
Received September 24, 2021, accepted October 8, 2021, date of publication October 18, 2021, date of current version October 29, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3121252

Novel Hybrid Public/Private Key Cryptography
Based on Perfect Gaussian Integer Sequences
CHING-HSIEN HSIA1, SHI-JER LOU2, HO-HSUAN CHANG 3, AND DONGHUA XUAN 3
1Department of Industrial Technology Education, National Kaohsiung Normal University, Kaohsiung 80201, Taiwan
2Graduate Institute of Technological and Vocational Education, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
3Information Engineering College, Guangzhou City Construction College, Guangzhou, Guangdong 510000, China

Corresponding author: Ho-Hsuan Chang (3500916355@qq.com)

ABSTRACT This paper proposes a novel hybrid public/private key cryptography scheme based on perfect
Gaussian integer sequences (PGISs) of period N = pq. First, a review study of construction degree-4 PGIS
is addressed. We show that circular convolution over PGISs is a trapdoor one-way permutation function that
enables simultaneous cipher encryption and digital signatures. To implement the proposed cipher encryption
scheme, a private PGIS is assigned as the encryption key sequence for circular convolution with the plaintext
to generate the ciphertext. The reverse decryption key sequence involves the time reflection and complex
conjugation of the encryption sequence, which can be regenerated using a pair of public and private keys.
The security level of the proposed scheme is the same as that of the Rivest-Shamir-Adleman (RSA) system;
however, the capacity of a cryptosystem based on PGISs may outperform that of based on RSA, because
abundant PGISs are available. Simulation results show that the approximation error when finite digits are
used to represent the irrational coefficients of a normalized PGIS can be relatively small compared with
the noise. This contributes to the simplicity of this scheme’s implementation. With the fast development
of IoT (internet of things), the adaptation and applicability of the proposed scheme to IoT platforms are
also addressed, where lightweight cryptographic functions are preferable due to the limited resources of IoT
devices.

INDEX TERMS Cryptography, encryption, PGIS, RSA, trapdoor one-way function.

I. INTRODUCTION
Encryption is the process of converting ordinary informa-
tion (plaintext) into unintelligible text (ciphertext), which can
be read only if decrypted. A cipher is a pair of algorithms
that encrypt the plaintext and decrypt the ciphertext. The
operation of a cipher is controlled by the algorithm and by
a key in each instance. Cryptosystems are categorized into
two types: symmetric and asymmetric. In symmetric sys-
tems, the same private key is used to encrypt and decrypt a
message. Asymmetric systems use a public key to encrypt a
message and a private key to decrypt it. Symmetric models
include one-time pad, the commonly used advanced encryp-
tion standard (AES), which replaced the older data encryp-
tion standard (DES) [1], etc. Asymmetric systems include
the Rivest-Shamir-Adleman (RSA) algorithm [2], the Diffie-
Hellman key exchange algorithm [3], the digital signature
standard [4], and the elliptic curve cryptography [5], [6].
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Public-key cryptography does not require a secure channel
for the initial exchange of one (or more) secret keys; thus, it is
often used to secure electronic communication over an open
network environment such as the Internet. By contrast, sym-
metric cryptosystem encounters private key distribution and
management problem, in which the cost and delay imposed
by key distribution are major barriers to the transfer of busi-
ness communications to large networks or the Internet. With
the rapid development of the Internet and the high demand
for secure communications across public networks, public-
key cryptography has attracted much more attention than
private-key cryptography because of its affordability. The
development of public-key cryptography originated with the
trapdoor one-way concept introduced by Diffie and Hell-
man [3]. However, they did not present an example of how
such a cryptosystem could be implemented. The search for
a trapdoor one-way function was left as an open problem,
rendering public-key encryption a fascinating theoretical dis-
covery but unusable in practice. The factorization of a product
of two large prime numbers is an example of a trapdoor
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one-way permutation function. Although selecting and veri-
fying two large primes and multiplying them together is easy,
factoring the resulting product is very difficult. Motivated
by the trapdoor one-way property of prime factorization,
Rivest et al. implemented the first public-key cryptosystem,
known as the asymmetric RSA cryptosystem [2].

In this paper, we show that circular convolution over per-
fect Gaussian integer sequences (PGISs) is also considered
a trapdoor one-way function, and we create a novel cipher
encryption and decryption scheme based on circular convo-
lution and a set of PGISs. A sequence is regarded as perfect if
it has an ideal periodic autocorrelation function (PACF), and
a PGIS is a perfect sequence (PS) in which all elements are
complex numbers, (i.e., a + bj, where j =

√
−1 and a and

b are integers). To implement this scheme, an encryption key
sequence is chosen from a set of PGISs of period N = pq,
where both p and q are odd primes, for circular convolution
with plaintext of size N to generate a ciphertext. The encryp-
tion PGIS is kept private, and the decryption key is the time
reflection and complex conjugation of the encryption PGIS.
The public key consists of all information, except the private
key number, which is required for generating the decryption
PGIS at the receiver end. Because the private key number
is available only to authorized users and can be shared by
other means such as the Diffie-Hellman key exchange algo-
rithm, the ciphertext cannot be encrypted by adversaries. The
proposed scheme consists of both public and private keys,
thus it is basically a public-key cryptography; however the
public-key cryptography encounters no private key exchange
problem. Comparing with the private-key cryptography, our
scheme has the advantage that it requires only to share the pri-
vate key number between two parties instead of the require-
ment of secure distribution of more complex decryption keys
among authorized users. Therefore, it is considered a form
of hybrid public/private key cryptography, and it can take the
advantages of both two.

The construction of PGISs has become a prominent
research topic [7]–[22], because their implementation is sim-
pler than those of other PSs with real or complex coefficients.
PGISs were applied to orthogonal frequency-division mul-
tiplexing (OFDM) systems for peak-to-average power ratio
reduction [15] and were used to construct a transformation
matrix for precoded OFDM systems to achieve full frequency
diversity and an optimal bit error rate [16]. PGISs were
also adapted as the frequency-domain comb-spectrum (CS)
codes for a novel CS-CDMA system [17]. Recently, Chang
developed aCDMAscheme based on PGISs, called the PGIS-
CDMA system [18].

This is the first study to apply PGISs to a data encryption
and decryption scheme, where the operation of data encryp-
tion is made through circular convolution. As addressed in
Section VI, circular operation is considered a vector-wise
operation rather than element-wise operation, where the
vector-wise operation is more complex, but it can achieve
higher level of confidentiality. This study begins with a
review construction of a set of degree-4 PGISs of period

N = pq. In this construction, the degree of a sequence is
defined as the number of distinct nonzero sequence elements
within one period. The resultant set of PGISs is then applied
in the proposed hybrid public/private key cryptography.

Here, the development of PGIS constructions is briefly
introduced. A general form of even-period PGISs was pre-
sented in [7]. Yang et al. [8] constructed PGISs of an odd
prime period p by using cyclotomic classes with respect to the
multiplicative group of GF(p). Ma et al. [9] later presented
PGISs with a period of p(p+2) based onWhiteman’s general-
ized cyclotomy of order two overZp(p+2), where p and (p+2)
are twin primes. Degree-3 and degree-4 PGISs of arbitrary
composite periods were constructed by Chang et al. [10].
Lee et al. [11]–[12] focused on constructing degree-2 PGISs
of various periods using two-tuple-balanced sequences and
cyclic difference sets. Pei and Chang [13] developed algo-
rithms that could generate PGISs of arbitrary periods. A sys-
tematic method for constructing sparse PGISs in which
most of the elements are zero appeared in [14]. Lee et al.
constructed families of PGISs with high energy efficiency
[19], [20]. PGISs of period pk with degrees less than or equal
to k + 1 were proposed in [21]. Chang et al. [22] contributed
a through study of constructing PGISs of period N = qp,
where p and q are two primes.

This paper is organized as follows. The definition and prop-
erties of PGISs are introduced in Section II. We present the
review study of degree-4 PGIS construction of periodN = qp
for the proposed scheme in Section III, showing that there
exist infinite PGISs of this period.We prove in Section IV that
PGIS-based circular convolution is a trapdoor one-way per-
mutation function. The implementation and digital signatures
are addressed in Section V. In Section VI, the performance
of RSA, other private-key cryptography and the proposed
scheme are compared. An analysis of approximation that
uses finite digits to represent the irrational coefficients of a
normalized PGIS is presented in Section VII. In Section VIII,
we analyze the adaptation and applicability of the proposed
scheme to IoT (internet of things) platform. Finally, conclu-
sions are drawn in Section IX.

II. PRELIMINARIES
A. DEFINITIONS OF PGIS
Let N = pq, where p and q are distinct prime numbers.
In addition, s = {s[n]}N−1n=0 denotes a sequence of period N ,
where s[n] is the nth component of s. Let Rs = {Rs[τ ]}

N−1
τ=0

be the periodic autocorrelation function (PACF) of s, i.e.,

Rs[τ ] =
N−1∑
n=0

s[n]s∗[(n− τ )N ], (1)

where the superscript ∗ denotes the complex conjugate oper-
ation, and (·)N is the modulo N operation. Define s−1 =
{s[(−n)N ]}

N−1
n=0 . Rs = s⊗ s∗

−1, where ⊗ denotes the circular
convolution operation. Let S = {S[n]}N−1n=0 denote the discrete
Fourier transform (DFT) of s. The DFT of Rs is then given
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by S ◦ S∗=|S|2, where ◦ and | · | denote the component-wise
product operation and the Euclidean norm, respectively.

The sequence s is said to be perfect if and only if it has
an ideal PACF, i.e., Rs = E · δN , where E =

∑N−1
n=0 |s[n]|

2

is the energy of sequence s, and δN is a delta sequence of
period N . The DFT pair relationship between Rs = E · δN
and S ◦ S∗ = |S|2 indicates that a sequence s is perfect if
and only if the spectrum magnitude of s is flat (i.e., |S [n]| =√
E, 0 ≤ n ≤ N − 1).
Theorem 1 [18]: In addition to the N -tuple s =

(a, 0, . . . , 0) and all N − 1 circular shifts, there are no other
degree-1 PGISs of period N , where a is a nonzero Gaussian
integer.

B. CONSTRUCTION AND PROPERTIES OF
CIRCULANT MATRIX
We define a circulant matrix X of size N × N based on the
sequence x = {x[n]}N−1n=0 of period N , where the elements
of x form the first column of X . With this definition, X =
{x[(n− k)N ]}, and the (n, k) entry of X , denoted as Xn,k , is

Xn,k = x[(n− k)N ].

Let x(i) = {x[(n− i)N ]} denote the circular shift of x to the
right by i steps. Circulant matrix X can be expressed using
the matrix form as follows:

X = [x x(1) x(2) · · · x(N−1)].

The eigenvalues of a circulant matrix comprise the DFT
of the first column of the circulant matrix, and conversely,
the first column of the circulant matrix is the inverse DFT of
the eigenvalues. In particular, all circulant matrices have the
same eigenvectors ( [23] and p.267 of [24]),

um =
1
√
N
[1 e−j2πm/N · · · e−j2πm(N−1)/N ]T ,

m = 0, 1, . . . ,N − 1,

where [·]T denotes a transpose.
Let U be matrix consisting of the eigenvectors um as

columns in order and 9=diag(ψk ) is the diagonal matrix
with diagonal elements ψ0, ψ1, · · · , ψN−1. It is true that
UUH

=UHU = IN , where IN is an identity matrix and [·]H

denotes transpose and conjugate operation.
Lemma 1 ([23] and [24]): LetC = {c[(k−n)N ]} andB =
{b[(k − n)N ]} be circulant N × N matrices with eigenvalues
ψm and βm, m = 0, 1, . . . ,N − 1, respectively, where

ψm =

N−1∑
k=0

c[k]e−j2πkm/N ,

βm =

N−1∑
k=0

b[k]e−j2πkm/N .

Then C and B commute and

CB = BC = U�UH ,

where �=diag(ψmβm) is the diagonal matrix with diagonal
elements ψ0β0, ψ1β1, · · · , ψN−1βN−1, and CB is a circulant
matrix.
Lemma 2: In any circulant matrix constructed from a

PGIS with a degree higher than one, the number of distinct
eigenvalues of the associated circular matrix is at least two.

Proof: The eigenvalues of a circulant matrix comprise
the DFT of the first row of the circulant matrix, which is
identical to the associated PGIS; conversely, the first row of a
circulant matrix is the inverse DFT of the eigenvalues. When
the circulant matrix is constructed from degree-1 PGIS, all
eigenvalues are the same by Theorem 1; this indicates that
there exist at least two distinct eigenvalues when the circu-
lant matrix is constructed from a PGIS with a degree larger
than one.

C. PROPERTIES OF PGIS
Some properties of PGISs, which are essential for determin-
ing the cardinality of a set of PSISs, are summarized in the
following.
Theorem 2 [18]: Let s, s1, and s2 be PGISs of period N .

The following sequences are also PGISs of period N :
1) {s[(n± m)N ]}, where m is any integer;
2) {cs[n]}, where c is any nonzero Gaussian integer;
3) {s∗[n]};
4) {S[k]}, the DFT of {s[n]}, given that {s[n]} has a constant
amplitude;
5) {s[(−n)N ]};
6) s1 ⊗ s2.
Theorem 3 [18]: Any PGIS can be expressed as the cir-

cular convolution of two PGISs.
Theorem 4: Let {sn}kn=1 be a set of k different PGISs of

period N , where the degrees of these PGISs are larger than
one.

1) All si ⊗ si, i = 1, . . . , k, are PGISs of period N ;
2) All si ⊗ s−i, i = 1, . . . , k, are PGISs of

period N ;
3) All s1 ⊗ s2 ⊗ · · · ⊗ sn, 2 ≤ n ≤ k , are PGISs of period

N ;
4) {si⊗sj, si⊗si, sj⊗sj} * {c1·si, c2·sj}, where 1 ≤ i, j ≤ k ,

and c1 and c2 are two non-zero Gaussian integers.
Proof: 1) The proof that si⊗si, si⊗s−i, and s1⊗s2⊗· · ·⊗

sn are PGISs of period N is straightforward and is omitted
here for brevity.

2) To prove si ⊗ si 6= c1 · si, let Si be the circulant matrix
constructed by sequence si; the circulant matrix constructed
by si ⊗ si is then S2i by Lemma 1. Because the degree of si
is larger than one, there exist at least two distinct eigenvalues
of Si by Lemma 2, and the ith eigenvalue of S2i is the square
of the ith eigenvalue of Si. This indicates that there exists no
Gaussian integer c1 such that si ⊗ si = c1 · si is true.

3) The circulant matrix constructed by si⊗sj is SiSj, where
circulant matrix Sj is constructed by sj, and the ith eigenvalue
of matrix SiSj is the product of the ith eigenvalue of Si and Sj.
This demonstrates that si⊗sj cannot belong to set {c1·si, c2·sj}
by Lemma 1 and Lemma 2.
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The properties of theorem 4 show that for a set of PGISs
of the same period, A = {s1, s2, . . . , sm}, the cardinality m
of set A has no upper bound. New PGISs can be constructed
by applying these properties. In particular, the property 4 of
Theorem 4 indicates that applying circular convolution to two
arbitrary PGISs generates a new PGIS that cannot be spanned
by the two original PGISs. This explains the abundant PGISs
available for the proposed scheme.

III. CONSTRUCTION OF DEGREE-4 PGIS OF PERIOD N=pq
A. REVIEW STUDY OF DEGREE-4 PGIS CONSTRUCTION
We can make a brief review of degree-4 PGIS construction
from [22]. Let ZN denote the ring {0, 1, . . . ,N − 1} with
integer multiplication modulo N and integer addition modulo
N , and Z×N = ZN\{0}. First, we would summarize some
results of degree-4 PGIS of period N = pq from [22]. Three
subsets of Z×N are defined as follows:

Sp = {np|n = 1, 2, . . . , q− 1},

Sq = {kq|k = 1, 2, . . . , p− 1},

and

S1 = {n|gcd(n,N ) = 1, n ∈ Z×N }.

Sequence s = {s[n]}N−1n=0 of period N = pq is defined as

s[n] =


a3, n = 0,
a0, n ∈ S1,
a1, n ∈ Sq,
a2, n ∈ Sp.

(2)

In [22], three nonlinear equations to govern four coeffi-
cients, ai = xi+ jyi, i = 0, 1, 2, 3, of sequence s = {s[n]}N−1n=0
to be a degree-4 PGIS are expressed below

(p− 2)(q− 2)(x20 + y
2
0)+ 2(q− 2)(x0x2 + y0y2)

+ 2(p− 2)(x0x1 + y0y1)
+ 2(x1x2 + y1y2 + x0x3 + y0y3) = 0,

(p− 2)(q− 1)(x20 + y
2
0)+ (p− 2)(x21 + y

2
1)

+ 2(q− 1)(x0x2 + y0y2)+ 2(x1x3 + y1y3) = 0,
(q− 2)(x22 + y

2
2)+ (p− 1)(q− 2)(x20 + y

2
0)

+ 2(p− 1)(x0x1 + y0y1)+ 2(x2x3 + y2y3) = 0.

(3)

The decomposition method is applied to transform these
nonlinear constrained equations of (3) into three linear sys-
tems of four equations with x2, y2, x3, and y3 as the variables.
These linear systems can be expressed using the matrix nota-
tion Aix = bi, i = 1, 2, 3. In these equations, Ai is the
coefficient matrix of size 4 × 4, x = [x2 y2 x3 y3]T ,
and bi is a data column vector. It has

A1 =


2(q− 2)x0 + 2x1 2(q− 2)y0+2y1 2x0 2y0

2(q− 1)x0 2(q− 1)y0 2x1 2y1
1 1 0 0

2− q q− 2 −2 2

 , (4)

A2 =


2(q− 2)x0 + 2x1 2(q− 2)y0+2y1 2x0 2y0

2(q− 1)x0 2(q− 1)y0 2x1 2y1
−1 q− 2 0 2
q− 2 1 2 0

 , (5)

A3 =


2(q− 2)x0 + 2x1 2(q− 2)y0+2y1 2x0 2y0

2(q− 1)x0 2(q− 1)y0 2x1 2y1
2− q 0 −2 0
0 2− q 0 −2

 , (6)

b1 = [41 42 x0 + y0 (q− 2)(y0−x0)+2(y1 − x1)]T , (7)

b2 = [41 42 (q−2)y0+2y1 − x0 (q−2)x0 + y0+2x1]T ,

(8)

b3 = [41 42 (2− q)x0 − 2x1 (2− q)y0 − 2y1]T , (9)

where41 = (2− p)(q− 2)(x20 + y
2
0)− 2(p− 2)(x0x1+ y0y1)

and 42 = (2− p)(q− 1)(x20 + y
2
0)− (p− 2)(x21 + y

2
1).

By choosing constants x0, y0, x1, and y1 such that all
|Ai| 6= 0, we can always adjust these four constants and
derive the integer solutions of four variables (x2, y2, x3, y3)
from equations xi = A−1i bi, i = 1, 2, 3. These eight parame-
ters xn, yn, n = 0, 1, 2, 3, meet the system of three nonlinear
equations (3).

B. NEW CONSTRUCTION OF DEGREE-4 PGIS
We can add three new linear systems of four equations to
facilitate the cryptographic applications, where the detailed
procedures are derived here. The second equation of (3) can
be replaced by subtracting from the top equation of (3), after
which it becomes

(x0 − x1)((p− 2)(x0 − x1)+ 2(x2 − x3))

+(y0 − y1)((p− 2)(y0 − y1)+ 2(y2 − y3)) = 0. (10)

The nonlinear equation (10) can be decomposed into two
parts, which results in a linear system of two equations.
We provide three different decompositionmethods, which are
respectively presented below
x1 + y1 = x0 + y0,
(2− p)x1 + (p− 2)y1 − 2x3 + 2y3
= (p− 2)(y0 − x0)− 2x2 + 2y2.

(11)

{
−x1 + (p− 2)y1 + 2y3 = −x0 + (p− 2)y0 + 2y2,
(p− 2)x1 + y1 + 2x3 = (p− 2)x0 + y0 + 2x2.

(12){
(2− p)x1 − 2x3 = (2− p)x0 − 2x2,
(2− p)y1 − 2y3 = (2− p)y0 − 2y2.

(13)

Based on the results of (11), (12) and (13), the nonlinear
constrained equations of (3) can also be transformed into
three linear systems of four equations with x1, y1, x3, and y3
four variables. These linear systems can be expressed using
the matrix notation Aix = bi, i = 4, 5, 6. In these equations,
Ai is the coefficient matrix of size 4×4, x = [x1 y1 x3 y3]T ,

145048 VOLUME 9, 2021



C.-H. Hsia et al.: Novel Hybrid Public/Private Key Cryptography Based on Perfect Gaussian Integer Sequences

and bi is a data column vector. It has

A4 =


2(p− 2)x0 + 2x2 2(p−2)y0+2y2 2x0 2y0

2(p− 1)x0 2(p− 1)y0 2x2 2y2
1 1 0 0

2− p p− 2 −2 2

 , (14)

A5 =


2(p− 2)x0 + 2x2 2(p−2)y0+2y2 2x0 2y0

2(p− 1)x0 2(p− 1)y0 2x2 2y2
−1 p− 2 0 2
p− 2 1 2 0

 , (15)

A6 =


2(p− 2)x0 + 2x2 2(p−2)y0+2y2 2x0 2y0

2(p− 1)x0 2(p− 1)y0 2x2 2y2
2− p 0 −2 0
0 2− p 0 −2

 , (16)

b4 = [43 44 x0 + y0 (p− 2)(y0 − x0)+ 2(y2 − x2)]T ,

b5 = [43 44 (p− 2)y0+2y2−x0 (p−2)x0+y0+2x2]T ,

b6 = [43 44 (2− p)x0 − 2x2 (2− p)y0 − 2y2]T ,

where43 = (2− q)(p− 2)(x20 + y
2
0)− 2(q− 2)(x0x2+ y0y2)

and 44 = (2− q)(p− 1)(x20 + y
2
0)− (q− 2)(x22 + y

2
2).

By choosing constants x0, y0, x2, and y2 such that all
|Ai| 6= 0, i = 4, 5, and 6, we can always adjust these four
constants and derive the integer solutions of four variables
(x1, y1, x3, y3) from equations xi = A−1i bi. These eight
parameters xn, yn, n = 0, 1, 2, 3, meet the system of three
nonlinear equations (3).
Example 1: When p = 5, q = 3, given that a0 = 6 and

a1 = −6j, we derive a2 = −14+ 20j and a3 = 25 − j from
A1x = b1 of (4), where a degree-4 PGIS of period N = 15 is
given by

s15= (a3, a0, a0, a2, a0, a1, a2, a0, a0, a2, a1, a0, a2, a0, a0).

(17)

When p = 3, q = 5, we can apply A5x = b5 of (15) to
construct PGIS with the same pattern of (17), where a0 =
2− 4j and a2 = 6− 2j are assigned to derive a1 = −8+ 16j
and a3 = 1− 17j.
Example 2: When p = 5 and q = 7, given that a0 = 10j

and a2 = −10 − 10j, we derive a1 = 14 − 32j and a3 =
−31 + 53j from A6x = b6 of (16), where a degree-4 PGIS
s35 of period N = 35 is given by

s35 = (a3, a0, a0, a0, a0, a2, a0, a1, a0, a0, a2, a0,

a0, a0, a1, a2, a0, a0, a0, a0, a2, a1, a0, a0,

a0, a2, a0, a0, a1, a0, a2, a0, a0, a0, a0). (18)

Note that more degree-4 PGISs of period N = pg can
refer to [22].
Theorem 5: There exist infinite degree-4 PGISs of com-

posite period N = pq, where p and q are odd prime numbers.
Proof: We present two construction examples in

Example 1 that one solution set (x2, y2, x3, y3) is derived
from one set of four parameters (x0, y0, x1, y1) and the other
solution set (x1, y1, x3, y3) is derived from another set of
four parameters (x0, y0, x2, y2), which these four coefficients

xi + jyi, i = 0, 1, 2, 3, construct two different degree-
4 PGISs. Because there exist unbounded sets of four parame-
ters (x0, y0, x1, y1) or (x0, y0, x2, y2) that can make coefficient
matrix Ai nonsingular, there exists an infinite number of
degree-4 PGISs of composite period N = pq.

IV. CIRCULAR CONVOLUTION–TRAPDOOR ONE-WAY
PERMUTATION FUNCTION
Let y = {y[n]}N−1n=0 = x ⊗ s denote the circular convolution
between x and s; that is,

y[n] =
N−1∑
τ=0

s[τ ] · x[(n− τ)N ]. (19)

The result of y = x ⊗ s can be expressed using matrix
expression

y = Xs, (20)

where the circulant matrix X is given in (21).

X =



x[0] x[N − 1] · · · x[2] x[1]

x[1] x[0]
. . .

.

.

. x[2]
.
.
.

.

.

.
. . . x[N − 1]

.

.

.

x[N − 2] x[N − 3] · · · x[0] x[N − 1]
x[N − 1] x[N − 2] · · · x[1] x[0]


N×N

. (21)

When the result of y in (20) is given, s can be derived from
y and x through circular deconvolution, which is equivalent
to solving a system of N linear equations in the N unknowns
{s[n]}N−1n=0 . The matrix expression of the solution is given by

s = X−1y. (22)

In (22), the inverse of a nonsingular N × N matrix
X−1 can be computed through Gauss elimination and back-
substitution with N 3 multiplication/division and N 3-2N 2

+N
addition/subtractions [25]. With an increase inN , the increas-
ingly heavy computing load can make circular deconvolution
infeasible. However, when x is a PGISwith energyE , we have
x ⊗ x∗

−1 = E · δN . This indicates that the inverse of the
coefficient matrix is given by X−1= 1

EX
H , and the solution

s = 1
EX

Hy is obtained directly without a system of N linear
equations being solved.
Theorem 6: There exist numerous pairs of nonzero

sequences xi and si of length N , such that

x1 ⊗ s1 = x2 ⊗ s2 = · · · = xi ⊗ si = · · ·

is true; however, xi 6= xk ⇔ si 6= sk .
Proof: Let y = {y[n]}N−1n=0 be a sequence consisting of

constants, and Y = {Y [n]}N−1n=0 Xi = {Xi[n]}
N−1
n=0 and Si =

{Xi[n]}
N−1
n=0 be the DFTs of y xi and si. Taking the DFT of

equations y = x1 ⊗ s1 = x2 ⊗ s2 = · · · yields

Y = X1 ◦ S1 = X2 ◦ S2 = · · · .
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1) To prove x1 ⊗ s2 = x2 ⊗ s2 = · · · is equivalent to
showing that the following solutions exist.

Y [0] = X1[0]S1[0] = X2[0]S2[0] = · · · ,
Y [1] = X1[1]S1[1] = X2[1]S2[1] = · · · ,

...

Y [N − 1] = X1[N − 1]S1[N − 1]
= X2[N − 1]S2[N − 1] = · · · .

(23)

For any fixed constant Y [k], there exist numerous pairs
of (Xi[k], Si[k]), i = 0, 1, 2, . . . , such that Y [k] = X1[k] ·
S1[k] = X2[k] · S2[k] = · · · , k = 0, 1, 2, . . . ,N − 1, is true
(i.e., 6 = 2 · 3 = (−2) · (−3) = −2j · 3j =

√
6 ·
√
6 = · · · ).

2) Let Mi and Mk be two circulant matrices constructed
using xi and xk , respectively. The matrix expression of y =
xi ⊗ si is given by y = Misi, from which the unique solution
si = M−1i y is derived. Because xi 6= xk ⇔ Mi 6= Mk ,
si(=M−1i y) 6= sk (=M−1k y) is proven.

Theorem 6 indicates that for a given y, numerous pairs of
(xi, si) exist that can satisfy equation y = xi ⊗ si; however,
when one vector in this pair is given, the other one is uniquely
determined. Example 3 presents an example for demon-
stration. An eavesdropper who hears only the transmitted y
(ciphertext) cannot apply (22) to decrypt y and obtain s, where
the unique solution of equation (22) is evaluated on the basis
of the assumption that y and x are available.
In contrast to the factorization of a product of two prime

numbers featuring one-to-one mapping between a pair of
two primes (p, q) and N (= pq), circular convolution features
multiple-to-one mapping among a pair of two sequences
(xi, si) and the resultant y(= xi ⊗ si). The multiple-to-one
mapping property of circular convolution complicates or even
prevents the operation of circular deconvolution, and is thus
considered one-way. When xi is available and is a PGIS,
the operation of circular deconvolution becomes straight-
forward, with PGIS xi acting as the trapdoor for circular
convolution. In addition, circular convolution is commutative,
with xi⊗si = si⊗xi. The circular convolution operation over
PGISs is trapdoor one-way permutation.
Example 3: Let {si}5i=0 be six sequences of period 13.

These sequences are given by

s0 = (−9− 3j,−9− 3j, 4+ 23j,−9− 3j, 4+ 23j,

4+ 23j, 4+ 23j,−22− 29j,−22− 29j,

− 9− 3j, 4+ 23j,−22− 29j, 4+ 23j),

s1 =
1
845

(−55− 25j,−107+ 79j, 23− 181j,

− 120+ 105j,−107+ 79j,−68+ j,

− 172+ 209j,−16− 103j,−16− 103j,

− 3− 129j,−55− 25j, 36− 207j,−42− 51j),

s2 =
9
845

(−1− 43j, 12− 69j,−14− 17j,−40+ 35j, 12

− 69j,−53+ 61j,−27+ 9j,−27+ 9j,−14− 17j,

− 40+ 35j,−27+ 9j,−14− 17j,−1− 43j),

s3 = (0, 0, 1, 0, 1, 1, 1,−1,−1, 0, 1,−1, 1),

s4 = (2,−2, 8,−3,−2, 1,−7, 5, 5, 6, 2, 9, 3),

s5 = (a, b, b, b, b, b, b, b, b, b, b, b, b),

where a = 10+ 25j, and b = −3− j.
Thus, s0 ⊗ s1 = s2 ⊗ s5 = s3 ⊗ s4 can easily be verified,

where

s0 ⊗ s1 = (18, 27, 9,−9, 27,−18, 0, 0, 9,−9, 0, 9, 18).

V. PGIS-BASED HYBRID PUBLIC/PRIVATE
KEY CRYPTOGRAPHY
A. CIPHER ENCRYPTION AND DECRYPTION SCHEME
As described in [2], the encryption and decryption procedures
typically consist of a general method and an encryption key.
RSA uses exponentiation modulo a product of two very large
primes for data encryption and decryption. Its security is
connected to the extreme difficulty of factoring large integers.
The encryption key is the pair of positive integers (e, n),
and the private decryption key is another pair of positive
integers (d, n).
In our proposed cipher encryption and decryption scheme,

the N -point circular convolution and a set of PGISs of
period N = pq can function as the general method and
the encryption key, respectively. The public key is (N , x0,
y0, x1, y1, Ai, bi). In section III, four coefficients xi + jyi,
i = 0, 1, 2, 3 for constructing a degree-4 PGIS are governed
by a system of four linear equations Aix = bi, from which
x = A−1i bi can be derived. The associated degree-4 PGIS
s constructed using this set of four coefficients xi + jyi can
serve as the encryption sequence to generate ciphertext by
circularly convoluting it with block data plaintext of size N .
Because the elements of x = [x2 y2 x3 y3]T = A−1i bi
are uniquely determined by six values of x0, y0, x1, y1, p,
and q, the decryption sequence s∗

−1 can easily be gener-
ated by an authorized user with the assigned public key
(N , x0, y0, x1, y1,Ai,bi) and private key number p or q.
However, to malicious cryptanalysts, the public key cannot
generate the decryption sequence without the actual value of
p or q. When both p and q are long strong primes, the diffi-
culty of factoring N into p and q provides the same security
level as that of the RSA scheme.
Let A = {s1, s2, . . . , sn} be a set of PGISs of period N ,

where there is no upper bound for the cardinality n of set A.
A private sequence s with energy E is randomly chosen from
setA to serve as the encryption sequence. Letm = {m[n]}M−1n=0
denote the input plaintext of length M , where M = kN .
We express m = {m1,m2, . . . ,mk}. If M cannot be divided
by N , we can insert additional zeros at the end of m to make
it true. However, when M < N , we should insert additional
N − M zeros to form the plaintext. The plaintext mi is
circularly convolutedwith the encryption key s to generate the
ciphertext ci = s⊗mi. Note that the encryption key associated
with user B should properly be subscripted as sB, because
each user has a private key sequence. However, we consider
only a typical case, and the subscript is omitted.
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As shown in Fig.1, the detailed procedures for encryption
using PGIS s and decryption using s∗

−1 are summarized as
follows:

1) At the transmitter end, circular convolution between the
encryption key s andmi generates the ciphertext

ci = s⊗mi, i = 1, 2, . . . , k.

2) The ciphertext c = (c1, c2, . . . , ck ) and public key
(N , x0, y0, x1, y1,Ai,bi) are transmitted through the common
channel.

3) At the receiver end, after the receipt of ci, only the
intended receiver who holds the private key q can generate
the decryption sequence s∗

−1, and the original plaintext can
be decrypted using circular convolution between ci and s∗

−1;
that is,

1
E
ci ⊗ s∗

−1 =
1
E
(mi ⊗ s⊗ s∗

−1)

=
1
E
(mi ⊗ E · δN )

= mi, i = 1, 2, . . . , k.

To demonstrate the proposed scheme, let mi =

(1,−1, 1, 1,−1, 1, 1, 1,−1, 1,−1, 1, 1, 1,−1) be the binary
plaintext of length N = 15. We can define four base
sequences ei, i = 0, 1, 2, and 3 as follows, to construct a
degree-4 encryption PGIS s of period N = p ·q = 5 ·3 = 15.

e0 = (0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1),

e1 = (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0),

e2 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0),

and

e3 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Let ai = xi+ jyi be four coefficients. By inputting x0 = 24,
y0 = 0, x1 = 0, y1 = −24, p = 5, and q = 3 into A1 and
b1 in equations (4) and (7), we derive x2 = −56, y2 = 80,
x3 = 100, and y3 = −4. A degree-4 PGIS s is given by

s = a0e0 + a1e1 + a2e2 + a3e3
= (25− j, 6, 6,−6j, 6,−14+ 20j,−6j,

6, 6,−6j,−14+ 20j, 6,−6j, 6, 6), (24)

Example 4: The ciphertext ci = mi ⊗ s is given by

ci = s⊗mi

= (25− 25j,−29+ 41j, 9+ 39j, 25− 25j, 11+ j,

49− j, 25− 25j, 21+ 51j,−41+ 29j, 65− 65j,

−29+ 41j, 49− j,−15+ 15j, 61+ 11j,−1− 11j)

(25)

The ciphertext ci in (25) and public key (15, 24, 0, 0,−24)
are transmitted through a common channel to the
receiver. At the receiver end, the original plaintext mi can

be recovered from taking circular convolution between s∗
−1

and ĉi which is the estimation of ci. It has

m̂i =
1

2250
(ĉi ⊗ s∗

−1)

= (1,−1, 1, 1,−1, 1, 1, 1,−1, 1,−1, 1, 1, 1,−1)+ n,

(26)

where the energy of encryption sequence s is 2250, and n
denotes the received white noise vector. When the signal-to-
noise ratio is sufficiently high, the estimation of mi from m̂i
(m̂i → mi) is straightforward. However, when the received
ciphertext ĉi is decrypted using the conjugate of encryption
sequence x1 = s∗ instead of s, the resultant m1i is expressed
as follows:

m1i = ĉi ⊗ x∗
−1 = ci ⊗ s−1 + n1

=
1

1125
(1100− 25j,−1084+ 29j, 1164− 9j,

1100− 25j,−1124− 11j, 1124− 49j, 1100− 25j,

1176− 21j,−1096+ 41j, 1060− 65j,

−1084+ 29j, 1124− 49j, 1140+ 15j,

1136− 61j,−1136+ j)+ n1, (27)

We found that although similarity exists between s and
x1 = s∗, the contents of m̂i and m1i are extremely different.
The plaintextmi can be estimated from m̂i, butmi is unlikely
to be derived from m1i. Example 4 demonstrates that effec-
tive decryption can only be carried out through the unique
private key sequence s.

B. EFFICIENT SCHEME FOR PROCESSING
DIGITAL SIGNATURES
Let b = {b[n]}N−1n=0 be a nonzero sequence of length N ,
in which b[n] ∈ {1, 0} is preferable to lighten the computing
load. We can apply an additional private encryption sequence
sb to generate sequence d = sb ⊗ b. d and b can be
attached to ciphertext c = (c1, c2, . . . , ck ) as the overhead
of the document; that is, the transmitted ciphertext becomes
(d,b, c1, c2, . . . , ck ). After the receipt and detection of d and
b, the receiver performs an authentication check to verify
the origination of the consecutive ciphertext by examining
whether the condition SHb b = d holds, where Sb is the
circulant matrix constructed using encryption sequence sb.
The pair of two sequences (d,b) can serve as efficient digital
signatures for the associated PGIS-based cipher encryption
scheme because a pair of (d,b) cannot be forged. In addi-
tion, a signer cannot later deny the validity of his or her
signature because d(= sb ⊗ b) is uniquely determined by a
private key sb. To operate digital signatures simultaneously
with cipher encryption, the public key becomes (N , x0, y0,
x1, y1, x0b, y0b, x1b, y1b, Ai, bi), where the additional four
coefficients x0b, y0b, x1b, and y1b are assigned for generating
sb by authorized users.
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FIGURE 1. Hybrid public/private key cryptography.

VI. COMPARISON OF PROPOSED SCHEME WITH
OTHER CRYPTOSYSTEMS
The proposed scheme is considered a form of hybrid public/
private key cryptography, and the comparison of public, pri-
vate and the proposed key cryptography is addressed in this
section. Public-key cryptography has two primary use cases:
authentication and confidentiality, in which messages can be
signed with a private key, and then anyone with the public
key is able to verify that the message is created by some-
one possessing the corresponding private key. Authentication
(digital signature) assures message integrity and originator
identification. However, most public-key encryption schemes
can only encrypt small chunks of data at a time, much smaller
than the messages we want to be able to send. Public-key
schemes are also generally quite slow, much slower than their
private key counterparts. By contrast, private-key cryptog-
raphy encounters private key distribution and management
problem. The number of key exchanges grows about as fast as
the number of people squared. The fundamental problem of
large number of key exchanges has not been solved yet. The
computing load of the proposed scheme, in which circular
convolution is applied to encrypt and decrypt a message,
is smaller than the other two schemes. However, this scheme
still relies on key exchange algorithm to share a common
secret key number. The proposed scheme might take the
advantages of the other two schemes, which can make a
balance between two extremes. We make the more detailed
comparisons in the following two subsections.

A. COMPARISON BETWEEN RSA AND
PROPOSED SCHEME
RSA and the proposed scheme based on PGISs are compared
as follows:

1) Data encryption using exponentiation modulo N
(c = me mod N ) does not increase the size of a message.
This is themerit of the RSA scheme. However, when plaintext
is circularly convoluted with a PGIS that has large coeffi-
cients, the ciphertext also contains larger values. In addition,
the energy level of ciphertext is proportional to the period
of the PGIS, which should be sufficiently large to provide

the desired security. The escalation of the energy level poses
a major challenge to the implementation and transmission
of the resultant ciphertext. This topic is further addressed
in Section VII.

2) The public-key cryptosystem based on the RSA scheme
provides an effective method for key management and
authentication, but it is inefficient for the bulk encryption
of data. In addition, to apply the RSA scheme for data
encryption, the message can only be an integer in the interval
[0 N − 1]; however, there is no such data type restriction
when data encryption is conducted through circular convo-
lution operation. Therefore, the proposed scheme has more
potential applications.

3) The capacity (C) of a cryptosystem is defined as the
maximum number of authorized users the associated system
can support simultaneously. Consider either a multiple-to-
one or amultiple-to-multiple secure communication scenario,
where the capacity of a cryptosystem based on the RSA
scheme is determined by the number of available pairs of
exponents (d, e), because each pair of two parties should have
a unique (d, e) key pair. For each Ni = piqi, the number of
pairs of private key di and public key ei, which satisfies diei ≡
1 mod (pi − 1)(qi − 1), cannot compete the unbounded car-
dinality of a set of PGISs of period Ni = piqi by Theorem 5.
Actually, it is imperative for each pair of two parties to
choose its own RSA modulo Ni to avoid common modulus
attack. When many pairs of (ei, di) are assigned associated
with the same Ni, knowledge of any (ei, di) pair allows for
the factorization of the modulus Ni, and hence any entity
could subsequently determine the decryption exponents of all
other entities in the network. Also, if a single message were
encrypted and sent to two ormore entities in the network, then
there is a technique by which an eavesdropper (any entity not
in the network) could recover themessagewith high probabil-
ity using only publicly available information [26]. However,
the proposed PGIS-based scheme using circular convolution
for data encryption will not encounter the common modulus
attack problem.

4) To meet future high demand for secure communications
over public networks, the values ofNi = piqi must be allowed
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to escalate without an upper bound to achieve high system
capacity requirement when a cryptosystem is operated based
on the RSA scheme. When Ni is extremely large, it becomes
unrealistic to use the exponentiation modulo Ni algorithm to
implement data encryption because of excessive time com-
plexity. Therefore, a PGIS-based cryptosystem is preferred
because the abundant PGISs are available for a fixed Ni,
although implementing such a system requires more memory
and bandwidth.

B. COMPARISON BETWEEN PRIVATE-KEY AND
PROPOSED SCHEME
To most private-key cryptography, the operation of data
encryption between private key and message is based on
element-wise operation. We can take one-time pad scheme
as an example, where the XOR operation between two binary
streams is made in a bit-by-bit manner, which is a special case
of element-by-element manner. Circular convolution of two
sequences produces one sequence of the same period, where
value of the nth entry y[n] =

∑
s[τ ] · x[(n− τ)N ], defined

in (19), is the inner product of two sequences(vectors) s and
the n steps circular shift of x−1, denoted by x(n)

−1 = {x[(n −
τ )N ]}

N−1
τ=1 . We would call this kind of data encryption is based

on vector-wise operation, because the resultant output of each
entry is obtained from processing two sets of data, which are
two vectors, rather than two data elements.

Let sequence s = {s[n]}N−1n=0 , where s[n] = sn. This implies

s = s0 · δN + s1 · δN(1)
+ · · · + sN−1 · δN(N−1),

where δN(n) denotes the circular shift of δN to the right by n
steps. Based on the fact thatm⊗ δN(n)

=m(n), we can express
circular convolution betweenm and s as follows:

m⊗ s = s0 ·m+ s1 ·m(1)
+ · · · + sN−1 ·m(N−1). (28)

Private-key cryptography and the proposed scheme based
on PGISs are compared as follows:
1) Equation (28) implies that circular convolution between

m and s is a linear combination of m and its circular shifts,
which linear combination is obvious a vector-wise operation,
and the coefficients of linear combination and the number
of circular shifts are determined by the number of nonzero
elements of s. The vector-wise operation is more complex
than the element-wise operation, but the former one has
more potential to achieve confidential capacity to the pro-
posed cryptosystem. The reason is that the combination of
individual parts into single one is straightforward; however,
the inverse operation of decomposition the resultant output
into individual parts is difficult.
2) Different inner product of two vectors can result in the

same scalar output, and this is the reason circular convolution
features multiple-to-one mapping between different pairs of
sequence set {(xi, si)} and the resultant output y(= x1⊗ s1 =
· · · = xi ⊗ si = · · · ). Without the PGIS key, it is difficult
for an eavesdropper to extract information from a set of
ciphertexts, especially when the period N = pq of the PGIS

key is large enough, where the computing load of solving
multiple-to-one mapping problem is formidable.
3) Private key can only be used one time to the one-time

pad scheme, and to other private-key cryptosystem such as
DES and AES, reusing private key is still not suggested
from confidentiality point of view, especially because it is
an element-wise operation. Thus, to communicate between
n users in a public network, it needs n(n−1)

2 key exchanges,
which the number of key exchanges grows about as fast as
the number of people squared. The vector-wise operation
of the proposed scheme contributes not only confidentiality
but also the applicability of reusing the same PGIS key in a
public network. As shown in Section VIII, operating linear
combination to message and its circular shifts can contribute
larger differences to the resultant ciphertext, even though
messages have smaller differences between each other.

VII. ANALYSIS OF APPROXIMATION ERROR
Let A = {s1, s2, . . . , sm} be a set of PGISs. The cardinal-
ity m of A can be as large as needed, depending on the
capacity requirement of the cryptosystem.When more PGISs
of the same pattern are constructed from the solutions of
the same constraint equations, the values of the resultant
coefficients gradually increase. Therefore, energy levels of
these PGISs escalate. When plaintext is circularly convo-
luted with a PGIS that belongs to a higher energy level,
the energy of the associated ciphertexts escalates beyond that
of the ciphertexts convoluted with PGISs that contain smaller
coefficients.

Differing ciphertext energy levels might provide a method
for adversaries to sift through PGISs and initiate a ciphertext
attack. To overcome this problem and reduce the number of
digits required to represent the resultant ciphertext, all PGISs
in the same set should be normalized to the same unit energy.
In this case, the energy level of a ciphertext can remain the
same as that of the original plaintext; thus, all ciphertexts have
the same energy level. However, when the square root energy
√
E of a PGIS is an irrational number, the coefficients of the

normalized PGIS become irrational as well. This presents a
considerable challenge for the implementation and transmis-
sion of the resultant ciphertexts, given that an infinite number
of digits are required to represent an irrational number. In this
section, the performance of the proposed encryption scheme
is analyzed when the irrational coefficients of the normalized
PGISs are stored and processed using a finite number of
digits.

A. MODEL OF APPROXIMATION ERROR
Let sai = s + eai be the approximation of s performed
containing the first i digits of an irrational number, where
eai is the approximation error. Given that all sequences are
normalized with the unit energy, the values of all coefficients
of the sequences are less than one, except for those of the
degree-1 PGIS. Let ±0.d1d2 · · · di · · · be a typical irrational
coefficient, where the value of the ith digit di ∈ {0, 1, . . . , 9}.
We apply the following algorithm to operate the irrational
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FIGURE 2. Comparison of Ea
S of four periods.

number approximation:

di =

{
di, when di+1 ∈ {0, 1, . . . , 4},
di + 1, when di+1 ∈ {5, 6, . . . , 9}.

(29)

When di+1 ∈ {0, 1, . . . , 4}, we can preserve the former
i digits untouched to finish the approximation, which yields
±0.d1d2 · · · di. For di+1 ∈ {5, 6, . . . , 9}, when adding ‘‘1’’ to
the original ith digit does not cause overflow, the former i− 1
digits are maintained and di is substituted with di+1 to yield
±0.d1d2 · · · di−1(di + 1). When adding ‘‘1’’ to the original
ith digit causes overflow, di = 0 and di−1 = di−1 + 1 are
assigned, and overflow checking moves backward one digit
to the resultant di−1 + 1. This process should be performed
backward one digit at a time until the overflow stops. The
resultant approximation becomes ±0.d1d2 · · · dr−1(dr + 1)
where 1 ≤ r < i is the entry where the overflow stops.

The approximation error caused by using only i digits to
represent an irrational number is similar to that of quan-
tization noise caused by using finite quantization levels to
approximate an analog signal in a digital signal processing
unit. The quantization noise is modeled to be uniformly dis-
tributed within the interval [−12

1
2 ] and1 is the quantization

step. When the overflow problem is ignored, the approxima-
tion error in each entry of eai is located within the interval
[−10

−i

2
10−i
2 ]; thus, it can be modeled to be uniformly dis-

tributed within this interval as quantization noise. Given that
the variance of the uniform distribution is (10−i)2

12 and the size
of an approximation error vector isN×1, the overall variance
of the approximation error is N · 10

−2i

12 . When the error-to-

signal power ratio is defined as Ea
S =

|sai−s|2

|s|2 , where |s|2 = 1,
the ratio is given by

Ea
S
= −20i− 10 log 12+ 10 logN dB. (30)

Equation (30) indicates that a low error-to-signal power
ratio Ea

S can be achieved when more digits are used to

approximate an irrational number; however, processing and
transmitting the resultant ciphertexts requires additional
memory and bandwidth. In addition, the large period N of an
encryption key escalates the error-to-signal ratio. Fig. 2 com-
pares the Ea

S of four periods (N = 104, 106, 108, and 109),
when the number of digits varies from three to nine. This
figure shows that the Ea

S power ratio can reach to −50 dB
level, when there are four, five, and six digits for the periods
of N = 104, 106, and 108, respectively; and the Ea

S power
ratio decreases by −20 dB when one more digit is used for
approximation.

Fig. 3 presents the number of digits required to achieve
the desired Ea

S levels of−35,−45,−55, and−65 dB, respec-
tively, when the period of the PGIS is in the interval between
105 and 109. If the threshold of EaS power ratio is set at−45 dB
level, four to six digits are required to represent an irrational
number, five to seven digits are required to meet −55 dB
threshold, and so on. We can summarize the relationship
among Ea

S , the period of PGIS, and the number of digits as
follows:

1)When the period of the PGIS is fixed, the addition of one
more digit to approximate an irrational number contributes
a gain of 20 dB to the Ea

S power ratio; thus, an inverse
relationship exists between Ea

S and the number of digits.
2) When the required Ea

S power ratio is set as the threshold,
the period of the PGIS is proportional to the number of
digits required to achieve the desired Ea

S level; more digits
are required when the period of PGIS is increased.

B. SIMULATION EXAMPLES
In this section, s̄ denotes the normalized original PGIS s;
however, we retain the four coefficients ak , k = 0, 1, 2, and 3
of PGIS for simplicity. Let aki denote the approximation of
ak performed using the first i digits. For period N = pq,
the numbers of ak that appear in the PGIS are (p− 1)(q− 1),
p − 1, q − 1, and 1; thus, the actual approximation power
error should be (p − 1)(q − 1) · |a0i − a0|2+(p − 1) · |a1i −
a1|2+(q− 1) · |a2i − a2|2+|a3i − a3|2. The theoretical error-
to-signal power ratio of equation (30), which is Ea

S = −20i−
10 log 12+ 10 logN dB, provides a mathematical estimation
of the approximation error. We present two extreme exam-
ples to demonstrate the results of approximation, where the
coefficients of one PGIS are relatively small compared with
the other one, and the period of PGIS is N = 3 · 5, where
p = 3 and q = 5. The four coefficients of the first PGIS are
a0 = 20−10j, a1 = 10j, a2 = 8+2j, and a3 = −135−161j,
and the PGIS is normalized to be

s̄s =
1

3
√
5402

(a3, a0, a0, a2, a0, a1, a2, a0, a0,

a2, a1, a0, a2, a0, a0). (31)

To the second PGIS, each coefficient consists of ten
digits, which b0 = −1933763400 − 165925440j, b1 =
−133594380 + 183006000j, b2 = −1791601386 +
1432299606j, and b3 = 4630497750 + 152422992j.
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FIGURE 3. Number of digits required to achieve the desired Ea
S levels.

The normalized PGIS is given by

s̄l =
1
√
El

(b3, b0, b0, b2, b0, b1, b2, b0, b0,

b2, b1, b0, b2, b0, b0), (32)

where the energyEl of s̄l isEl ≈ 4.313209552479988×1019,
requiring 20 digits to represent the actual value of El . Let
s̄sk and s̄lk be the approximations of s̄s and s̄l obtained using
the first k digits. esk = s̄s − s̄sk and elk = s̄l − s̄lk denote
the approximation errors. The powers of approximation error
|s̄s − s̄sk |2 obtained using the first three to six digits of s̄s
are −56.2439, −75.2597, −95.2683, and −114.6637 dB,
respectively; whereas for the second s̄l , these values become
−55.7636, −74.7238, −93.9428, and −114.9137 dB,
respectively. These two examples demonstrate that the power
levels of the approximation errors of two normalized PGISs
are basically the same, regardless of the difference between
their original coefficients. Even the worst case, which is
−55.7636 dB, is still relatively small compared with general
noise, in which only three digits are used for approximation.

The period N = 15 of the preceding examples is rather
small, deviating from the longer period required for the
proposed scheme to achieve the desired security. However,
we can explain that as the period N increases from 15
to 15 × 1010, although the coefficients differ in order for
the associated sequence to be a PGIS, the relative power
of the error escalates from approximately 10 log 15 dB to
10 log(15 × 1010) dB, incurring an additional power loss of
10 · log(1010) = 100 dB. We can apply five more digits for
irrational coefficient approximation to compensate for this
additional power loss, because the inclusion of one more digit
to approximate the irrational coefficients contributes a 20 dB
power gain.

Let m= (1,−1,−1, 1, 1, 1,−1, 1,−1, 1,−1,−1, 1,−1, 1)
be themessage. Ciphertext cs = m⊗s̄s and cl = m⊗s̄l denote

the exact ciphertext generated using the exact normalized s̄s
and s̄l , respectively, and those generated using the approxi-
mations are denoted by csi and cli, respectively. The results
are expressed as follows:

cs = m⊗ s̄s

=
1

3
√
5402

(−159− 137j, 215+ 101j, 135+ 181j,

− 119− 177j,−151− 145j,−111− 185j,

167+ 149j,−111− 185j, 175+ 141j,

− 199− 97j, 135+ 181j, 215+ 101j,

− 159− 137j, 175+ 141j,−151− 145j),

cs3 = m⊗ s̄s3
≈ (−0.722− 0.622j, 0.976+ 0.46j, 0.612+ 0.82j,

− 0.54− 0.802j,−0.684− 0.658j,−0.502−0.838j,

0.756+ 0.676j,−0.502− 0.838j, 0.794+ 0.64j,

− 0.904− 0.442j, 0.612+ 0.82j, 0.976+ 0.46j,

− 0.722− 0.622j, 0.794+ 0.64j,−0.684− 0.658j),

cl3 = m⊗ s̄l3
≈ (0.217+ 0.509j,−0.781− 0.179j,−0.745+ 0.033j,

0.199+ 0.403j, 1.211− 0.357j, 1.913− 0.463j,

− 1.757+ 0.793j, 1.193− 0.463j,−0.763− 0.073j,

0.235+ 0.615j,−0.745+ 0.033j, 0.781− 0.179j,

0.217+ 0.509j,−0.763− 0.073j, 1.211− 0.357j),

(33)

and

cl =
1
√
El

(h0, h1, h2, h3, h4, h5, h6, h5, h7,

h8, h2, h1, h0, h7, h4), (34)

where El ≈ 4.313209552479988 × 1019, and h0 =
1434047658 + 3348873084j, h1 = −5136814350 −
1182136752j, h2 = −4897686510 + 213589008j, h3 =
1314483738 + 2651010204j, h4 = 7946511762 −
2346164220j, h5 = 7826947842 − 3044027100j, h6 =
−11529714534 + 5210763432j, h7 = −5017250430 −
484273872j, and h8 = 1553611578+ 4046735964j.
We ignore noise contamination to simplify the analysis and

comparison of performance using finite numbers of digits.
At the receiver end, the authorized receiver can apply the
exact encryption sequence s∗

−1 to decrypt the transmitted
approximation ciphertexts csk and clk , because the public key
can consist of original coefficients instead of the normalized
coefficients. We present only the results of ms3 and ml3 for
demonstration.

ms3 =
1
√
E
s∗
−1 ⊗ cs3

≈ (1.0012+ 0.0003j,−1.0018− 0.0008j,−0.9992

+ 0.0003j, 0.9999− 0.0002j, 0.9996+ 0.0011j,

0.9983+ 0.0006j,−0.9989− 0.0011j, 0.9983

+ 0.0006j,−1.0005− 0.0003j, 1.0025+ 0.0008j,
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− 0.9992+ 0.0003j,−1.0018− 0.0008j, 1.0012

+ 0.0003j,−1.0005− 0.0003j, 0.9996+ 0.0011j).

(35)

The plaintext m can be derived from ms3 in (35) through
estimation as follows:

ms3→ (1,−1,−1, 1, 1, 1,−1, 1,−1, 1,−1,−1, 1,−1, 1).

We have

ml3 =
1
√
E
s∗
−1 ⊗ cl3

≈ (0.9995+ 0.0014j,−0.9997− 0.0007j,−1.0001

− 0.0013j, 0.9996+ 0.0017j, 1.0002− 0.0015j,

1.0004− 0.0012j,−1.0007+ 0.0019j, 1.0004

− 0.0012j,−0.9999− 0.0010j, 0.9993+ 0.0011j,

− 1.0001− 0.0013j,−0.9997− 0.0007j, 0.9995

+ 0.0014j,−0.9999− 0.0010j, 1.0002− 0.0015j),

(36)

which

ml3→ (1,−1,−1, 1, 1, 1,−1, 1,−1, 1,−1,−1, 1,−1, 1).

To evaluate the overall errors caused from the coefficients
approximation of a normalized PGIS, we have

msk =
1
√
E
csk ⊗ s∗

−1 =
1
√
E
m⊗ (s− esk )⊗ s∗

−1

= m−
1
√
E
m⊗ esk ⊗ s∗

−1, (37)

and

csk = m⊗ ssk = cs −m⊗ esk , (38)

The equations (37) and (38) implies that

|m−msk |
2
=

1
E
|m⊗ esk ⊗ s∗

−1|
2
= |m⊗ esk |2

= |cs − csk |2, (39)

where 1
E |s|

2
=

1
E |s
∗

−1|
2
= 1.

We conclude that

|msk −m|2

|m|2
= |esk |2 = |s̄s − s̄sk |2. (40)

The equation (40) demonstrates that the power of the error-
to-signal ratio of the proposed cipher encryption is solely
determined by the approximation error, without calculation
of the noise contamination. When k digits are used to approx-
imate the normalized encryption key sequence, the memory
space and transmission bandwidth of the ciphertext are 2k
times those of plaintext because a complex coefficient has the
real and the imaginary two parts.

VIII. ADAPTATION TO IoT APPLICATIONS
With the fast development of IoT, the usage of various smart
applications such as smart home, smart traffic, and smart
cities are increased exponentially. However, the encryption
sequence s that can be generated by an authorized user
with the assigned public key (N , x0, y0, x1, y1,Ai,bi) and
private key p or q might not be realized at the node of
IoT devices due to the resource constraints (low computa-
tion power and low memory). Lightweight solution is the
required unique security feature for IoT platform.Theorem 7
provides a theoretical mean to adapt the proposed scheme
for IoT applications, where the computing load of construct-
ing the encryption PGIS key at the IoT devices can be
released.

Let w = {w [n]}N−1n=0 be a GIS of odd prime period N = p.
In addition, let a new GIS w′ =

{
w′ [n]

}mN−1
n=0 of period m ·N

be constructed by upsampling w, that is,

w′ [n] =

{
w
[ n
m

]
, n = 0,m, . . . , (N − 1)m

0, otherwise.
(41)

Theorem 7 [10]: Let w = {w [n]}N−1n=0 be a PGIS of finite
degree. The upsampledw′ in (41) is also a PGISwith the same
degree.

To operate the proposed scheme at the IoT platform, PGIS
w of prime period N = p can be implanted at the IoT devices
in advance, where the prime number p might not be large.
PGIS w should be kept secret, and we can update w when
it is necessary. Given that PGIS w is available, the upsam-
pled PGIS w′ becomes the encryption private key to create
ciphertext, where the upsampling factor m is determined by
the size of plaintext. The receiver end can apply w′∗

−1 to
decrypt the ciphertext. The modified version of proposed
scheme is characterized by lower computing load because the
upsampled w′ is a sparse PGIS, where (m − 1)p coefficients
of w′ are zeros.
Let ‘‘temperature is twenty degrees now’’ be the message.

This message consists of 33 units, which are 29 letters and
four empty space. We would like inserting two zeros at the
end of message to make it a composite number 35 = 5 × 7.
When 26 letters in the English alphabet {a, b, . . . , z} are
assigned with {1, 2, . . . , 26}, respectively, and 27 denotes
empty space. Message is transformed into a sequencem with
composite length 35, expressed as follows:

m = (20, 5, 13, 16, 5, 18, 1, 20, 21, 18, 5, 27, 9, 19,

27, 20, 23, 5, 14, 20, 25, 27, 4, 5, 7, 18, 5, 5,

19, 27, 14, 15, 23, 0, 0). (42)

A degree-5 PGIS w with period 5 is distributed in advance
to the IoT platform, which is

w = (1+ 2j, 6+ 2j, 1− 3j, 1+ 7j,−4+ 2j).

Because message m has 35 elements, the upsampling fac-
tor is chosen to be 7. This implies that the secret encryption
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PGIS w′ is given by

w′ = (1+ 2j, 0, 0, 0, 0, 0, 0, 6+ 2j, 0, 0, 0, 0, 0, 0,

1− 3j, 0, 0, 0, 0, 0, 0, 1+ 7j, 0, 0, 0, 0, 0, 0,

− 4+ 2j, 0, 0, 0, 0, 0, 0). (43)

The ciphertext obtained from taking circular convolution
between messagem and encryption key w′ is given by

c = w′ ⊗m

= (108+226j, 107+ 234j, 53+ 236j, 98+86j, 67+154j,

7+ 179j,−45+ 2j, 78+ 266j, 2+ 39j, 23+ 101j, 103

+ 56j, 42+149j, 42+129j,−70+125j, 78+221j, 162

+ 264j, 138+ 151j, 38+ 91j, 132+264j, 72+14j, 120

+ 95j, 153+ 226j, 42+ 74j, 118+121j,−2+151j, 42

+ 64j, 152+ 149j, 175+ 10j, 148+191j, 72+159j, 33

+ 121j, 3+ 96j, 152+ 239j,−130+ 49j, 70+ 70j).

(44)

Let ‘‘temperature is twenty degrees today’’ be the second
message, where ‘‘now’’ of the first message is replaced by
‘‘today’’ to form the second message. Let m1 denote the
transformed second message, where differences between two
messages are underlined.

m1= (20, 5, 13, 16, 5, 18, 1, 20, 21, 18, 5, 27, 9, 19,

27, 20, 23, 5, 14, 20, 25, 27, 4, 5, 7, 18, 5, 5,

19, 27, 20, 15, 4, 1, 25). (45)

c1=w′ ⊗m1

= (108+226j,107+234j,89+248j, 98+86j,−47+116j,

13+181j, 105+250j, 78+266j, 2+39j, 29+83j, 103

+56j, 23+206j, 43+126j,−45+50j, 78+221j, 162

+264j, 144+193j, 38+91j, 113+131j, 73+21j, 145

+ 270j, 153+226j, 42+74j,94+133j,−2+151j, 118

+ 26j, 148+151j, 75+60j, 148+191j, 72+159j, 39

+ 133j, 3+96j, 133+201j,−12+51j, 95+120j).

(46)

In (46), the number of Gaussian integers that are underlined
is 15. These Gaussian integers are the same as those appeared
in (44). The number of differences between m and m1 is
5, while there are four times differences between c and c1,
which is 20. Even though the encryption key w′ is with
small period and has only five nonzero coefficients, it still
achieves the goal of expanding differences between c and
c1 two ciphertexts. However, if PGIS s35, appeared in (18),
is applied to encrypt these two messages, the entire contents
of two ciphertexts,c2 and c3, are extremely different.

c2
= s35 ⊗m

= (−318−46j,−127+231j,−223+1719j,−828+2784j,

3−209j,−1102+2306j,−365+945j, 92+774j,−597

+ 2091j,−6480+1744j,−703+ 1109j,−757+2121j,

− 377+ 2181j,−905+ 3015j,−403+ 1009j,−822

+ 1466j,−813+ 2289j,−293+ 1929j,−212+ 936j,

− 1012+ 2836j,−1375+ 3125j,−393+ 1029j, 148

+ 606j,−93+579j,−613+1639j,−612+836j,−477

+ 1281j,−265+ 1845j,−23+ 369j,−907+ 2521j,

− 668+ 1004j,−883+ 2499j,−377+ 2181j,

− 212+ 936j,−340+ 820j). (47)

c3
= s35 ⊗m1

= (−378− 36j,−127+ 361j, 51+ 1977j,−838+ 2894j,

− 513+219j,−1148+2274j,−15+25j, 282+ 1284j,

− 607+ 2201j,−814+ 1122j,−763+ 1119j,−1023

+ 3049j,−173+ 2649j,−565+ 2075j,−653+ 639j,

− 882+ 1476j,−729+ 2167j,−103+ 2439j,

−488+ 1844j,−1248+ 2424j,−1085+ 2085j,

− 393+ 1159j, 338+ 1116j,−19+ 437j,−863

+ 1269j,−938+ 1644j,−463+ 1369j, 275+ 1305j,

− 33+ 479j,−1157+ 2151j,−854+ 1392j,−883

+ 2629j, 212+ 1494j,−243+ 1109j,−1115+ 2025j).

(48)

The following example demonstrates that the same sparse
PGIS w′ does achieve the capacity of expanding differences
to the resultant ciphertexts when two messages are similar.
Let ‘‘the temperature is six degrees now’’ be the third mes-
sage, and the first message is still ‘‘temperature is twenty
degrees now’’.

m3= (20, 8, 5, 20, 5, 13, 16, 5, 18, 1, 20, 21, 18, 5,

27, 9, 19, 27, 19, 9, 24, 27, 4, 5, 7, 18, 5, 5,

19, 27, 14, 15, 23, 0, 0). (49)

c4=w′ ⊗m3

= (168+ 196j, 111+ 157j, 109+ 158j, 64+ 278j, 96

+ 177j,−45+110j, 25+195j, 63+236j, 61+17j,−26

+ 43j, 54+138j, 16+147j, 65+115j, 10+125j,−12

+ 191j, 136+227j, 24+133j, 154+153j, 101+262j,

110+25j, 50+20j, 138+271j,−24+82j, 69+108j,

149+178j, 66+92j, 90+65j, 170+155j, 133+86j,

46+ 177j, 44− 2j, 24+ 143j, 151+ 182j, 5+ 135j,

−5+ 5j). (50)

Though there exists no much difference between m and
m3, the contents of c1 and c4, from (44) and (50), which are
encrypted by the same PGIS with 30 zero coefficients, are
extremely different. We may consider the third message m3
is similar to message permutation, which the scrambled mes-
sage can be unrecognizable to avoid malicious cryptanalysts.
The final example demonstrates the actual result of message
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permutation. When the first three letters ‘‘twe’’ of ‘‘twenty’’
are moved to first three entries, the resultant messagem4 and
cypertext c5 are given, respectively, as follows:

m4= (20, 23, 5, 20, 5, 13, 16, 5, 18, 1, 20, 21, 18, 5,

27, 9, 19, 27, 14, 20, 25, 27, 4, 5, 7, 18, 5, 5,

19, 27, 14, 15, 23, 0, 0), (51)

c5=w′ ⊗m4

= (168+ 196j, 126+ 187j, 109+ 158j, 64+ 278j, 91

+142j,−34+187j,26+202j,63+236j,151+47j,−26

+ 43j, 54+138j, 36+137j, 21+137j, 6+127j,−12

+ 191j, 151+182j, 24+133j, 154+153j, 96+252j,

121+47j, 51+22j, 138+271j,−9+187j, 69+108j,

149+178j, 36+82j, 156+87j, 176+157j, 133+86j,

− 14+ 207j, 44−2j, 24+143j, 146+197j, 16+102j,

− 4+ 2j). (52)

There are no common elements between c and c5.

IX. CONCLUSION
This study proposes a novel hybrid public/private key cryp-
tography based on circular convolution over a set of PGISs
of period N = pq. We show that circular convolution over
PGISs is a trapdoor one-way permutation function involving
the simultaneous performance of encryption and digital sig-
natures. The abundant PGISs contribute to the high capacity
of the associated cryptosystem; however, this system has
the drawbacks of greater memory and bandwidth consump-
tion. Data encryption using circular convolution is consid-
ered a vector-wise operation, thus it has more potential to
achieve higher level of confidentiality than those private-key
cryptography based on element-wise operation. In addition,
circular convolution is equivalent to linear combination of
message and its circular shifts, which is characterized by low
computing load. These two properties make the proposed
hybrid public/private key cryptography a candidate scheme
for future lightweight cryptosystem.

NOTATION AND SYMBOLS
Z×N {1, 2, . . . ,N − 1}
ZN = {0} ∪ Z×N
δN delta sequence of period N
s = {s[n]}N−1n=0 PGIS of period N
s−1 = {s[(−n)N ]}

N−1
n=0

S DFT of s
E energy of s
Rs = {Rs[τ ]}

N−1
τ=0 PACF of s

Rs[τ ] =

N−1∑
n=0

s[n]s∗[(n− τ )N ]

s(i) i-step circular shift of s
xn + jyn a Gaussian integer, j =

√
−1

Ai coefficient matrix

ci ciphertext
mi plaintext
m̂i estimation of mi
⊗ circular convolution
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