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ABSTRACT In the high mobility environment, the channel state information (CSI) in the last part of the
packet is different from the beginning part’s actual channel. This phenomenon degrades channel estimation
accuracy, and hence it is necessary to be compensated to realize reliable communications. Decision feedback
channel estimation (DFCE) has been widely considered as the channel tracking approach. It still causes
estimation errors due to the decision-making process in the presence of time and frequency selective
fading environments. To address these issues, this paper newly proposes a generalized regression neural
network (GRNN) based channel tracking scheme incorporated with frequency-domain CSI smoothing. The
latter part is the key to improve the dependability of the training data sets. Computer simulation results
confirm that the proposed scheme can achieve superior BER performance and the lower root mean square
error (RMSE) value of estimated CSI better than the conventional ones.

INDEX TERMS OFDM, fast fading, channel estimation, neural network, GRNN, smoothing,
Savitzky-Golay filtering.

I. INTRODUCTION
Packet-based transmission has been the most common
wireless communication method, in which the desired
transmission bitstream is divided into packets and transmit-
ted. In this case, the propagation channel needs to be esti-
mated for each packet in order to accurately equalize and
decode the signal. The pilot-aided channel estimation (PCE)
is one of the basic methods for channel estimation. In PCE,
known training symbols are generally inserted at the head
of the packet. In a static environment, it can estimate the
frequency selectivity of channel state information (CSI).
However, there is a growing demand for reliable and
high-capacity communications even in an environment where
transmitters and receivers move at high speed. Under such a
fast moving environment, the channel state rapidly changes

The associate editor coordinating the review of this manuscript and

approving it for publication was Junhua Li .

in the time-domain. Accordingly, estimated CSI by PCE is
largely dissimilar to the actual channel state, particularly in
the last part of the packet.

Many challenges have beenmade so far to trace the channel
state transition [1]–[5]. In [1], a data-aided decision feedback
channel estimation (DFCE) was proposed. DFCE directly
estimates channel variation at any specific data symbol using
the difference between the received symbol and the replica
signal which is the multiplication of remodulated signal
by CSI obtained by PCE. The authors in [2] proposed a
computationally efficient channel estimation for an OFDM
system with space-time coding in time-varying dispersive
multipath fading channels. In [3], the low-complexity win-
dowed DFT-based minimum mean square error (MMSE)
channel estimator was proposed. These methods reduced
the computation complexity without degrading the channel
estimation performance. In [4], the authors proposed the
pilot-based channel estimation scheme on a rapidly-varying
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channel environment in OFDM systems. It used channel
interpolation to handle rapid variation within a transmission
block. Moreover, subspace-based channel estimation tech-
niques for OFDM systems over fast-fading channels have
been proposed [5]. Although these precedent channel estima-
tion approaches are tolerant of fast fading environments, their
computation complexity have not been evaluated.

The recent advancement of machine learning technologies
has enabled its application to a variety of fields. In wire-
less communications, several applications are being actively
investigated. Automatic modulation recognition is the most
widely known application of machine learning to signal pro-
cessing technology [6], [7]. Emerging approaches have been
proposed to estimate communication environment, mainly
for SNR [8], K-factor [9], and Doppler shift estimation [10].
There are also many methods for channel estimation using
machine learning [11]–[13]. Literature in [11] proposed the
data-aided MIMO channel estimation using the support vec-
tor machine (SVM) based on regression of multiple variables.
This method shows better estimation accuracy in nonlinear
channels. In [12], the authors proposed to employ deep neural
networks for channel estimation and symbol detection in an
OFDM system. The model is trained offline using simulation
data where the wireless channel was considered as black
boxes. The simulation results indicated that the deep learning
method is beneficial when the wireless channel is compli-
cated by severe distortions and interference. Authors in [13]
proposed deep learning-based super-resolution channel and
direction of arrival (DOA) estimation in massive MIMO
systems. While machine learning is an effective method for
channel estimation, there are still issues in considering its
effectiveness in high-speed mobile environments.

In view of the above background, we previously pro-
posed a multilayer feedforward neural network (MLFNN)
based channel tracking scheme which is effective even in
fast-moving environments [14]. It employs MLFNN to esti-
mate the whole channel state transition and compensates
the channel variation using the generalization capability
derived from the relationship between inputs and outputs.
MLFNN is trained by partially obtained CSI by DFCE in the
beginning part of the packet. It showed satisfactory tracking
performance against channel variations. Meanwhile, there
was a need for improvement in terms of estimation accu-
racy and computational complexity. We then conceived its
extension by using a generalized regression neural network
(GRNN) [15]. A one-pass learning process of GRNN can
eliminate the iterative training process without impairing the
generalization capability. While these methods show supe-
rior performance in fast-moving environments, these channel
tracking performance depend on the accuracy of CSI used for
the supervised data. Especially, DFCE sometimes produces
incorrect CSI due to decision errors when the channel state
transition has a sharp fluctuation even in the beginning part
of the packet. For that reason, estimator has to reduce the
difference between data-aided CSI and real channel state to
achieve further improvement of BER performance.

In order to overcome this problem, this paper newly pro-
poses a frequency-domain CSI smoothing scheme for GRNN
based channel tracking method. Smoothed CSI can com-
pensate the inaccuracy of data for supervised training and
it can improve the BER performance. Our proposal applies
Savitzky-Golay (SG) filtering which can provide outstand-
ing smoothing capability of data-aided CSI and thus it can
contribute to more precise GRNN training. In many cases,
the values of CSIs in neighboring subcarriers are similar;
behave as if it had continuity. If DFCE produces inaccurate
CSI in some subcarriers, the estimated frequency selectiv-
ity is dispersed in various places. SG smoothing method
can eliminate or mitigate such influence of dispersed data
in consideration with the importance of not only specific
but also peripheral information. Accordingly, the frequency
selectivity of data-aided CSI becomes more accurate than the
conventional method by dispersed data correction capabil-
ity of SG smoothing method. Finally, the estimated whole
channel state transition by GRNN can be more accurate in
time domain after the smoothing process. To summarize, key
contributions of this paper are:
1) To rectify the impact of inaccurate CSI and estimate

the whole channel state transition accurately even if
data-aided CSI is in error.

2) To achieve high-precision channel estimation with lim-
ited CSI information even under a high-speed mobile
environment.

The rest of this paper is structured as follows. Section II
defines the channel model and OFDM system. Section III
describes the conventional approach. Section IV describe
smoothing methods and present the proposed approach con-
cretely. The simulation results are disclosed in Section V.
Finally, Section VI concludes the paper.

II. SYSTEM MODEL
A. CHANNEL MODEL
We assume Jakes’ time-varying multipath fading channel as
the channel model of the wireless communications system.
It is composed of L discrete paths with different time delays.
Its impulse response is expressed as,

h(τ, t) =
L−1∑
l=0

hl(t)δ(τ − τl), (1)

hl(t) =
gl
√
Q

Q∑
q=1

exp
[
j
(
ωDt cosαq + φq

)]
, (2)

where hl and τl denote the complex channel coefficient and
the time delay of the l-th propagation path, respectively. gl , αq
and φq are the l-th path gain, angle of arrival of the q-th wave
and its initial phase, respectively.ωD represents themaximum
Doppler radian frequency shift, i.e. ωD = 2π fD, where
fD presents the maximum Doppler frequency. Here assumes
normalized path gain, i.e.

∑L−1
p=0 E

[
|hl |2

]
= 1, where

E [·] indicates the ensemble average (expectation) opera-
tion. It is well-known that the probability density function
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of |hl | has Rayleigh distribution in non-line-of-sight com-
munication. The multipath fading which has this feature
is called Rayleigh fading. From Eq. (2), we can confirm
that the channel coefficient has the time-varying compo-
nent and high-speed mobile environment makes the varia-
tion more drastically. The frequency response H (f , t) via
Fourier transform of the impulse response can be obtained
as,

H (f , t) =
∫
∞

0
h(τ, t)exp(−j2π f τ )dτ

=

L−1∑
l=0

hl(t)exp(−j2π f τl), (3)

where f denotes the frequency component. The frequency
response is generally not flat in a mobile communication
environment. Frequency selective fading channel is provided
by L > 1where the discreet expression of |H (f , t)|fluctuates.
Because of this fading, the received signal level and phase
component significantly vary in the transmission frequency
bandwidth as in Fig. 1, especially in case of broadband
transmission [16], [17].

FIGURE 1. Frequency selective fading channel.

From these equations, it can be observed that the multipath
fading channel varies with the Doppler shift, which is pro-
portional to the transceiver’s velocity of movement. There-
fore, general channel estimation is greatly affected by the
Doppler shift, causing degradation in decoding performance
and throughput, especially in fast-moving environments. The
objective of this paper is to compensate for these influences
and to improve the BER performance.

B. OFDM SYSTEM
Orthogonal Frequency Division Multiplexing (OFDM) is
adopted for many commercial wireless standards which
include IEEE 802.11 wireless local area networks, IEEE
802.16 wireless metropolitan area networks, and 3GPP long
term evolution cellular networks [18]. The system uses sub-
carriers which are orthogonal to each other. OFDM system
converts a high-speed transmission signal into a low-speed
and narrow-band signal for a parallel transmission on a fre-
quency characteristic. OFDM can improve the utilization
efficiency of a frequency band. In addition, each subcar-
rier can make the length of signal longer. This can pre-
vent inter-symbol interferences by using a guard interval.
From these advantages, OFDM system is suitable for mobile
communication. Fig. 2 shows the original system model of
OFDM transmitter and receiver.

III. CONVENTIONAL NN BASED CHANNEL TRACKING
A. DECISION FEEDBACK CHANNEL ESTIMATION (DFCE)
Here we assume that single-input single-output based orthog-
onal frequency division multiplexing (SISO-OFDM) trans-
mission and the insertion of a pilot symbol at the beginning
of the packet. The DFCE can estimate the CSI of a partic-
ular data symbol using the demodulated signal and the CSI
obtained by the PCE. Fig. 3 shows the process of DFCE for
the i-th data symbol and the characteristic of time-varying
channel. The received signal of the m-th subcarrier and the
n-th data symbol, Y (m, n), is represented as follows:

Y (m, n) = H (m, n)X (m, n)+ N (m, n), (4)

where H (m, n), X (m, n), and N (m, n) indicate the chan-
nel coefficient, the transmitted symbol, and Additive white
Gaussian noise (AWGN), respectively [19]. Given the pilot
symbol X (m), CSI H̃ (m) is estimated as

H̃ (m) =
Y (m)
X (m)

= H (m, n)+
N (m, n)
X (m, n)

. (5)

It is used for subcarrier equalization and the decision result
of the n-th transmitted data symbol is then obtained.

X̂ (m, n) = F
[
Y (m, n)

H̃ (m)

]
, (6)

where F(m)[.] stands for the decision function. Dada-aided
CSI at the n-th symbol Ȟ (m, n) can be derived as,

Ȟ (m, n) =
Y (m, n)

X̂ (m, n)

= H (m, n)
X (m, n)

X̂ (m, n)
+
N (m, n)

X̂ (m, n)
. (7)

At this point, CSI is contaminated due to the additive
noise effect and decision failure in (6), which may cause
degradation of demodulation accuracy. The noise reduction
is possible by using adjacent symbols. Here CSI is averaged
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FIGURE 2. The block diagram of the proposed OFDM transmitter and receiver.

FIGURE 3. The process of decision feedback channel estimation and the
characteristic of a channel variation.

over adjacent three samples [20]: Ȟ (m, n − 1), Ȟ (m, n) and
Ȟ (m, n+ 1),

Ĥ (m, n) =

∑n+1
i=n−1 Ȟ (m, i)

3
. (8)

For the purpose of tracking the whole channel state tran-
sition, DFCE based channel estimation is performed for
all symbol instants [21], [22]. However, this method some-
times estimates inaccurate CSI due to decision errors. Thus,
the channel tracking performance cannot be increased even
though CSI given DFCE is applied under the fast fading envi-
ronment. Specifically, decision errors have often happened
in the last part of the packet. This is because the channel
variation from the pilot-aided CSI to the channel state is quite
huge especially at the last part of the packet.

B. NEURAL NETWORK (NN)
Because of the low reliability of DFCE in the last part of the
packet, additional approach is needed to stabilize the whole

CSI transition using partially obtained CSI at the beginning
part of the packet. To resolve this problem, we previously
proposed the NN-aided approach [14], [15]. This method
applies a NN for channel tracking using partially obtained
CSI by PCE and DFCE. The NN can construct relation-
ships between input signals and output signals because of a
nonlinear statistical modeling capability [23]. Accordingly,
the generalization capability of the NN can achieve high
tracing accuracy of whole CSI transition even by training only
a few estimated CSI. It is essential to find an optimal structure
of hidden layers because of following two perspectives: an
unsatisfactory performance produced by few neurons, and
the considerable system complexity caused by the oversized
hidden layers.

1) MULTILAYER FEEDFORWARD NEURAL NETWORK
(MLFNN)
Previous work [14] employed a fully connected 2-layer
feed-forward neural network.MLFNN has a layered structure
constructed by neurons, and every neuron passes signals to
neurons of the next layer. Every MLFNN has an input layer,
one or more hidden layers, and an output layer. The input
signals of MLFNN are passed directly to the hidden layer
in every input neuron. Thus an input layer is not generally
counted as layer of MLFNN. The size of input and output
layers depend on the size of signals of interest. On the other
hand, the system size of hidden layers is variable. One hid-
den layer normally has sufficient approximation capability to
present any continuous function. In general, the sigmoid func-
tion is applied for the activation function of hidden layer in
regression analysis. The derivative type of this function can be
expressed simply using the function itself. Accordingly, using
the sigmoid function is suitable for back-propagation (BP)
training which is the representative method of the MLFNN
training [23]–[25]. However, MLFNN has to renew param-
eters iteratively in BP training until any training parame-
ter reaches the target value. From this reason, the iterative
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process imposes huge computation complexity and causes
processing delay.

2) GENERALIZED REGRESSION NEURAL NETWORK (GRNN)
In order to eliminate the iterative training process with-
out impairing the generalization capability, we previously
employed GRNN for the NN part [15]. GRNN was origi-
nally developed by Donald Specht in 1991 [26]. It is rep-
resented as an improved version of the radial basis function
neural network (RBFNN), which is based on nonparametric
regression. This network can smooth the data transition using
sparse training samples using probability distribution from
each signal. GRNN sets the weights from the expected value
of response directly. Therefore, GRNN does not require any
iterative learning process. As shown in Fig. 4, GRNN is
constructed by 3 layers except for an input layer: a pattern
layer, a summation layer, and an output layer [27].

FIGURE 4. Architecture of GRNN.

Following describes how to calculate output values of the
1st output neuron. Let x = [x1, x2, . . . , xj] and ci denote the
input vector and the i-th training input vector (1 ≤ i ≤ Nt ),
respectively. Nt indicates the number of training sets. The
i-th pattern neuron outputs

oi(x) = exp
(
−
(x − ci)2

r2

)
, (9)

where r denotes the radius of the radial basis function (RBF)
applied for the pattern layer. This parameter can adjust
the probability distribution and controls a smoothing level
of regression results. When r is large, GRNN produces
smoother transitions of dispersed training samples and they
are not forced to desired outputs. In contrast, small value
of r generates rapidly changing regression curves and
desired responses are more faithfully tracked by regression
results [26]. The output of the i-th pattern neuron is multiplied
by the i-th desired response, and inputs to the numerator
neuron of the summation layer. Accordingly, the output of
the numerator neuron, a1(x), is calculated by

a1(x) =
Nt∑
i=1

w1(i)oi(x). (10)

The output of the denominator neuron, b(x), is generated
by

b(x) =
Nt∑
i=1

oi(x). (11)

From (10) and (11), the output at the 1st output neuron,
y1(x), is represented as

y1(x) = b(x)/a1(x). (12)

As mentioned above, GRNN output presents a weighted
average of the desired signals when the outputs of the pattern
layer are regarded as weights [28], [29]. By replacing w1(i)
with wk (i) and a1 with ak , we can also calculate the output
at the k-th output neuron (k = 1, 2, . . . ,No) using (9)–(12),
where No denotes the number of GRNN outputs.

C. CONVENTIONAL SCHEME
This paper defines the GRNN-based channel tracking using
partially obtained CSI via PCE and DFCE as the conventional
scheme [15]. It can obtain accurate estimation results of
whole channel state transition thanks to the generalization
capability of GRNN trained by estimated CSIs at the begin-
ning and intermediate parts of the packet. It also unneces-
sitates independent NN training process. Fig. 5 presents the
block diagram of the GRNN based channel estimation when
the number of subcarriers is Nc. Each output of GRNN
(m = 1, 2, . . . ,Nc − 1,Nc) corresponds to the m-th subcar-
rier’s CSI. In the GRNN approach, the training inputs and the
desired responses are directly applied for the center of each
RBF and themultiplication value for the inputs to the numera-
tor neurons of the summation layer, respectively. The GRNN
predicts an arbitrary function with the relationship between
the input vector and the desired responses by the GRNN
training. Before the GRNN training, CSIs are estimated at the
1st data symbol by PCE and the 10th data symbol by DFCE.
This information and indices (1, 10) can be set as the desired
symbols and training input. By obtaining the CSI by DFCE
only in the beginning part of the packet, we can maintain the

FIGURE 5. Block diagram of the GRNN based channel estimation.
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reliability of the desired responses. Each RBF is centered on
the pattern layer and multiplication values at nodes from the
pattern layer to the numerator neurons are directly defined
by the training input and the desired symbols, respectively.
Finally, the vector composed of indices for all data symbols
(1, 2, . . . ,Nd )T are entered into the GRNN, where Nd is the
number of data symbols. Therefore, GRNN outputs the whole
channel state transition represented by

Hout=



hout (1, 1) hout (1, 2) · · · hout (1,Nd )

hout (2, 1) hout (2, 2) · · · hout (2,Nd )
...

...
. . .

...

hout (Nc, 1) hout (Nc, 2) · · · hout (Nc,Nd )


,

(13)

where hout (m, n) (n = 1, 2, . . . ,Nd ) is the trained NN based
estimated CSI applied for them-th subcarrier and the n-th data
symbol.

Decision errors can happen even in the beginning part of
the packet when the channel state transition in the beginning
part is quite rapid. Namely, data-aided CSI has some risk
of inaccurate information even if DFCE is conducted in the
beginning part of the packet. Because of the problem men-
tioned above, impact of inaccurate CSI caused by the decision
error should be alleviated to further improve the performance
of channel tracking.

IV. PROPOSAL: FREQUENCY-DOMAIN CSI SMOOTHING
This paper newly proposes to incorporate CSI smoothing
method before the GRNN estimation part in the frequency-
domain. When DFCE contains some error component,
the frequency selectivity of CSI is dispersed; continuity
among adjacent subcarriers is broken. By using a smoothing
method, such an unnatural channel fluctuation of data-aided
CSI can be mitigated by refining the frequency selectiv-
ity. The following subsections introduce the representative
smoothing methods and derive the suitable one for our pro-
posed approach concretely.

A. SMOOTHING METHOD
Smoothing methods can compensate discrete or scat-
tered outliers and estimate smoother transition than the
original information. These techniques are applied as pre-
processing in order to correct data originally having con-
tinuity or mutuality. These preprocessing for data sets are
especially important to conduct machine training accurately.
The well-known smoothing methods are the moving aver-
age (MA) and Savitzky-Golay (SG) filtering. Each smoothing
method has respective features of calculating a smoothing
value, and there is a possibility that the optimal smoothing
scheme is different depending on the problem and target.
On that account, the SG filter is suitable for the proposed
approach. It is elaborated by the simulation results of perfor-
mance comparison in Section V.

1) MOVING AVERAGE (MA)
The simplest method for data smoothing is symmetrical
MA, whose smoothed value at the i-th explanatory variable,
û(i), is defined as follows.

û(i) =

∑i+M
j=i−M u(j)

2M + 1
, (14)

whereM denotes the unilateral window size; the whole win-
dow size applied for smoothing is 2M +1. u(j) represents the
original value at the j-th explanatory variable. In this method,
all values in a smoothing window are equivalent to averaging.
Thus, there are some cases that values at the edge of a
smoothing window are too much influenced for a smoothed
value. There are linearly weighted moving average (LWMA)
and exponentially weighted moving average (EWMA) that
add weights to raw data with how close the object position is
in mind. The smoothed values of these methods are obtained
by

û(i) =

∑i+M
j=i−M {(M − |i− j| + 1)u(j)}∑i+M

j=i−M (M − |i− j| + 1)
, (15)

û(i) =
· · · + αu(i− 1)+ u(i)+ αu(i+ 1)+ · · ·

· · · + α + 1+ α + · · ·
. (16)

Here, α (0 < α < 1) denotes a constant smoothing factor.
In EWMA, the weights fluctuation does not reach anywhere
zero. The whole raw data is concerned for the calculation
of smoothing value using (16). As shown in (15) and (16),
the former diminishes a weight value linearly; in contrast,
a weight value of the latter is lessened non-linearly. There-
fore, LWMA is suitable for weighted average with restricting
smoothing window, and EWMA can make much account of
adjusting values and cannot abandon distant data.

2) SAVITZKY-GOLAY (SG) FILTERING
The Savitzky-Golay (SG) filtering was initially proposed
in 1964 [30]. Even now, the SG filter is mainly used for
noisy data in spectral analysis, and various improvements of
the SG filter have been studied. Also, it was shown that the
SG filter is adequate for smoothing time-series data in the
literature [31]–[33]. SG filtering conducts an arbitrary order
polynomial approximation using the least square method in
an object of a window section. A smoothed value obtained
by the SG method is defined as an output value of the
approximated polynomial at the center of the window section.
We give the precise method of calculation to extract the
smoothed value at the i-th explanatory variable, which is
assumed to be p below.

Fig. 6 exhibits the overview of smoothing-based SG filter-
ing. At first, we perform coordinate transformation for p to
generalize the explanation of this problem. The transformed
explanatory variable, q, is defined as,

q = p− i. (17)

This transformation moves the position from i to 0 in paral-
lel. Accordingly, q = 0 and p = i are the same positions in the
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FIGURE 6. Overview of smoothing based on SG filter.

explanatory variable direction. Based on this transformation,
we describe how to obtain the smoothed value of the SG filter
at q = 0 from this point. First, the N -th degree function of q,
v(q), in the transformed window area is defined as,

v(q) =
N∑
n=0

qndn, (18)

where dn is the regression coefficient of the n-th degree of q.
The definition vector of regression coefficients is,

d =
[
d0 d1 d2 · · · dN

]T
. (19)

The vectors of explanatory variables and objective vari-
ables are defined as

Q =



1 −MSG (−MSG)2 · · · (−MSG)N
...

...
... · · ·

...

1 −1 (−1)2 · · · (−1)N

1 0 0 · · · 0
1 1 12 · · · 1N
...

...
... · · ·

...

1 MSG M2
SG · · · MN

SG


, (20)

f =
[
f−N · · · f−1 f0 f1 · · · fN

]T
, (21)

where fq presents the objective value, i.e. CSI at the q-th sub-
carrier obtained by PCE and DFCE in the proposed method.
This is the same as u(p − i). The normal equation of least
square method is given by,

QTf = QTQd. (22)

By variation of Eq. (22), we can obtain the values of d using
the following equation:

d = (QTQ)−1QTf = Zf, (23)

where Z = (QTQ)−1QT. Thus, the regression coefficients
are obtained and the SG filter can express the approximate
equation of arbitrary order. From (17), the smoothed value
at p = i is represented as the polynomial approximation of
the SG filtering result at q = 0. The constant term, d0, is only

remained when 0 is substituted for q in Eq. (18). Accordingly,
the smoothed value at p = i is expressed as,

û(i) = v(0) = d0
= Z (1, 1)f−N + Z (1, 2)f−N+1 + · · ·

+Z (1,MSG − 1)fN−1 + Z (1,MSG)fN , (24)

where Z (a, b) denotes the matrix element of Z at the a-th row
(1 ≤ a ≤ N + 1) and b-th column (1 ≤ b ≤ 2MSG + 1).
Z can usually be calculated in advance by defined the number
of N and MSG. For that reason, SG filtering is practically
conducted with (21) and (24) only. This smoothed scheme is
basically applied for all data areas in an explanatory variable
(but except for circumferential parts of both ends). Inciden-
tally, transitions of obtained expressions in p = MSG + 1
and p = Ld − MSG is applied in 1 ≤ p ≤ MSG and
Ld − MSG + 1 ≤ p ≤ Ld using (18) and (23). Here,
Ld denotes the all length of data area processed smoothing.
We can eventually obtain a smoothed transition of all data
and remove the influence of noisy or scattered information
by these processes.

B. INCORPORATION WITH GRNN TRAINING AND
CHANNEL TRACKING
The proposed scheme employs the smoothing approach in the
frequency-domain after the DFCE process. In this method,
the SG filtering process is inserted between the DFCE block
and desired responses block of Fig. 5. It can compensate for
the influence of inaccurate CSI before GRNN training. Due
to the preprocessing of desired symbols, GRNN estimates
whole channel state transitions more precisely than the con-
ventional approach.

Fig. 7 shows the process of the proposed scheme. Using
the pilot symbol, the first symbol’s CSI is estimated by PCE
in (12), and the 10th symobol’s CSI estimated by DFCE in (8)
is treated as the training input data for GRNN. After CSI
estimation, the smoothing method is applied to DFCE-based
CSIs in the frequency domain. SG filtering enables to opti-
mize the value of CSI, which improves the channel compen-
sation performance by GRNN. Here, the channel H̃ for p = i
smoothed by the SG filtering is represented as follows,

ĥsmooth(p) = Z (1, 1)Ĥ (−N )+ · · · + Z (1,MSG)Ĥ (N ),

(25)

On the other hand, for 1 ≤ p ≤ MSG and (Ld−MSG+1) ≤
p ≤ Ld ,

ĥsmooth = ZĤ
N∑
n=0

(p− i)n, (26)

This smoothing can remove inaccurate frequency
responses, e.g. outliers, without degradation of frequency
selectivity and obtain the refined CSI, ĥsmooth =

(ĥsmooth(1), ĥsmooth(2), . . . , ĥsmooth(Nc)). Then PCE-based
CSIs and smoothed DFCE-based CSIs are set as the
desired symbols. Symbol indices (1, 10) are defined as the
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FIGURE 7. Concept of the proposed method.

TABLE 1. Simulation parameters.

training inputs. Lastly, same as the conventional scheme,
the index vector for all data symbols is entered into
the GRNN. Thanks to improved accuracy of the desired
responses, GRNN can produceHout more accurately, and this
information can be utilized for channel tracking.

V. COMPUTER SIMULATION
A. SIMULATION RESULTS
The simulation parameters are shown in Table 1, here
Np denotes the number of pilot symbols. The maximum

FIGURE 8. BER performance of various unilateral window size M for the
proposed method using MA.

Doppler frequency is set as 700 Hz to represent a fast fading
environment, and its normalized value is 2.8 × 10−3 per
OFDM symbol duration. Radius of RBF r is 4.5 in the
proposed method.

At first, the best parameters for each smoothing method are
examined by comparing the bit error rate (BER) value of the
CSI estimate in this simulation condition. Fig. 8 shows the
BER performance of various unilateral window size M for
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FIGURE 9. BER performance of various unilateral window size M for the
proposed method using LWMA.

FIGURE 10. BER performance of various constant smoothing factor α for
the proposed method using EWMA.

the revised method when MA is introduced in the smoothing
process. The best BER performance is shown for M = 3.
The optimal window size M could depend on the coherence
bandwidth. This parameter setting is based on Wi-Fi systems
with relatively wider subcarrier spacing than cellular-based
specifications such as LTE or WiMAX. It also implies that
the MA-based approaches do not apply to the channel envi-
ronment having dynamic frequency selectivity.

Fig. 9 shows the BER performance which adopts LWMA.
In smoothing with LWMA, the best BER performance is

FIGURE 11. BER performance of maximum degree N and unilateral
window size M for the proposed method using SG.

FIGURE 12. Performance comparison of smoothing methods.

observed when M is 2 and 3. compared to MA, the range
of performance degradation due to M is wide. From (15),
since LWMA performs smoothing with a larger amount of
information thanMAwhenM becomes too large, even harm-
ful effects are captured and smoothed, resulting in significant
degradation of BER.

Fig. 10 presents the BER performance of the various
smoothing factor α for the proposed method when EWMA
is introduced in the smoothing process. As shown from this
graph, setting α to 0.3 achieves the best BER performance.
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FIGURE 13. BER performance compared to various conventional methods.

When α is 0.7, the BER performance is the most degraded.
In EWMA, as α increases, the influence of distant data
becomes stronger, resulting in significant performance degra-
dation.

Fig. 11 plots the BER performance of the maximum
degree of approximation function N and M (after coordinate
transformation) for the revised method when SG filtering
is applied in the smoothing process. When both N and M
are 5, the best BER performance can be attained. From these
preliminary parameter comparisons, we apply parameters as
M = 3 for MA,M = 2 for LWMA, α = 0.3 for EWMA, and
M = 5 and N = 5 for the SG filtering.

Smoothing methods are then compared using the above
parameters. Fig. 12 shows the comparison results of the
smoothing methods. Each smoothing method is employed
after DFCE part. All channel tracking performance using
smoothing method can be improved in both metrics against
the conventional GRNN approach. MA and LWMA should
always contain adjacent data values, and it may limit the
effectiveness of CSI smoothing in a wide subcarrier spacing
setting. Meanwhile, the SG filtering based scheme exhibit the
lowest BER value. From this result, SG filtering is introduced
for the smoothing part of the proposed method hereafter.

Fig. 13 presents the BER performances of the conven-
tional PCE, MLFNN [14], GRNN-based method [15], and
the proposed method that employs SG filtering. The BER
performance of the PCE is seriously deteriorated because
decision errors are frequently happened in the last part of the
packet; it shows an error floor. MLFNN-based method shows
superior performance compared to the conventional PCE,
but the BER never reaches 10−4 and an error floor occurs.
This is due to the fact that the generalization capability by

TABLE 2. Time cost by various methods.

MLFNN is not able to track the channel tracking sufficiently.
The conventional GRNN-based method presents the better
BER performance than the PCE and MLFNN methods, how-
ever, the error floor still remains around 10−4. On the other
hand, the proposed method shows the best BER performance,
achieving a value close to 10−5. It can be confirmed that
the proposed method obtains excellent performance even in a
fast-moving environment because the smoothing on the CSI,
which is the supervised data, can make full use of the superior
generalization capability of GRNN. Based on this result,
the proposed method can compensate for inaccurate CSI
estimates derived fromDFCE and improved channel tracking
performance by fully leveraging GRNN capability for all
data symbols. From these results, our proposed GRNN-based
channel tracking with the smoothing filter is quite effective
to realize stable wireless communication in a high mobility
environment.

B. COMPUTATION COMPLEXITY
This section compares MLFNN [14], GRNN-based
method [15], and the proposed method in terms of compu-
tation complexity. All methods use DFCE for channel esti-
mation, therefore, its complexity is not considered. At first,
the computation complexity of MLFNN can be expressed as
follows,

ϒMLFNN = Nhidden(Ninput + Noutput ), (27)

whereNinput is the number of the network input,Nhidden is the
number of hidden layers, andNoutput is the number of outputs.
Similarly, for GRNN, it can be represented as,

ϒGRNN = Nhidden(Ninput + Noutput + 1)+ Noutput . (28)

In the proposed method, smoothing by SG is performed on
the estimated CSI. Its computation complexity is expressed
as follows,

ϒSG = (2MSG + 1)(Ld − (2MSG + 1)

+2(N + 1)(2MSG + 1+ N ). (29)

Table 2 summarizes the CPU processing time consumed
for channel estimation and BER at SNR = 30 dB of
each method. For the computation environment, Intel(R)
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Core(TM) i9-10900K CPU@ 3.70 GHz and 64 GB memory
are used. Here, the processing time is measured and averaged
over 10000 trials. As can be seen from the table, the pro-
cessing speed of GRNN is much faster than that of MLFNN.
MLFNN requires only a small amount of computation to
implement once training is completed, but the running time
required for convergence is enormous. On the other hand,
because the computational cost for training GRNN is mini-
mal, it shows a high processing time for solving problems that
require online phase processing, such as those considered in
the proposed method. Since the computation cost of the SG
smoothing is heavy, it increases overall processing time for
the proposed method. Meanwhile, its BER performance can
be improved significantly; such additional processing can be
allowable considering practical hardware implementation.

VI. DISCUSSION
The most significant factor affecting the channel tracking
and compensation is the Doppler shift caused by the moving
velocity. The proposed method performs accurate channel
tracking from a small number of CSI data and is completed
only in the online phase. Hence, the proposed method can
achieve robust channel tracking to changes in moving speed.
In this paper, we have shown the effectiveness of the proposed
method by using only simulated data. The proposed method
is expected to be still effective even when using actual data,
when CSI as the supervised data can be estimated correctly to
a certain extent. It should be further investigated as our future
work.

VII. CONCLUSION
In this paper, we proposed the GRNN based channel tracking
method that applied the smoothing preprocessing in order
to refine incorrect desired responses produced by DFCE.
From the comparison of smoothing candidates, SG filtering
is the most effective for refining inaccurate CSI outliers
without disruption of original channel frequency selectivity.
It can reduce the impact of erroneous CSI estimation by
DFCE and improve the whole channel tracking capability
of GRNN. Therefore the proposed method has provided the
best BER performance compared with the conventional PCE
and our previous GRNN-based method even at a maximum
Doppler frequency of 700 Hz. Accordingly, we can conclude
that the proposed approach can be the most suitable chan-
nel tracking method even in high mobility communication
environment.
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