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ABSTRACT Microgrids provide multiple benefits to end-use customers and electric utilities, including
enhanced reliability and resilience, reduced operational costs, streamlined renewable generation integration,
and improved energy efficiency. However, the microgrid technology’s large capital cost remains a major
barrier to establishing its economic viability. This paper addresses this challenge by proposing a practical
methodology for microgrid generation sizing. The proposed methodology uses the concept of robust
optimization and a multi-criteria decision-making process, taking overall cost, emission reduction, and
demand response into account as important factors in optimal generation sizing. The objective is to minimize
the supply gap throughout the year, which is defined as the unmet load or required load curtailment under
various load and solar generation scenarios. Numerical simulations on a real-world microgrid, ComEd’s
Bronzeville Community Microgrid (BCM) on Chicago’s South Side, exhibit the practicality of the proposed
method and its applications for electric utilities. The study proposes an optimal size of 4.8 MW considering
the commercially available generator sizes for the BCM, which has a total peak load of 7 MW, 0.75 MW of
PV and 0.5MW/2MWh of Battery energy storage installed.

INDEX TERMS Microgrid, distributed energy resource (DER), generator sizing, robust optimization, multi-
criteria decision-making (MCDM).

NOMENCLATURE
A. INDICES
g Thermal units g = 1, . . . ,Ng.
b BESS units b = 1, . . . ,Nb.
t Hourly time slots t = 1, . . . ,NT .
dis Discharging modes of BESS units.
c Charging modes of BESS units.

B. PARAMETERS
NG Number of thermal units.
Nb Number of BESS units.
T Number of time slots in the whole

dispatchable period.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ziang Zhang .

Pmaxg Maximum power output of thermal unit g.
Pming Minimum power output of thermal unit g.
RUg Maximum upward ramp of thermal unit g.
RDg Maximum downward ramp of thermal

unit g.
L′g Minimum ON time of thermal unit g.
Hg Minimum OFF time of thermal unit g.
ηb,c Charging efficiency of BESS unit b.
ηb,dis Discharging efficiency of BESS unit b.
Pcb,max Maximum charging power output of BESS

unit b.
Pdisb,max Maximum discharging power output of

BESS unit b.
Eminb Minimum energy stored in BESS unit b.
Emaxb Maximum energy stored in BESS unit b.
Loadt Total load at time t .
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LDVIP,t Very important load at time t .
Iex Operation mode of the microgrid

(grid-connected mode if Iex = 1 and
islanded mode if Iex = 0).

C. VARIABLES

CP
g (.) Cost function of dispatched power of

thermal unit g.
CP
b (.) Cost functions of charging and

discharging power of BESS unit b.
Pg,t Power output of thermal unit g at time t .
Ig,t On/off status of thermal unit g at time t .
yg,t Startup indicator of thermal unit g at time

t .
zg,t Shutdown indicator of thermal unit g

at time t .
Ppv,t Power output of solar PV unit pv at time t .
Pdisb,t Discharging power output of BESS unit

b at time t .
Pcb,t Charging power output of BESS unit b

at time t .
LCt The value of load curtailment in islanded

mode at time t .
Idisb,t Discharging status of BESS unit b at

time t .
I cb,t Charging status of BESS unit b at time t .
Eb,t Stored energy of BESS unit b at time t .

I. INTRODUCTION
The frequency and impact of threats to power grids, including
natural disasters, extreme weather events, and cyber-attacks,
are rising [1]. Recent events that caused unprecedented dam-
age to the grid include Hurricanes Sandy [2], Katrina [3],
Irma and Maria [4], and a cyber-attack in 2016 that targeted
Ukraine [5]. As a further example, a summer 2020 dere-
cho in the US Midwest is considered the costliest thun-
derstorm in US history with estimated damages reaching
$7.5 Billion [6]. In the past, research aimed to enhance the
resilience of the distribution grid by optimizing generation
resources prior to high-impact events [7] or by pre-event
reconfiguration [8].

Microgrids (MGs) are emerging as a viable defense against
these increasing threats due to their distinctive islanding capa-
bilities [9]. MGs help ensure maximum DER utilization and
support grid stability [10]. Further, a properly designed MG
can overcome operational challenges and effectively increase
the participation of DERs [11]. However, it is crucial to
analyze the economic viability of a MG before investing in
these technologies. It is anticipated thatMGs connected to the
existing distribution network will operate in grid-connected
mode for the majority of the time to allow for the eco-
nomic operation of the MG by leveraging resources from
the main grid whenever possible. Clean energy resources,
such as solar integration and energy storage, will support the

grid while promoting sustainability. During grid-connected
operation the relatively more expensive natural gas and diesel
generators connected to the MG could either remain idle
or participate in a wholesale market, such as an ancillary
services market, until they are required to support islanding.
As a result, it is critical to analyze the MG generation mix
prior to investment and implementation.

The MG will seamlessly transition from grid-connected to
islanding mode and vice-versa as necessary to offer resilience
benefits. The MG controller manages available resources to
ensure an optimal, secure, and stable operation in bothmodes.
Further, it can host more renewable resources by address-
ing uncertainties in availability [12] while also providing
the voltage regulation required to mitigate any over/under
voltage issues. Dispatchable resources, including natural gas
generators, provide the required inertia and mechanisms for
load balance in the islanding mode of operation. Accordingly,
the MG controller seamlessly manages renewable resources
and inertia-based generation to provide stability to the MG
within the islanded mode.

Although the MG’s optimal operation and control has been
extensively studied, research is limited on the optimal sizing
of DERs in a MG with the objective to minimize the supply
gap and adhere to the criteria of utility stakeholders. The
study in [13] proposes a model to determine optimal com-
binations of renewable and conventional energy resources
in a MG and further analyzes the effect of emission taxes
on distributed system planning results. The study in [14]
investigates the application of DERs in a MG in lieu of con-
ventional generation and transmission planning. It is shown in
the study that a coordinated andmarket-based approach to the
deployment of a MG would make the most out of emerging
MG planning alternatives. The study in [15] investigates the
optimal design and planning of a hybrid MG by considering
emission caps and the life cycle costs of renewable energy
resources. The study concludes that a mix of diesel and
renewable sources in a MG offers the lowest net present cost
and a small carbon footprint, as compared to a stand-alone,
diesel-based MG. The study further suggests that additional
analyses are required to address mixed options based on
renewable generation, because of high initial capital costs.
The study in [16] proposes a two-stage multi-objective MG
planning model for identifying the optimal region for MG
installations and determining the locations and sizes of a
specified number of distributed generation units within the
MG. The study in [17] presents a method for optimally siting
and sizing distributed generation units in aMGwhich is based
on stipulated reliability criteria. However, all the mentioned
studies do not provide a methodology to size DERs for MG
a considering existing resources. It also fails to incorporate
stakeholder criterion and produce a robust result. The study
in [18] explores new applications of agent-based simulations
for exploiting renewable energy resources in aMG.A bi-layer
multi-agent MG planning model is proposed to maximize
MG payoffs and to alleviate environmental obligations in
energy markets.
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This paper presents a practical approach to optimizing the
generation mix for a test case of a real-world MG operated by
Commonwealth Edison Company (ComEd), an electric util-
ity serving more than 4 million customers in northern Illinois
including the city of Chicago. Feasibility studies conducted
in Bronzeville on Chicago’s South Side showed that a MG
would offer significantly improved reliability and resiliency
to a number of critical customers in the community. In Febru-
ary 2018, the Illinois Commerce Commission (ICC) autho-
rized ComEd to build the Bronzeville Community Microgrid
(BCM). The BCM will serve approximately 7 MW of cus-
tomer load utilizing a 0.5 MW/2MWh battery energy storage
system (BESS), 0.75 MW of solar PV, demand response,
and a natural gas generator. In addition, a MG master con-
troller developed in partnership with the US Department
of Energy (DOE) will optimally dispatch MG resources
and ensure stable operation in both the grid-connected and
islanded modes. However, the utility must also select and
add an optimally sized controllable generator to the existing
generation mix to ensure uninterrupted power to customers
should the main grid suffer a significant outage.

Analysis of historical Advanced Metering Infrastruc-
ture (AMI) data for the BCM from 2017 to 2019 was per-
formed to ensure the robustness of the MG design related to
DER sizing. As aworst-case scenario, the analysis considered
microgrid operation in islanded mode throughout the year to
determine the supply gap and optimize resources to mini-
mize the supply gap with varying generator sizes. The total
installed and projected solar outputs were also considered.
With the identified resources and three years of load profile
obtained from AMI data, a study is performed to determine
the optimal DER size for the MG.

Authors in [19] apply the l1 norm of load curtailment
in the objective function to the model in [20] to efficiently
schedule available resources and reduce the supply gap.
Research has been conducted to solve these problems. The
first area of research focused on designing a strategy to cur-
tail loads safely and expeditiously. Some researchers design
the load shedding controller for MGs to improve frequency
stability. A distribution state estimator is integrated into the
controller, which can estimate the load demand in [21].
Some researchers design control strategies in hierarchical
operation, such as using voltage and frequency as indicators
in secondary control [22], estimating droop coefficient in
load shedding to support reliability [23], and a fast, hier-
archical regionalized approach to mitigate MG’s voltage
and frequency deviations simultaneously [24]. However, this
research is limited to curtailment strategies and does not
address calculating load amount.

The second area of research supports efforts to design an
energy management strategy that determines the amount of
load to be curtailed. Work done in [25] presents an optimiza-
tion model to minimize total load curtailment by relaxing
constraints on voltage and active power flows. Reference [26]
provides three-stage load priorities to minimize total load
curtailment of the AC-DCMG. These research initiatives are

designed to minimize the total load curtailment but do not
consider minimization of the maximum load curtailment in
one day. Maximum load curtailment is very important for
MG future planning, demand response design, and frequency
stability. Therefore, how best to reduce total load curtailment
and maximum load curtailment at the same time is an issue
that needs to be solved for the islanded MG. While these
proposed methods have utility, they are time-consuming and
present complications that prevent an optimal solution. This
study uses a multi-objective optimization model to minimize
the supply gap and the cost of generation scheduling. The
model presented utilizes mixed-integer linear programming,
which offers a comparatively time-efficient solution. It is
capable of economically optimizing all resources, guarantees
the eventual minimization of the supply gap, and adjusts
BESS outputs according to the load.

Demand Response (DR) is another potential resource to
further bridge the supply gap. DR programs are typically
coordinated with anticipated peak loads. However, localizing
these programs within the MG can promote increased com-
pliance, particularly where proactive customers can connect
the benefits of program participation with visible energy
efficiency and grid modernization efforts.

After the analysis is performed to ensure the load is
always served with different sizes of natural gas gener-
ation, researchers must conduct a multi-criteria decision-
making process. To determine the generator size, a scoring
methodmeasures islanding capabilities by assigning different
weights to the cost of the natural gas generator, utilization
of full DR potential, emission reductions potential, and max-
imizing solar integration and battery storage. These factors
are considered as part of this case study. The factors and their
weights are determined by extensive involvement of utility
stakeholders. However, there can be other decision-making
criterion (factors) such as considering protection studies,
behind the meter solar availability, the percentage islanding
capability and acceptable noise level that may be considered.
If these additional factors are also considered, the optimal
DER size as a result of the MCDM process may be different.

The paper contributes the following toward solving the
issue of DER sizing within a microgrid:

1) We propose a methodology that aims at solving for
DER sizing by fully utilizing existing resources.

• are approaches available to propose different gen-
eration resources for a given load curve within a
confined microgrid boundary. Our method factors
in the practical limitations ofmicrogrids by consid-
ering existing resources (Solar, BESS, AMI) and
proposes the optimal new resource (controllable
generation) required to meet the load demand.

• We demonstrate methods to utilize AMI data,
solar data and BESS output and optimize an
8760-generation schedule with the objective to
minimize both total supply gap and maximum sup-
ply gap. This study is a dynamic simulation that
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FIGURE 1. Generator sizing process.

considers all the possible scenarios at every hour
in a three-year study period in the microgrid rather
than a static simulation that optimizes instances
occurring just once or few times.

2) We propose a robust optimization approach to dispatch
DERs under uncertain loads and renewable generation
and consider varying commercially available generator
sizes.
• The robust optimization will find the worst-case
optimal solution as uncertain parameters vary
within their associated uncertainty intervals.

3) We propose to use a weighted scoring methodology to
factor in several stakeholders’ criteria to determine the
final generator size for decision making.
• We have provided a framework to use the weighted
scoring methodology that helps to factor in criteria
such as the cost of generators, utilization of Solar,
battery, and demand response capabilities. It also
takes considers the possibility of minimizing emis-
sions produced by the microgrid.

• The proposed method can aid similar studies seek-
ing to include their stakeholders’ assessment into
the decision-making process.

4) The results demonstrate the actual sizing of the DER
for ComEd’s Bronzeville Community Microgrid.
• The results point out that for a microgrid of about
7MWwith the identified load curve, existing solar,
battery and demand response capabilities with a
size of 4.8 MW of controllable generation can help
meet the load demand 99.6 % of the time.

The rest of the paper is organized as follows: Section II
discusses the optimization objective and constraints for gen-
erator sizing, followed by load and solar data analysis,
robust optimization, emissions reduction, and a multi-criteria
decision-making methodology in Section III. Section IV
presents analysis results outlining how the supply gap is
computed and the use of the multi-criteria decision-making
process in determining the generator size. Section V con-
cludes the paper.

II. GENERATOR SIZING STUDY
The optimal generator sizing process is explained by the
flowchart in Fig. 1. The input parameters to the dispatch
model are three years of AMI data from the MG, solar output
data, BESS parameters and controllable generator sizes. The
process incorporates BESS (0.5 MW/ 2 MWh) and solar
PV (0.75 MW) that have already been installed as an input.
However, the framework provides flexibility for adding any
size and number of BESS or solar for the analysis. The
optimal scheduling algorithm retrieves the hourly dispatch
results with varying generator sizes. The study considers the
actual load of the BCMmeasured using the AMI from 2017 to
2019. It considers the estimated output of 750 kW of solar PV
along with a 500 kW and 2000 kWh of BESS. The analysis is
carried out for each day over the three-year period assuming
an islanded condition. Analysis is run with two conservative
assumptions: a 10 % solar uncertainty, i.e., reduction in solar
output, and a state of charge (SOC) of 25 % for the BESS
at the start and end of the day. The objective function and
constrains are designed to maintain or achieve a 25 % SOC at
the end of each day. Further, a sensitivity analysis is carried
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out to estimate the number of days and hours with supply gaps
given different generator sizes. Once the robust optimiza-
tion, i.e., 8760 analysis with different generation and supply
gap is obtained, a multi-criteria decision making (MCDM)
problem is set up. The factors that are considered for this
decision-making process are:

1) Cost of different generation sizes.
2) The increase in emission reduction potential obtained

by reducing the generation size.
3) Ability to island more than 99 % of the time.
4) Ensuring the maximum utilization of solar and BESS

coordination.
5) Ability to utilize and encourage demand response

within the microgrid footprint.

There are different weights assigned to these factors and
the highest score generator size is selected as the optimal and
adequate generation for the microgrid.

A. MISST FOR OPTIMAL GENERATION SCHEDULING AND
SUPPLY GAP MINIMIZATION
When facing inherent uncertainty of renewables in the MG,
the Microgrid Integrated Solar Storage Technology (MISST)
is a good solution [12]. In this section, a day-ahead, multi-
objective, robust unit commitment (RUC) model is discussed
to minimize the total generation scheduling cost as well as
both the total supply gap (MWh) and the maximum supply
gap (MW) in one day. The MG is considered to be operating
in islanded mode. The detailed model is as follows:

min
P,LC

(
T∑
t=1

(
NG∑
g=1

CP
g (Pg,t )+ c1LCt +

Nb∑
b=1

CP
b (P

dis
b,t − P

c
b,t )))

+ (c2maxLCt ) (1)

subject to: Pming Ig,t ≤ Pg,t ≤ Pmaxg Ig,t , ∀g, t, (2)

Pg,t − Pg,t−1 ≤ RUg(1− Yg,t )+ Pming Yg,t ,

∀g, t, (3)

Pg,t−1 − Pg,t ≤ RDg(1− Zg,t )+ Pming Zg,t ,

∀g, t, (4)

Yg,t + Zg,t ≤ 1, ∀g, t, (5)

Yg,t − Zg,t = Ig,t − Ig,t−1, ∀g, t, (6)
t+L′g−1∑
τ=t

Ig,t ≥ L′gYg,t , ∀g, t, (7)

t+H′g−1∑
τ=t

Ig,t ≤ H′g(1− Zg,t ), ∀g, t, (8)

0 ≤ Pdisb,t ≤ P
dis
b,maxI

dis
b,t , ∀b, t, (9)

0 ≤ Pdisb,t ≤ P
dis
b,maxI

dis
b,t , ∀b, t, (10)

I cb,t + I
dis
b,t ≤ 1, ∀b, t, (11)

Eb,t = Eb,t−1 + ηb,cPcb,t − P
dis
b,t/ηb,dis,

∀b, t, (12)

Eminb ≤ Eb,t ≤ Emaxb , ∀b, t, (13)

Eb,T = Eb,0, ∀b, (14)

0 ≤ LCt ≤ (Loadt − LdVIP,t )(1− Iex),

∀t, (15)∑
g

Pg,t +
∑
b

(Pdisb,t − P
c
b,t ) = Loadt

− LCt −
∑
pv

Ppv,t , ∀t, (16)

Eq. (1) is the objective function comprised of three
terms.The cost formulation of a thermal unit is CP

g (Pg,t ),
where: CP

g (Pg,t ) = cgP2g,t+bgPg,t+ag, and cg, bg, ag are the
coefficients of the quadratic cost function for thermal unit g.
The second and fourth terms represent the cost of the supply
gap. c1 is the penalty coefficient or price of the supply gap and
is considered larger than the marginal generation cost. c2 is
the penalty coefficient or price to maximum load curtailment
of one day. The third term adjusts the battery’s output so that
when the load is high, the battery can discharge more power,
and when the load is low, the battery can discharge less power
or switch to charging. The cost formulation of a BESS unit is
CP
b (P

d
b,t is− P

c
b,t ), where: C

P
b (P

dis
b,t − P

c
b,t ) = cbPdisb,t − cbP

c
b,t ,

and cb is the cost of BESS unit b.
Constraint (2) is the range of output power of thermal units

and constraints (3)-(4) represent ramping up and ramping
down constraints of thermal units, respectively. Constraints
(5)-(6) represent the relationships of start-up indicator Yg,t ,
shutdown indicator Zg,t , and ON/OFF status Ig,t of thermal
unit g at time t . At any time, generators can only be in one
status, ON or OFF. Constraints (7)-(8) are minimumON/OFF
time constraints respectively. (7) is the minimum ON time
constraint. L ′g is the minimum ON time of thermal unit g.
This equation means that if unit g is turned ON at time t ,
it must remain ON at time t + 1, t + 2, . . . , t + L ′g−1. (8)
is the minimum OFF time constraint. Hg is the minimum
OFF time of thermal unit g. This equation means that if
unit g is turned OFF at time t , it must remain OFF at time
t+1, t+2, . . . , t+Hg−1. Constraints (9) and (10) limit the
range of discharging power and charging power, respectively.
At any given time, the BESS can only work in one mode:
discharging or charging, as defined in (11). The constraints
of energy in BESS are (12)-(14), which calculate the energy
stored in BESS at time t , define the range of energy in BESS
and relationship of energy at the beginning of the scheduling
horizon (t = 0) and at the end of the scheduling horizon
(t = T ), respectively. Constraint (15) limits the amount of
load curtailment or supply gap. Iex is theMG operation mode.
When Iex = 1, the MG is in grid-connected mode. When
Iex = 0, the MG is in islanded mode. Here, we only consider
the islanded mode, so Iex is considered 0. Constraint (11) is
the power constraint equation of theMG. To guarantee secure
operation of the MG, the total output power of all generators
should be equal to total load minus load curtailment.

Objective (1) is non-linear because of the term
min(c2 maxLCt ). In order to linearize (1), LC ′, an auxil-
iary variable, is used to represent maxLCt . Furthermore,
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FIGURE 2. One-line diagram of the bronzeville community microgrid.

a new constraint (18) about LC ′ is added to make sure
the new problem and the original problem are equivalent
and have the same solution. The new model is shown as
follows:

min
P,LC

T∑
t=1

(
NG∑
g=1

CP
g (Pg,t )+ c1LCt +

Nb∑
b=1

CP
b (P

dis
b,t − P

c
b,t )

+ c2LC ′) (17)

subject to : (2)− (16)

LC ′ ≥ LCt (18)

This new model is a mixed-integer programming problem
and it is convenient to use Cplex or Gurobi to obtain the
optimal results.

III. MULTI-CRITERIA DECISION-MAKING FOR
GENERATOR SIZING IN BRONZEVILLE
COMMUNITY MICROGRID
ComEd chose the BCM’s location strategically as it includes
critical infrastructures such as the Chicago Police Department
headquarters as well as approximately 1,000 residences, busi-
nesses, and institutions. The BCM leverages a cutting-edge
microgrid master controller, on-site generation, and storage,
enabling it to operate connected to ComEd’s grid or discon-
nect to keep locally generated power flowing in the event of a
major interruption to the main grid. A schematic of the BCM
is shown in Fig. 2. The MG area when grid-connected has
two feeders being fed from two upstream substations. During

islanded mode one of the three tie-switches is closed and the
grid is formed by the MMC that coordinates the generation
set point of DERs according to the load.

With its defined set of customers, the BCM is completely
observable using AMI data. The data for each customer has
been logged since 2017. The analysis carried out in the MG
design bases its peak and average load on the three years of
AMI data (2017, 2018, and 2019). Furthermore, the BCM has
750 kW generation of solar power distributed amongmultiple
buildings and ground arrays. The solar PV system installa-
tion, finalized in 2019, is divided into two groups of inverters,
North and South. The solar PV operation is coupled with
BESS operation. The MG controller provides a schedule for
BESS to enable solar dispatchability by mitigating variability
when the MG is grid-connected. In islanded mode, BESS can
be dispatched to supply power that canmitigate the variability
of solar and minimize the supply gap. Historical PV output
estimates are calculated using the PV system site specifica-
tions, such as the number and size of inverters, the number
of PV panels per inverter, and model and orientation. Current
forecasting tools include features that allow consideration of
shading and its seasonal variability. This further enables the
model to be more robust and accurate and better represents
the installation characteristics. This analysis uses the solar
forecasting tool for estimating PV output data from 2017 to
2019. As the 750kW solar PV units were not operational until
2019, the forecasting tool was used to estimate the PV output
profile from 2017 to 2019.
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A. AMI DATA ANALYSIS
Fig. 3 shows a cumulative plot with the percentage of
load variability. The system’s average load remains around
3.75 MW whereas the peak load recorded was 6.87 MW
in 2018. The load in the MG footprint is less than 4.8 MW
90 % of the time. It is more than 6 MW for only 1 % of the
time.

FIGURE 3. AMI load data of MG for past 3 years.

B. ROBUST OPTIMIZATION
The robust optimization will find the worst-case optimal
solution as uncertain parameters vary within their associated
uncertainty intervals. This is obtained by maximizing the
minimum value of the objective function over uncertainty
sets. In conventional robust optimization, the obtained com-
plex max-min problem is commonly converted to a tractable
problem using the duality theory. In this paper the same
approach is followed, given that the objective function is min-
imized over the primary variables (i.e., generator sizes) while
being maximized over the uncertain parameters (i.e., load
demand). As expected, the worst-case solution is obtained at
the peak load, further proving the suitability of this approach.

To size the natural gas generator to support the formation
and stable operation of the MG, we have considered differ-
ent sizes of generators. The generator units are assumed to
be available in fixed sizes of 3.9 MW, 4.4 MW, 4.8 MW,
and 5.2 MW. The maximum load recored was 6.56 MW
in 2019 and 6.87 MW in 2018, whereas 2017 saw a peak
load of 6.48 MW. The optimal scheduling of DERs was
performed to assess the supply gap hours using different
generator sizes. The idea is to size the generator optimally.
To build a successful and reliable Islanding capability for
a MG any under-sizing should be avoided to allow for a
seamless transition from grid-connected to islanded mode
and stable operation of theMG to supply uninterrupted power
to customers in islanded mode. This recognizes the fact that
a MG can be called upon to form an island due to planned or
unplanned outages. After determining that 2018 had the high-
est loading, we further analyzed how generators of different

sizes, along with other dispatchable resources, serve the load
to minimize the supply gap. The BCM has the potential of
utilizing customer-owned generating resources that can be
leveraged in a worst-case loading scenario. Each possibility
and resource is considered in designing the MG generation
mix.

C. MCDM: WEIGHTED SCORING METHOD
Multi-Criteria Decision-Making orMCDM, provides a math-
ematical approach for choosing one alternative among sev-
eral. It is based on the scores of alternative factors against a
set of structured and weighted criteria as shown in the deci-
sion Table 1. Consider the MCDM problem with n criteria
and k alternatives. Let C1,C2, . . . ,Cn and A1,A2, . . . ,Ak
denote the criteria and alternatives, respectively. The generic
decision matrix for solving the MCDM problem is shown
in Table 1. Each column in the table represents a criterion
and each row describes the performance of an alternative.
The score Sij describes the performance of alternative Ai
against criterion Cj. As shown in the decision table, weights
W1,W2, . . . ,Wn reflect the relative importance of criteria
Cj in the decision making. In this paper we use Weighted
Scoring Method (WSM) as an MCDM technique [27]. The
best alternative is the one with the highest score. In WSM the
final score for alternative Ai is calculated using the following
formula.

S(Ai) =
∑

WjSij (19)

where sum is over j = 1, 2, . . . , n; Wj is relative importance
of jth criterion; Sij is score that measures how well alternative
Ai performs on criterion Cj.

TABLE 1. MCDM table.

D. EMISSIONS REDUCTION
One reason to choose a natural gas generator is its low level
of emissions as compared to diesel generators. When design-
ing the generation mix with a fixed budget, planners should
consider given towards the emissions aspect of generation.
Moreover, these community MGs are in residential areas
and high emissions could have severe short-term or long-
term health effects on the community. In this work we have
considered two scenarios:

1) Emission reduction when the grid is islanded all year
long

2) Emission reduction during peak a loading day
In this analysis CO2 emissions [28], [29] and NOx emis-

sions are considered [30]. Carbon equivalent of NOx is deter-
mined to estimate total carbon equivalent emission. The intent
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TABLE 2. Greenhouse gas emissions.

is to replace the supply gap by reducing the size of the DER
with a cleaner energy option such as demand response.

Table 2 shows that the natural gas generators have lower
greenhouse emissions when compared with the diesel gen-
erators. The total value for savings in emission reduction is
tracked based on the amount of renewable energy generated
within the MG as well as the load reduction due to behavioral
economic programs such as energy efficiency and demand
response. Consumer awareness and education are heightened
within the MG; thus, increased uptake of participation is
projected as the MG installation and construction nears com-
pletion. The reduction of generation and load is converted
into component emissions (kg per MWh) avoided. Each type
of emission (CO2, NOx) is scaled by the associated costs
of carbon (note: that nitrogen oxides (NOx) include nitric
oxide (NO) and nitrogen dioxide as well as the greenhouse
gas, nitrous oxide N2O).

IV. RESULTS AND DISCUSSIONS
A. SUPPLY GAP ANALYSIS
In this section, the results of a traditional dispatch model that
considers load curtailment is compared with the proposed
model. As opposed to the proposed model, a traditional dis-
patch model only considers minimizing total load curtailment
while the proposed model considers minimizing both total
load curtailment and maximum load curtailment [31]. Note
that load curtailment reflects the supply gap. Table 3 shows
the results from a traditional dispatch model and Table 4
shows the results from the proposed model. The maximum
supply gap from the traditional dispatch model is larger than
that of the proposed model. For example, the maximum
supply gap in 2018 from the traditional dispatch model is
2.1 MW with a 4.8 MW DER, while that of the proposed
dispatch model is 1.49 MW. This means that to fill the gap,

TABLE 3. Three years SG analysis with traditional dispatch model.

TABLE 4. Three years SG analysis with proposed dispatch model.

more resources (e.g., DR) are required for the traditional
model than the proposed model, which costs more and is not
economical. However, the total hours of supply gap from the
proposedmodel are longer than that of the traditional dispatch
model. In short, the proposed model can save money at the
expense of longer total hours of supply gap.

B. 2018 SUPPLY GAP ANALYSIS WITH VARYING
DEMAND RESPONSE CAPABILITY
The BCM footprint has an additional capacity of customer-
owned generators that can be potentially leveraged to invoke
the demand response if required. This estimated capacity is
around 1 MW. With a 5.2 MW generation capacity, the BCM
would be covered 100 % of the time; however, the DR capa-
bility would be underutilized as seen in Fig. 4.With a 5.7MW
generator the DR is further underutilized as the peak supply
gap with this generator is observed to be 0.5 MW. When we
consider a 4.4MWgeneration capacity as our natural gas gen-
erator with a 1 MW of DR capacity the supply gap remains
1.18 MW. Moreover, the supply gap with 1 MW demand
response is over 112 hours out of 8760 hours, as shown
in Fig. 5. This results in an islanding capability below 99 %.

FIGURE 4. Supply gap analysis with 5.2 MW generation.

When using a 4.8 MW generator, there would be a supply
gap for only 36 hours in the entire year of 2018, as shown
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FIGURE 5. Supply gap analysis with 4.4 MW generation.

FIGURE 6. Supply gap analysis with 4.8 MW generation.

in Fig. 6. It must be noted that we have used a solar uncer-
tainty factor and accounted for conservative battery use.
We also anticipate that the MG will experience Voluntary
Load Reduction (VLR) to further reduce the peak load and
bridge the supply gap. In summary, the MG would have
zero supply gap for 99.6 % of the time in 2018 by utiliz-
ing a 4.8 MW generator in coordination with other existing
resources and 1 MW demand response.

C. PEAK DAY ANALYSIS
The BCM is expected to provide uninterrupted power to all
customers even during grid outages without shedding any
customer loads. Hence, an analysis and a zoomed-in view in
the worst loading day is required. It may be fair to say that we
may not experience a need to island on the worst loading day.
However, it is important to assess what additional resources
(and for what duration) may be required if that case arises.

Here we analyze a day in August 2018 when the load
peaked at 6.8 MW. The DER dispatch schedule was run
to minimize the supply gap. With a 4.8 MW natural gas
generator, the supply gap is highlighted in yellow in Fig. 7.
Throughout the analysis, we have made two conservative
assumptions: a 10 % solar uncertainty, i.e., reduction in solar

FIGURE 7. Peak day analysis.

FIGURE 8. Peak day supply gap.

output, and a state of charge (SOC) of 25 % for the BESS at
the start and end of the day. The output of BESS depends on
the load. If the load is higher than the dispatchable generator
and the solar output, the BESS will not be charged; however,
if the load is less, the BESS can be charged to be used at
higher loading hours. During an actual islanding scenario,
it may be the case that the BESS is at 100 % state of charge at
the start of the day and is allowed to discharge completely by
the end of the day. This could bridge the supply gap further.

Fig. 8 shows the supply gap for each hour of the day.
The maximum supply gap is 1.49 MW (1490 kW). There-
fore, an additional demand response coupled with a mobile
generator (if required) can cover the MG’s total load for the
worst loading day. The objective is to minimize the maximum
supply gap so that the additional resources required to fill the
gap are of a lower MW capacity.

D. EMISSION REDUCTION
The existing supply gap with varying generator size is con-
sidered to be bridged by clean energy such as solar, demand
response, or energy efficiency. However, reducing generator
size eventually saturates the percentage increase in potential
emission reduction. Fig. 9 shows the potential reduction in
emission if theMGwas islanded the entire year. This assumes
that the demand response and other resources will be invoked
only when the total MG generation is unable to meet the
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FIGURE 9. Emission reduction 2018.

demand. It can be seen that a reduction from 4.8 MW to
4.4 MW generation precipitates a decline in carbon reduction
percentage.

Fig. 10 shows the potential emission reduction with vary-
ing generator sizes. This shows a similar trend with the
potential in reduction increasing along with reduction in size;
however, the percent increase decreases at 4.8 MW.

FIGURE 10. Emission reduction peak day.

E. WEIGHTED SCORING METHOD (WSM)
This analysis focused on several criteria referenced in Table 5.
The most important factor is, always supporting the islanding
of the MG and it is assigned a binary value – given as high
if the chosen generator size along with all other resources
such as solar, battery and demand response can cover the load
for more than 99 % during the entire year. With a 4.8 MW
generator the supply cap will be zero for over 99.4 % of the
time; whereas with a 4.4 MW generator the islanding support
will be met for only 98.6 % of the time. Reducing the size
of the generator further reduces the islanding capability of
the MG.

From the perspective of deriving the maximum utilization
from the installed and cleaner photo-voltaic (solar) and bat-
tery energy storage it is important to study if, with a given
generator size, there is maximum utilization of these cleaner
resources. As mentioned, it is assumed that the BESS will
start at 25 % SOC in the beginning of the day and end at the
same 25 % SOC at the end of the day. The demand response
utilization and solar&BESS utilization is given as follows for
the peak day analysis. Having a 5.7 MW generator allows the
BESS to charge in the early hours and during the peak hour.
Here, the maximum utilization of solar & BESS is 0.92 MW
whereas the maximum utilization of demand response is
0.5 MW. For the 4.4 MW generator the maximum supply gap
during the peak day is as high as 2.2 MW and the utilization
of Solar & BESS is only 0.5 MW. Moreover, a generator size
of 4.4 MW or below cannot support islanding for over 1 % of
the time. The inputs to WSM is given in Table 6. Given the
weights in Table 5 the final scores are shown in Table 7.

Based on the score obtained from the analysis, a 4.8 MW
generator with score 80 % was recommended, whereas
the second best score i.e., 76 %was obtained by the generator

TABLE 5. Criteria and weight.

TABLE 6. Inputs to WSM.

TABLE 7. Final score.

TABLE 8. Score with equal weights.
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size of 5.2 MW. One may argue the logic behind the weights
given to the criteria. The weights were given with focus on
certain factors that are important to the utility, such as high
support of islanding and high reliability and resiliency of
customers within the MG. Emissions reduction and utiliza-
tion of solar & BESS is important to derive the maximum
learning out of this operation for future deployments. It is
also important to have a flexible grid that can make up for
any brief shortage in generation or a supply gap. Furthermore,
the weighted scores for different generator sizes were also
computed by giving all criteria equal weights, i.e. a weight
of 0.2. Table 8 shows that the 4.8 MW generator still received
the highest score, 70 %.

V. CONCLUSION
This paper presents a framework to optimally size the control-
lable DER required to obtain a generation mix for a MG that
ensures economical operation in grid-connected mode while
also operates in a secure and stable manner in islanded mode
when called upon for reliability needs. It considers different
inputs such as historical load and solar irradiance data, energy
storage, solar generation and varying natural gas generation
to minimize the amount and duration of supply gap. Mixed
integer linear programming (MILP) based optimal scheduling
algorithm retrieved the hourly dispatch results with varying
generator sizes. A sensitivity analysis was carried out to
estimate the number of days and hours with supply gaps with
different generators. Additional resources such as the poten-
tial demand response capability within theMG footprint were
considered to minimize supply gap. Decision-making crite-
ria such as cost, incremental emissions reduction, demand
response utilization, utilization of renewable and islanding
capability were weighted. The methodology recommended
a natural gas generator of 4.8 MW capacity as an optimal
option for the MG that could cover the islanding scenario
for 99.6 % of the time by utilizing all the resources at its
disposal. Other factors such as protection study, noise, and
generator size can be considered along with different levels
of islanding confidence to achieve optimal sizing using the
proposed methodology.
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