

Let N sample data {(xn, yn)}Nn=1 be subject to the joint
probability density fXY , and un = xn − yn. The estimate of
J (X ,Y ) can be written as

Ĵ (X ,Y ) = fQFB(0)− E[fQFB(X − Y )]

= fQFB(0)−
1
N

N∑
n=1

fQFB(xn − yn)

= fQFB(0)−
1
N

N∑
n=1

fQFB(un) (32)

It can be deduced that J (X ,Y ) is concave. Notably, J (X ,Y )
can be applied for adaptive filtering and matrix low-rank
approximation in impulsive noise environments. �
(6) If we define u = |x| / [πmed(|x|)], then the QFB

operator can be represented as a continued fraction

fQFB(x) =
e−u

2

2
√
π

(
1
u+

1/2
u+

1
u+

3/2
u+
· · ·

)∣∣∣∣
u= |x|

πmed(|x|)

(33)

By truncating the second item in Eq. (33), an upper bound
can be expressed as

fQFB(x) =
πmed(|x|)e

−

[
|x|

πmed(|x|)

]2
√
π |x|

(34)

(7) Since the calculation of the QFB operator involves an
integral operation, which has high computational complexity,
in practical applications, the following approximate method
can be employed

fQFB(x) ≈
πmed(|x|)e

−

[
|x|

√
2πmed(|x|)

]2
2
√
2π
√
[|x|2 + πmed(|x|)]2

(35)

(8) Let X be a random variable; the expression X · fQFB(X )
is bounded.

proof:

X · fQFB(X ) =
2X
√
2π

∫
+∞

u
e−

t2
2 dt

=

√
2
√
π
X

−√2π erf(
√
2|X |
2πu )

2
+

√
2π
2


= −X

[
erf(

√
2X

2πu
)− 1

]
<∞ (36)

where u = |x| / [πmed(|x|)]. Therefore, X · fQFB(X ) is
bounded.

Furthermore, if X · fQFB(X ) is regarded as a new ran-
dom variable obtained by the weighting between the random
variable X and a factor related to the statistical characteris-
tics of X , this new random variable is bounded. Therefore,
this new random variable can be utilized in subspace-based
parameter estimation methods. �
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C. QFB-DSPE ALGORITHM
Since the alpha-stable distributed random variables lack a
finite variance, the performance of subspace-based DOA esti-
mation algorithms will be greatly affected. Therefore, a novel
QFB-based DOA estimation algorithm, which is referred to
as the QFB-DSPE, is proposed by extending the DSPE from
Gaussian noise to impulsive noise.

To realize DOA estimation by subspace technology,
the correlation matrix of the array output signals must be
constructed. However, if the signals contain alpha-stable
distributed impulsive noise, the correlation matrix will be
unbounded, which will seriously reduce the accuracy and
reliability of DOA estimation. To avoid this disadvantage,
an M × M pseudo-correlation matrix R is proposed, and its
(i, j)th entry can be written as

Rij = E{fQFB(xi − x∗j )xix
∗
j }

= E

2xix∗j
√
2π

∫
+∞

|xi−x
∗
j |

πmed(|xi−x
∗
j |)

e−
t2
2 dt

 (37)

Furthermore, to better identify and suppress impulsive
noise, Eq. (37) can be rewritten as

Rij = E

2xix∗j
√
2π

∫
+∞

|xi|
πmed(|xi|)

|x∗j |

πmed(|x∗j |)

e−
t2
2 dt

 (38)

where xi and xj are the ith component of x and jth component
of x, respectively.

The implementation procedures of the QFB-DSPE are
expressed as follows:

1) Compute theM ×M matrix R̂ based on Eq. (38).

R̂ij =
1
N

N∑
n=1

2xi(n)x∗j (n)
√
2π

∫
+∞

|xi(n)|
πmed(|xi(n)|)

|x∗j (n)|

πmed(|x∗j (n)|)

e−
t2
2 dt


(39)

2) Perform SVD on R̂ to obtain the signal and noise
subspaces.

3) Construct the 2D spatial spectrum of the QFB-DSPE in
Eq. (61).

4) Search the 2D local peaks and obtain the estimates of
the spread angle and central DOA.

IV. A FAST PEAK SEARCH METHOD
From the perspective of algorithm execution efficiency, a 2D
peak search requires considerable computing resources and
has high complexity. The fourth step of the QFB-DSPE algo-
rithm requires a 2D peak search, which limits the application
of the QFB-DSPE algorithm in situations where real-time
requirements are high. Therefore, this section derives a fast
method to obtain the spread angle and central DOA for CD
sources.

A. PROPOSED SOLUTION FOR THE FAST PEAK SEARCH
According to the spatial structure of the distributed source,
as shown in Fig. 2, the energy of multipath signals exists

FIGURE 2. Spatial structure of the distributed source.

in the spatial area with the central DOA ϑ as the center
and spread angle σ as the radius. Further, the energy of
multipath signals follows a certain distribution in this area,
and the multipath signals outside this area do not contribute
to the DOA estimation of the distributed source. Therefore,
the deterministic angular signal density function in Eq. (2) is
described as a unimodal conjugate symmetric function, which
is always modeled as a Gaussian distribution or uniform dis-
tribution. If the deterministic angular signal density function
is defined as χ (θ − ϑ), then χ (θ − ϑ) = χ (ϑ − θ). That is,
the deterministic angular signal density function is symmetric
about ϑ .
Assume that the deterministic angular signal density be

modeled as a uniform distribution

χ (θ − ϑ) =


1
2σ

|θ − ϑ | ≤ σ

0 |θ − ϑ | > σ
(40)

Then, [b (ψ)]m can be computed by Eq. (4):

[b (ψ)]m =
∫
θ∈2

a (θ)χ (θ,ψ) dθ

=
1
2σ

∫ ϑ+σ

ϑ−σ

e−j
2πd
λ

(m−1) sin(θ)dθ (41)

For a small σ , that is, the angular spread is small, [b (ψ)]m
can be obtained in a straightforward manner [17] by

[b (ψ)]m ≈ e−j
2πd
λ

(m−1) sin(ϑ) sin [σ(m− 1)]
σ(m− 1)

(42)

The generalized steering vector can be rewritten as

b (ψ) = b(ϑ, σ ) =
[
1,

sin(σ )
σ

e−j
2πd
λ

sin(ϑ),

. . . ,
sin[σ (M − 1)]
σ (M − 1)

e−j
2πd
λ

sin(ϑ)(M−1)
]T
(43)

Let

h(σ ) =
[
1,

sin(σ )
σ

, · · · ,
sin[σ (M − 1)]
σ (M − 1)

]T
(44)
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The generalized steering vector b(ϑ, σ ) has the following
form

b(ϑ, σ ) =

 a0(ϑ) . . .

aM−1(ϑ)

 ·
 h0(σ )

...

hM−1(σ )


= diag(a(ϑ))h(σ ) (45)

where diag(·) denotes a diagonal matrix.
By substituting Eq. (45) into Eq. (14) and according to

[52], [53], the 2D spatial spectrum of the CD source can be
expressed as

P(ϑ, σ ) =
1[

diag(a(ϑ))h(σ )
]HUnUH

n diag(a(ϑ))h(σ )
(46)

Eq. (46) can be further rewritten as

P(ϑ, σ ) =
1

hH (σ )
[
diag(a(ϑ))

]HUnUH
n diag(a(ϑ))h(σ )

(47)

Let

Q(ϑ) =
[
diag(a(ϑ))

]HUnUH
n diag(a(ϑ)) (48)

Therefore, Eq. (46) can be simplified to

P(ϑ, σ ) =
1

hH (σ )Q(ϑ)h(σ )
(49)

For the sake of discussion, we define a new function
f (ϑ, σ ) by

f (ϑ, σ ) = hH (σ )Q(ϑ)h(σ ) (50)

Eq. (50) is a quadratic programming problem. To eliminate
the trivial solution h(σ = 0)M×1 when solving ϑ and σ ,
the following constraint is considered

tHh(σ ) = c (51)

where c is a constant greater than 0.
Therefore, the estimation problem of the spread angle and

center DOA for CD sources can be converted to solve a
quadratic programming problem with equality constraints as
follows

minsize
{
hH (σ )Q(ϑ)h(σ )

}
subject to tHh (σ ) = c (52)

In the following section, this quadratic programming prob-
lem is solved by the Lagrange method.

We construct the Lagrangian optimization function as
follows

L (ϑ, σ ) = hH (σ )Q (ϑ) h (σ )+ ε
[
c− tHh (σ )

]
(53)

where ε is a constant.
By calculating the partial derivative of L(ϑ, σ ) with respect

to h(σ ), the following formula can be obtained

∂ [L (ϑ, σ )]
∂ [h (σ )]

= 2Q (ϑ) h (σ )− εt = 0 (54)

It can be observed from Eq. (54) that h(σ ) and ε can be
calculated as follows

h (σ ) =
εQ−1 (ϑ) t

2
(55)

Establishing the equations in Eq. (56)t
Hh(σ ) = c

ε =
2c

tHQ−1(ϑ)t
(56)

and solving them, we can obtain

h (σ ) =
cQ−1 (ϑ) t
tHQ−1 (ϑ) t

(57)

Substituting Eq. (57) into Eq. (50) yields

f (ϑ, σ ) = hH (σ )Q (ϑ) h (σ )

=

[
cQ−1 (ϑ) t
tHQ−1 (ϑ) t

]H
Q (ϑ)

cQ−1 (ϑ) t
tHQ−1 (ϑ) t

=
tH
[
Q−1 (ϑ)

]H
cH

tH
[
Q−1 (ϑ)

]H t Q (ϑ) cQ−1 (ϑ) t
tHQ−1 (ϑ) t

=
c2tH

[
Q−1 (ϑ)

]H
Q (ϑ)Q−1 (ϑ) t

tH
[
Q−1 (ϑ)

]H ttHQ−1 (ϑ) t
=

c2

tHQ−1 (ϑ) t
(58)

Substituting Eq. (58) into Eq. (49), the 1D spatial spectral
function containing only the central DOA can be obtained as
follows

PcDOA(ϑ) =
tH
{[
diag(a(ϑ))

]HUnUH
n diag(a(ϑ))

}−1
t

c2
(59)

Therefore, the center DOA can be estimated by

ϑ̂ = argmin
ϑ

c2

tHQ−1 (ϑ) t

= argmax
ϑ

tHQ−1 (ϑ) t
c2

= argmax
ϑ

tH
{[
diag(a(ϑ))

]H UnUH
n diag(a(ϑ))

}−1
t

c2
(60)

The spread angle will be estimated by substituting Eq. (60)
into Eq. (49).

σ̂ = argmax
σ

1

hH (σ )Q(ϑ̂)h(σ )
(61)

B. COMPLEXITY ANALYSIS
To simultaneously determine the DOA of L CD sources,
a one-time 1D peak search is required to perform the central
DOA estimation, and L 1D peak searches are required to esti-
mate the spread angle. Let the angle extension range and step
size of a peak search be1 and ω, respectively. For the DSPE,
a 2D peak search requires 1π/ω2

+ (1 + π )/ω + 1 steps.
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For a ULA containing M elements, since 2M2
+M (1− 2L)

real multiplications are needed for each step, the computa-
tional complexity of the peak search is O{[2M2

+ M (1 −
2L)][1π/ω2

+ (1+π )/ω+1]}. However, the fast algorithm
costs only O{[2M2

+M (1− 2L)][2+ (π +1L)/ω]}.

V. SIMULATIONS
To consider the performance of the QFB-DSPE, several sim-
ulations are presented. The numerical results are provided
to compare the parameter estimation accuracy and target
discrimination ability of the QFB-DSPE with those of the
DPSE, CRCO, PFLOM, and FLOM algorithms. In these
simulations, two independent BPSK CD sources impinge on
a ULA with M = 12 elements. The directions of the two
CD sources are ϑ1 = 5◦ with the spread angle σ1 = 1.0◦

and ϑ2 = 20◦ with the spread angle σ2 = 1.5◦. The
noise contained in the array output signals obeys the SαS
distribution.

In the performance analysis of DOA estimation algorithms
under Gaussian noise environments, the signal-to-noise
ratio (SNR) is considered the main parameter. However,
the alpha-stable distributed impulsive noise lacks a finite
second-order statistic for α < 2. Therefore, to evaluate the
ratio of the signal power over noise dispersion γ , the gener-
alized signal-to-noise ratio (GSNR) [40] is defined by

GSNR = 10 log

(
E|x(t)|2

γ

)
(62)

Since the QFB-DSPE algorithm obtains the spread angle
and central DOA by searching local peaks, the changes in
these two parameters will show similar characteristics with
the changes in the GSNR, number of snapshots, and charac-
teristic exponent.

The root mean square error (RMSE) in Eq. (63) is
employed to evaluate the estimation accuracy of the spread
angle and central DOA [54].

RMSE =
1
2L

L∑
l=1


√√√√ 1
N

N∑
n=1

(ϑ̂l(n)− ϑl)
2

+

√√√√ 1
N

N∑
n=1

(
σ̂l(n)− σl

)2  (63)

where N is the number of all Monte Carlo (MC) trials and
ϑ̂l(n) and σ̂l(n) are the estimates of ϑl and σ , respectively, for
the lth MC trial.

If the resolution criterion of Eq. (64) holds

δ(ϑ1, ϑ2) = p(ϑa)−
1
2
[p(ϑ1)+ p(ϑ2)] > 0 (64)

the two arrival signals are considered resolvable, where ϑ1
and ϑ2 are the angles of the two arrival signals and ϑa is
the mid-angle between them. Additionally, p(·) is the recip-
rocal of the spatial spectrum. The probability of resolution
[55]–[57] is the probability of δ(ϑ1, ϑ2) > 0.

FIGURE 3. Influence of GSNR on different algorithms (α = 1.3):
(a) Probability of resolution; (b) RMSE.

A. THE EFFECT OF THE GSNR
We define one data sampling of all elements in the ULA as
a snapshot, and in these experiments, the number of snap-
shots is N = 600. For the SαS impulsive noise, the char-
acteristic exponent α is fixed at 1.3 in Fig. 3 and at 1.8
in Fig. 4, which correspond to the cases of strong impulsive
noise and weak impulsive noise, respectively. Fig. 3 com-
pares the performance of the QFB-DSPE, CRCO, PFLOM,
FLOM, and DSPE for a wide range of GSNRs. As shown
in Fig. 3(b), as the GSNR increases from 0 dB to 20 dB,
the RMSEs of these algorithms decrease. The RMSE curves
of FLOM and PFLOM are similar, and that of CRCO is
below them because the correntropy suppresses impulsive
noise better than the FLOS. The DSPE algorithm can-
not suppress impulsive noise, so its RMSE is the largest.
However, the QFB-DSPE always has the lowest RMSE.
Fig. 3(a) shows that as the GSNR increases, the ability of
the FLOM, PFLOM, CRCO, and DSPE algorithms to dis-
tinguish the incident sources is improved. The probability of
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FIGURE 4. Influence of GSNR on different algorithms (α = 1.8):
(a) Probability of resolution; (b) RMSE.

resolution of CRCO reaches 1 the fastest, and that of DSPE
reaches 1 the slowest. However, when the GSNR is kept in
[0, 20] dB, the QFB-DSPE can completely distinguish the
incident sources.

In Fig. 4, we observe that if the characteristic exponent is
set to α = 1.8, which is equivalent to moderate impulsive
noise, the DOA estimation accuracy and resolution of the
incident sources of these algorithms are improved, and the
QFB-DSPE still outperforms the other algorithms.

B. EFFECT OF THE CHARACTERISTIC EXPONENT α
The effect of the characteristic exponent α on the perfor-
mance of DOA estimation, including the RMSE and prob-
ability of resolution, is investigated in this section. The
GSNR is 5 dB, and the number of snapshots is N = 600.
The characteristic exponent is increased from α = 1.0 to
α = 2.0. As shown in Fig. 5(a), in α ∈ [0, 1], the CRCO and
QFB-DSPE can completely distinguish the incident sources,
but the FLOM and PFLOM can only completely distinguish

FIGURE 5. Influence of characteristic exponent α on different algorithms
(GSNR = 5 dB): (a) Probability of resolution; (b) RMSE.

the incident sources when α > 1.5. For the DSPE, if and
only if α > 1.8, can the incident sources be distinguished.
In terms of the source discrimination ability, the CRCO and
QFB-DSPE have the same performance and outperform the
other algorithms. As shown in Fig. 5(b), the RMSEs of the
DSPE, PFLOM, FLOM, and CRCO increase significantly
as the impulsivity of the noise increases. The increase in
impulsive components in noise will reduce the accuracy of
DOA estimation of these algorithms. However, the RMSE
of QFB-DSPE is minimal and does not change; therefore,
the QFB-DSPE has not only high DOA estimation accuracy
but also high robustness to the variation in impulse noise
intensity.

C. EFFECT OF THE NUMBER OF SNAPSHOTS
In Fig. 6, the impact of the change in the number of snap-
shots on the QFB-DSPE and the other algorithms is shown.
The characteristic exponent of the SαS impulsive noise is
α = 1.5, and the GSNR is 5 dB. This phenomenon shows
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FIGURE 6. Influence of the number of snapshots on different algorithms:
(a) Probability of resolution; (b) RMSE.

that as the quantity of sample data increases, the impulsive
components and effective signal components increase simul-
taneously. Since the DSPE cannot suppress impulsive noise,
the increase in effective signals cannot offset the impact of
impulsive noise on performance. Therefore, an increase in the
number of snapshots does not improve the resolution of prob-
ability and RMSE of the DSPE. For the CRCO, QFB-DSPE,
FLOM, and PFLOM algorithms, the correntropy, Q-function,
and FLOS are utilized to suppress impulsive noise; so
the increase in the number of effective signals helps to
improve the performance of these algorithms. However, the
QFB-DSPE still yields better performance than the other
algorithms, so in terms of suppressing impulsive noise,
the QFB is better than the FLOS and correntropy.

D. EFFICIENCY OF DIFFERENT ALGORITHMS
To evaluate the execution efficiency of different algorithms,
the GSNR is set to 10 dB; the characteristic exponent of the
alpha-stable distributed impulsive noise is set to α = 1.5;

TABLE 1. Comparison of simulation time (/second).

the number of snapshots is set to N = 600; and the number
of elements in the ULA is set to M = 10 and M = 20,
respectively. Each algorithm performs 500 iterations, and the
average consumption time is shown in TABLE 1.

As shown in TABLE 1, for a certain algorithm, with an
increase in the number of elements in the ULA, the con-
sumption time for this algorithm increases due to the increase
in received data with the increase in elements. When the
number of elements is fixed, since the DSPE does not include
an impulsive noise suppression mechanism, it consumes less
time than the FLOM, PFLOM, and CRCO. However, the time
consumption of the QFB-DSPE is the least, which not only
shows that the QFB-DSPE has the lowest complexity but also
shows that the 2D spectral peak search in the DOA estimation
algorithm of distributed sources has the highest complexity.

VI. CONCLUSION
Wepresent a newDOAestimation of the CD source algorithm
with low computational complexity in impulsive noise. Based
on a comprehensive analysis of the Q-function, the QFB
impulsive noise suppression operator is deduced, and its
properties are analyzed and proved. By combining the QFB
operator with the subspace technology, this paper proposes
the QFB-DSPE algorithm to estimate the spread angle and
central DOA of the CD source. The QFB-DSPE requires a
2D peak search, which consumes a substantial amount of
computing resources and has low efficiency. To improve the
execution efficiency of the QFB-DSPE to achieve a spread
angle and central DOA estimation, this paper proposes a fast
algorithm by transforming the 2D peak search to multiple
1D peak searches. Experimental results illustrate that the
QFB-DSPE is better than the other algorithms in terms of
both source separation capability and estimation accuracy.
Moreover, the QFB-DSPE shows high robustness in environ-
ments with different intensities of impulsive noise.
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