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ABSTRACT Rectification is a core programming process that involves multiple views. In this study,
we focus on uncalibrated cases that neglect intrinsic and extrinsic camera information. Existing uncalibrated
rectification methods use feature-matching techniques to form relationships between different views and
use those features to estimate optimized homography matrices. However, outliers are inevitable in feature
matching. Using these outliers in a rectification process produces vertical disparity errors and unwanted
geometric distortion. To tackle the problem, we propose a novel method that can learn from the rectification
results, re-select the matching pairs, and find superior solutions. The proposed method introduces a novel
workflow for uncalibrated rectification that incorporates three cores: field of view (FoV) neutralization,
rectification, and feature matching re-selection (FMR). While the FoV neutralization module handles FoV
differences among views, a combination of the rectification module and FMR module results in the optimal
homography matrices. The rectification module takes neutral correspondences and estimates the optimized
rectified matrices. Applying the results from the rectification module, the FMR module optimizes the
correspondences and return them to the rectification module. For the rectification module, we apply adaptive
geometric constraints and our updated optimization strategy to secure satisfied vertical disparity errors while
maintaining low distortion levels. Multidisciplinary experiments are performed to analyze the capabilities
of the proposed method. We combine existing datasets with extra samples, including various outdoor
environments, to gauge the performance better. Compared with existing methods, the proposed method
produces fewer rectification errors and keeps the rectified images under low distortion rates.

INDEX TERMS Different fields of view, feature matching re-selection, low distortion, multiple views,
uncalibrated rectification.

I. INTRODUCTION
Applications with multiple views have become popular in
recent years for both consumer products and industrial activ-
ities. Multiple cameras provide information that cannot be
generated by a single camera, such as depth information that
can be computed through stereoscopic vision. By replicating
human vision, stereo systems can recreate depth information
from the real world using two cameras. Compared with light
detection and ranging (LiDAR) sensors, which also provide
depth information, stereo vision is more compact, less expen-
sive, capable of working in hostile conditions such as rain or
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snow, and can operate over long periods due to low energy
needs.

Stereo vision is commonly applied in several industrial
contexts [1], [2] including stereo matching [4], robotics [3],
and autonomous vehicles [5]–[7]. Rectification plays an
important role in stereo vision, reducing the computational
cost of the correspondence process, which is the first and
crucial step. While image registration method [8] finds the
most suitable stationary reference images to fit the target
images, rectification involves a projective transformation of
input images to parallel their epipole lines. The image rectifi-
cation process is illustrated in Fig. 1. After being rectified,
matching processes on the images are simplified from a
two-dimensional window searching to one-dimensional line
scanning.
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FIGURE 1. Image rectification.

In the calibration of cameras, computation of the homo-
graphies of rectification is straightforward. However, cal-
ibration can be is tedious. The pioneers of rectification
research, Ayache and Francis [9] and Fusiello et al. [10], con-
sidered both the internal and external information of cameras.
To avoid depending on intrinsic and extrinsic parameters,
researchers use various restraints to control the number of
possible solutions. Most such methods are based on epipolar
geometry theory [11]. Hartley [12], [13] are among the first
to explore uncalibrated rectification. Their method involves
keeping one of two homographies close to a rigid transfor-
mation while optimizing the other. Loop and Zhang [14]
approached from a different perspective, separating homo-
graphies into an affine transformation and a projective trans-
formation. Unlike those who work with planar surfaces,
Pollefeys et al. [15] reprojected images onto a cylindrical
surface. This method is suitable for images in which epipoles
are within or close to each other.

The results of rectification are homography matrices.
By using homographies, multi-view applications perform
warping procedures to transform an initial captured images
into a rectified input. The only way to prevent unwanted dis-
tortion due to warping is to optimize the homography matri-
ces. Several research teams used deep learning to decrease
distortion rates of a single image [16], [17]. For stereo vision,
the epipolar constraints need to be satisfied and low distortion
values on rectified images are crucial. Mallon and Whelen
[18] applied singular vector decomposition to a first-order
approximation of an orthogonal-like transformation to reduce
the effects of distortion. Without using explicit computation
of fundamental matrices, Isgro and Trucco [20] proposed cal-
culating homographies by minimizing disparities [12]. How-
ever, the disparity constraint can cause extreme distortion
on rectified images. Wu and Yu [19] combined a previously
proposed idea [20] with a shearing transform to reduce dis-
tortion. A rectification algorithm based on Quasi-Euclidean
epipolar was proposed by Fusiello and Irsara [21], who
approximated the Euclidean (calibrated) case by enforcing
the rectifying transformation with collineation induced by

the plane at infinity. Using the same Quasi-Euclidean con-
straints, Ko et al. [22] enhanced the algorithm by taking into
account the impact of multiple types of geometric distortions
in their computations. In the case of handheld devices such
as smartphones, Xiao et al. [23] proposed a low distortion
rectification method under uncalibrated scenarios.

All these methods assumes that cameras use the same focal
lengths. This means that images captured by those cameras
share a similar field of view (FoV). However, in real-world
applications such as industrial robots or autonomous vehicles,
camera systems often use a variety of focal lengths. A lens
with a wide FoV is designed to capture close objects in
larger contexts, while those with a narrow FoV can empha-
size distant objects. Differences in FoV and large baselines
often cause errors in rectification. Few studies have been
published on this field. Kumar et al. [24], [25] explored how
to balance object sizes in dissimilar FoV scenarios. How-
ever, their approach needs focal length information [24]
or a calibration process [25]. Dinh et al. [26] presented the
first algorithm that estimated a re-scaling ratio using cor-
respondence information by including a FoV compensa-
tion module. Their method is inefficient because it requires
repeating scale-invariant feature transform (SIFT) proce-
dure [27]. Moreover, due to the lack of feature matching
enhancement, their method is robustly affected by outliers.
Finally, because of the lack of module to control for geo-
metric errors, rectified images are generally over-distorted
when produced under dissimilar FoVs. Recently, Tran and
Nguyen [29] proposed including a FoV neutralization mod-
ule and rectification process with adaptive geometric con-
straints (R-wAGC). This method can keep rectified images
under geometric thresholds while minimizing vertical dispar-
ity errors.

All uncalibrated rectification algorithms require matching
input pairs. Matching pairs are the results from feature match-
ing techniques such as SIFT [27] or oriented fast and rotated
BRIEF [28]. However, thesematching pairs are imperfect and
include outliers that, in some cases, can cause crucial mis-
calculations in the optimization process, particularly when
rectification is used to satisfymultiple purposes.We proposed
a method that can learn from its own rectification results and
enhance the set of correspondences. The proposed method
works great in both normal and dissimilar FoV conditions.
We also enhanced the optimization strategy described in Tran
and Nguyen [29]. The updated strategy requires fewer empir-
ical parameters and provide superior stability between rectifi-
cation and geometric errors. Our proposed method addresses
each of the problems discussed previously. The experimental
results show that the proposed algorithm outperforms other
benchmark methods in terms of both vertical disparity errors
and geometric errors. The main contributions of our paper are
summarized below.

• We proposed a new pipeline inherited from Tran and
Nguyen [29] for uncalibrated rectification in both nor-
mal conditions and with different FoV circumstances.
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The inclusion of an FMR module means our approach
can learn from its own results to enhance correspon-
dence inputs. The resulting rectified images exhibit sig-
nificant improvement in quality.

• We also introduced a new optimization strategy. The
upgraded version produces lower rectification errors and
remove unwanted artifacts associated with distortion.

• We increased the SKKU-dFoVs dataset by adding lens
combinations. We also developed an extra dataset,
SKKU-dFoVs+, which includes dissimilar FoVs. How-
ever, for the new dataset, we focused on hostile condi-
tions, such as blurring, overexposure, or dim lighting.

The rest of the paper is organized as follows. In Section II,
we provide a brief summary of uncalibrated rectification and
the Tran and Nguyen [29] method. In Section III, we describe
a workflow for uncalibrated rectification and the role and
operation of feature matching re-selection (FMR). We then
demonstrate our enhanced rectification strategy. Section IV
supplies an analysis of our experiments using four different
datasets. Last, we discuss possible improvements and conclu-
sions in Section V.

II. PRELIMINARY
A. UNCALIBRATED RECTIFICATION
The corresponding pairs in two images are on the same
horizontal axis when they are rectified. The cameras used
for capturing must fulfill the pinhole model assumption [12].
The views from those cameras needs to be under the epipolar
constraint to perform rectification. The epipolar constraint is
defined as:

XTl FXr = 0 (1)

where Xl and Xr are the homogeneous coordinates of match-
ing points (x, y, 1). The subscripts l for left and r for right
definewhich image thematrix belong to.F is the fundamental
3× 3 matrix. For rectification, F is defined by the following
equation:

F = F∞ = [e1]× =

 0 0 0
0 0 −1
0 1 0

 (2)

The fundamental matrix F is:

F = HT
l [e1]×Hr (3)

whereHl andHr are the invertible 3×3 homographymatrices
for the left and right cameras, respectively. The homography
matrixH can be derived as the combination of rotation matrix
R and the internal matrix K.

H = KnRK−1o (4)

TheKmatrix contains the unresolved focal length f and the
principal point P(xP, yP). Generally, with the pinhole model
assumption [12], the center point of the images is the principal

FIGURE 2. Rectification workflow for dissimilar FoV scenarios.

point. The following equation describes theKmatrix format:

K =

 f 0 xP
0 f yP
0 1 1

 (5)

Three rotation coordinates x, y, and z apply to a camera
in affine space when it comes to rotation matrices. Rx , Ry,
and Rz are the three rotation matrices for each camera. The
rotating angle for each rotation matrix is represented by θ
value.

From Eq.(1), the relationship between K, R, and H matri-
ces can be described as:

XT
l K
−1TRT

l K
T [e1]×KRrK

−1Xr = 0 (6)

The Sampson error defined in [21] is commonly used for
the optimization process.

ESampson(Xl,Xr )2 =
E(Xl,Xr )2∥∥[e3]×FTXl
∥∥2 + ∥∥[e3]×FXr

∥∥2 (7)

where [e3]× =

 0 −1 0
1 0 0
0 0 0

.

The x-axis of the left camera is treated as an anchor and set
to 0. The optimization process is looking for six optimized
parameters ( θly θlz θrx θry θrz g ) which minimizes Sampson
errors, where f = 3g(w + h). The parameter g, with a range
of[−1, 1], controls the focal length f in aKmatrix. The width
and the height of the input images are defined as w and h,
respectively.

B. UNCALIBRATED RECTIFICATION WITH LOW
GEOMETRIC DISTORTION
In Tran and Nguyen [29], the proposed method is relatively
accurate and comes with a low distortion rate. The algorithm
work great in both normal and dissimilar FoV scenarios.
Fig. 2 demonstrates the workflow of [29] algorithm:

The workflow contains three main modules: matching pair
generation (MPG), field of view neutralization (FoV neu-
tralization), and rectification. The outputs from each module
affect the next module’s outputs and final results. In MPG,
the correspondences {ml,mr } are generated for left and right
images, respectively, by combining the existing SIFT [27]
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methodwith a neural-guided RANSAC (NG-RANSAC) [30].
The number of correspondences {ml,mr } are marked as N .
Using the correspondences {ml,mr } as inputs, the FoV

neutralization module estimates the approximate dissimilar
ratio γ between left and right images. Due to the cameras’
focal lengths, objects in wide views (small focal lengths) are
smaller than those in narrow views (large focal lengths). The
method automatically recognizes the narrower views. To sim-
plify notation, we assume that narrower FoV images are on
the left side. Based on this assumption, the dissimilarity ratio
γ is in the (0, 1] range, which is calculated by:

γ =

N∑
i=1

d il
/
d ir

N
(8)

where D1l : {d il , . . . , d
N
l } and D1r : {d ir , . . . , d

N
r } are

the Manhattan distances for ml and mr , respectively. Using
dissimilarity ratio γ , the method applies a transformation
matrix Hbalance onto narrower FoV images. Hbalance can be
expressed as

Hbalance =


γ 0 w

1− γ
2

0 γ h
1− γ
2

0 1 1

 (9)

Matching points ml are converted to mbl , using the similar
transformation matrix Hbalance. To maintain uniformity in
notation, the balanced correspondences are defined asmbl and
mbr for the left and right images, respectively.

Next, the FoV neutralization module uses the dissimilarity
ratio γ to remove correspondences in blind areas. Due to the
assumption that right cameras have wider FoVs, blind areas
are the regions that the left cameras cannot see. A new set
of correspondences belonging to viewable areas, {mblo;mbro}
are selected from the mbl and mbr pool. The new correspon-
dences must satisfy the following conditions:

w(
1+ γ
2

) > x > w(1− γ ), h(
1+ γ
2

) > y > h(1− γ )

(10)

The FoV neutralization module then calculates the
sequences V : {vi, . . . , vM1} containing M1 elements of L1
distances between mblo and mbro. The system now estimates
the variance σ 2

V between vi ∈ V.

σ 2
V =

1
M1

M1∑
i=1

(vi − µr )2 (11)

The {miblo;m
i
blo} pairs for which (σVi > σV) are then

removed. The remaining correspondences are denoted as
(mfl;mfr ) withM2 elements.

Unlike the original rectification method [21], [26],
the algorithms are extended to look for the nine optimized
parameters [22], [29]: ( θly θlz θrx θry θrz gl gr tl tr ). Instead
of using the same focal length f for both left and right

images, the authors used different values of f for each images,
resulting in different values for Kl and Kr .

Kl =

 fl 0 xC
0 fl yC
0 1 1

 and Kr =

 fr 0 xC
0 fr yC
0 1 1


Other extra parameters are the translation parameters: tl

and tr , which stand for left and right translation values,
respectively. Eq.(6) can be described as:

(KlTlRlK−1l )T [e1]×(KrTrRrK−1r ) (12)

where,

Tl =

 1 0 0
0 1 tl
0 0 1

 and Tr =

 1 0 0
0 1 tr
0 0 1


To lower the distortion level, Ko et al. [22] and Tran

and Nguyen [29] both use four geometric constraints: the
modified aspect ratio EAR, skewness ESK , rotation angle
ER, and size ratio ESR. They defined four corner points
(a1, a2, a3, a4), four middle points (b1, b2, b3, b4) and the
center point of input images o.

EAR =
1
2
(
a1′o′

a3′o′
+
a2′o′

a4′o′
), ESK =

1
4

4∑
i=1

(
∣∣90o − 6 CAi∣∣)

ER = cos−1(
ob2.o′b2′∣∣ob2∣∣ ∣∣∣o′b2′∣∣∣ ), ESR =

Arearec
Areaorginal

(13)

The cost function defined in [29] is the combination of a
Sampson error ESampson and four geometric constraints:

C(ϕ) =
1
2
(ESampson +

∑
X̂

ρ́X̂

NX̂
EX̂ ), where ρ́X̂ = 1/nX̂

(14)

where X can be AR, SK , R, or SR.NX is a normalization terms
that considers their value ranges.

NAR = 1.5, NSK = 6.5, NR = 18.5, NSR = 2.5 (15)

The sum of ρX̂ is equal to 1. ESampson and EGX̂ therefore
are weighted evenly to the cost function:∑

X̂

ρX̂ = 1,where X̂ = {x̂|x̂ is active term, and x̂ ∈ X}

(16)

where nX̂ as the number of effective geometric terms. In both
USR-CGD [22] and Tran and Nguyen [29], the thresholds for
geometric parameters are predefined as follows:

0.8 ≤ EAR ≤ 1.2, ESK ≤ 5◦,

0.8 ≤ ESR ≤ 1.2, ER ≤ 30◦ (17)

According to [29], to find optimal solutions for the cost
function in Eq.(14), the system uses Levenberg-Marquardt
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algorithms [31] and follows a strategy represented in Algo-
rithm 1. The reduction ratio ψ between ϕi and ϕi+1 is calcu-
lated as:

ψ =
C(ϕi+1)

1(C(ϕi),C(ϕi+1))
(18)

where C(ϕi) is the errors of ϕi parameters, and C(ϕi+1) rep-
resents the errors of the predicting parameters. The damping
parameter λ is a non-negative component controlling the
reduction rates of the cost function.

Algorithm 1 Optimization Algorithm
Require: , (mfl;mfr )
Ensure: Optimized ϕ
ϕ0 = 0
λ = 10−3

iterationmax = 300
Tψ = 1e3, Cmax = 10−2M
while C(ϕi) > Cmax and iteration < iterationmax do

if 1(C(ϕi+1),C(ϕi)) < T1C then
accept ϕi, stop the optimization

else if C(ϕi+1) > C(ϕi) then
deny ϕi+1, increase λ

else
Calculate ψi =

C(ϕi+1)
1(C(ϕi),C(ϕi+1))

if ψi > Tψ and
∑̂
X

EGX̂ > 0 then

deny ϕi+1, increase λ
else

accept ϕi+1
λ = λ/ψi

end if
end if

end while

III. PROPOSED METHOD
A. FEATURE MATCHING RE-SELECTION MODULE AND
NOVEL PIPELINE
Despite the previously reported outstanding performance of
the FoV neutralization module [29], misleading matching
pairs remain in the final optimization process and inaccu-
rate correspondences are inevitable. To lower the impact of
incorrect inputs, we proposed our new workflow with a FMR
module. As shown in Fig. 3, the FMR module analyzes the
rectification results and selects the optimal matching pairs.
The idea was inspired by machine learning technologies
in which inaccurate correspondences are gradually removed
from the pool by observing the results of rectification.

The standardmeasurement to remove the outliers from fea-
ture matching process is vertical disparity error. The vertical
disparity error of (mil,m

i
r ) matching pair is calculated as:

(Ev)i =
∣∣∣(Hlmil

)
2
−

(
Hrmir

)
2

∣∣∣ (19)

where Hl and Hr are outputs from the rectification mod-
ule. We also removed the correspondence optimization

FIGURE 3. Proposed workflow for uncalibrated rectification with a FMR
module.

sub-module from the FoV neutralization module because
FMR module removes outliers. Our new FMR module cov-
ers the function of correspondence optimization sub-module.
From the correspondences {mbl,mbr } having M1 elements
which is the output of the dissimilar ratio estimation module,
we estimate J : {Evi , . . . ,EvM1

}, the set of vertical dispar-
ity errors. Those pairs for which Evi > Tver_disp_err were
removed from the pool. In this work, we set Tver_disp_err =
0.5 pixel. The remaining pairs were fed back to the rectifica-
tion module. Hl and Hr from the rectification module were
accepted if those conditions were satisfied:

Ev(J) = 0, or M1 < 10 (20)

where

Ev(J) =
1
M1

M1∑
i=1

(Ev)i (21)

While the first condition stops FMR module when there is
no outlier, the second condition works as a safe trigger to keep
enough input correspondences for the rectification stage.

Fig. 4 provides an illustration of our FMR module. In this
example, the system proceeded through three iterations and
the wrong matching pairs were gradually removed from the
correspondence pool.

B. IMPROVED OPTIMIZATION STRATEGY
In Algorithm 1, the damping parameter λ plays a critical role
in the optimization process, controlling the direction of the
optimizing process. For rectification processes that do not
involve geometric errors such as [21], [26], λ typically only
works with the rectification error itself. However, in [22],
[29], geometrical terms are parts of the process. The λ adjust-
ment now needs to consider the geometric errors generated
at each step of the procedure. Ko et al. [22], they use a cost
function expressed as a combination of the Sampson error
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FIGURE 4. A demonstration of the feature matching re-selection module.
The sample is 0804_900mm from SKKU-dFoVs dataset.

and geometric errors. By evaluating the combined cost func-
tion, the authors change λ accordingly to the Levenberg-
Marquardt [31] method. Tran and Nguyen [29] used the same
technique with their optimization strategy shown in the Algo-
rithm 1. In this work, we followed Tran et al.’s optimization
strategy with two modifications.

First, we removed Tψ = 1e3, the threshold value for the
reduction ratio ψ . Generally, if ψ is too high, the conver-
gences are too fast and the optimizing process can bypass the
optimal solution. The purpose of Tψ is to prevent careless
convergences. However, as Tψ is an empirical value, it will
not work in every case. By removing Tψ , we improved the
generalization of the entire process.

Second, after removing Tψ , the process needs to be modi-
fied to handle the speed of convergences.Without Tψ , we pro-
posed Algorithm 2, an updated version of Algorithm 1. In the
updated strategy, when the C(ϕi+1) ≤ C(ϕi), we only con-
sidered one condition, specifically

∑̂
X

EGX̂ > 0. If the above

scheme appears, we calculated two outputs with two different
λ values and compared them. The two trial λt1 and λt2 values
were calculated as:

λt1 = λi ∗ λbase_fact and λt2 = λi/ψi (22)

where λi andψi are the λ and reduction rate at the ith iteration.
λbasef act is the parameter used for increasing damping value,

TABLE 4. Run time of the compared methods.

which is generally set to 10 in most rectification methods
using Levenberg-Marquardt’smethod such as [21], [22], [26],
[29]. By comparingC(ϕλt1 ) andC(ϕλt2 ), which are computed
using Eq.(14), we selected the λ value if its C(ϕ) was smaller
than that of another scenario. Because the cost functionC(ϕλ)
is based on Eq.(14) in which both ESampson and geometric
errors EG are taken into account evenly, a smaller value
between C(ϕλt1 ) and C(ϕλt2 ) represents a superior route for
the optimization process. Details of the improved optimiza-
tion strategy are shown in Algorithm 2.

Algorithm 2 Updated Optimization Algorithm
Require: , (mfl;mfr )
Ensure: Optimized ϕ
ϕ0 = 0
λ = 10−3, λbase_fact = 10
iterationmax = 300
–————-Tψ = 1e3, Cmax = 10−2M
while C(ϕi) > Cmax and iteration < iterationmax do

if 1(C(ϕi+1),C(ϕi)) < T1C then
accept ϕi, stop the optimization

else if C(ϕi+1) > C(ϕi) then
deny ϕi+1, λt1 = λi ∗ λbase_fact

else
Calculate ψi =

C(ϕi+1)
1(C(ϕi),C(ϕi+1))

if———–––ψi > Tψ and
∑̂
X

EGX̂ > 0 then

—————————deny ϕi+1, increase λ
Calculate λt1 = λi ∗ λbase_fact , λt2 = λi/ψi
if C(ϕλt1 ) < C(ϕλt2 ) then

deny ϕi+1, λt1 = λi ∗ λbase_fact
else

accept ϕi+1, λ = λ/ψi
end if

else
accept ϕi+1, λ = λ/ψi

end if
end if

end while

IV. EXPERIMENTS
A. EXPERIMENT DATABASES
We used total four different datasets to evaluate algorithms.
These are Syntim [32], MCL-RS [33], SKKU-dFoVs [29],
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TABLE 1. Dataset information.

FIGURE 5. Comparison of vertical disparity errors and geometric distortion for Serfaty0_OG2 in the Syntim database.

and SKKU-dFoVs+. While Syntim and MCL-RS are for
normal cases and most are captured indoors, SKKU-dFoVs
focuses on dissimilar FoV scenarios in outside environments.
The images in the SKKU-dFoVs dataset were captured using
Sony XCL-C130C cameras. Left and right cameras are linked
to a MATROX frame grabber to capture images simulta-
neously. The baselines between cameras vary from 300mm
to 900mm. In [29], the SKKU-dFoVs dataset contains five
lens combinations: 8mm_4mm, 8mm_6mm, 8mm_8mm,
12mm_8mm, and 16mm_12mm. In this work, we add one
new combination 16mm_8mm.We also addmore cases to the
existing pairs and an extra dataset containing images of ran-
dom lens combinations with multiple environmental condi-

tions such as overexposure, low-light or blurring. We named
these extra datasets SKKU-dFoVs+. The details of dataset
information is provided in Table 1.

B. PERFORMANCE EVALUATION
We compared our proposed method to four rectification algo-
rithms: Fusiello and Irsara [21], USR-CGD [22], Vinh [26],
Tran et al. [29]. We used the vertical disparity error Ev(Z ) in
Eq.(22) as the objective error measurement, with Z as the
final correspondence set generated by our proposed algo-
rithm. In addition to the standard measurement, we used
the modified aspect ratio EAR, skewness ESK , rotation angle
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TABLE 2. Performance comparison of five rectification methods in terms of vertical disparity error and geometric errors.
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TABLE 3. The comparison between tran and the proposed method in terms of geometric distortion errors.

FIGURE 6. Comparison of vertical disparity errors and geometric distortion for RTCC in the MCL-RS database.

ER, and size ratio ESR, as subjective measures. By using the
geometric thresholds in Eq.(13) as references, we calculated
the geometric error EG as:

EG =
∑
X̂

ρ́X̂

NX̂
EX̂ , where ρ́X̂ = 1/nX̂ (23)

where X can be AR, SK , R, or SR. NX is the normalization
term that considers the value ranges, mentioned in Eq.(17).
Table 2 provides results for the vertical disparity error Ev(Z )
and the geometric error EG for five benchmark algorithms.
For each dataset, we calculated the additional mean values
of Ev(Z ) and EG, along with the individual result for each
image pair. Optimal results are in bold. In Table 3, we directly
compare the new proposed method to the Tran et al. [29]
method for both rectification error and each geometric term.
In Table 4, we compare the running times between benchmark
methods.

In the experiments, we applied SIFT [27] and then
NG-RANSAC [30] to derive the initial correspondences
between two input images. In case of NG-RANSAC, a pre-
trained model was used. The model was trained on KITTI
datasets and the matching pairs are generated by using
SIFT method. During the experiments, the number of

correspondences varied between image pairs. However, for
a particular image pair, the number of input matching pairs
was the same for every benchmark algorithm to maintain
the consistency. The PC used for the experiments had a core
i7-8700 3.20Ghz processor and 32GB of RAM. All programs
were run on Windows 10.

In the first comparison, as shown in Table 2, our results
outperformed those of other algorithms. Fusiello and Vinh’s
method achieved extremely high values in both vertical dis-
parity error Ev(Z ) and geometric error EG. The reason is
that their method does not include modules that can pro-
cess matching input pairs and geometric distortion. Vinh’s
method, because of its FoV neutralization module, can pro-
cess some relatively simple cases in the SKKU-dFoVs and
SKKU-dFoVs+ datasets. Unfortunately, when the differ-
ences between focal length are large or the distances between
two cameras are great, their method begins to introduce
errors. The USR-CGD method encountered the same prob-
lem, although it performed well in normal cases without the
benefit of a FoV neutralization module. In some experiments,
the Ev(Z ) results of USR-CGD or Tran were smaller than
ours. However, their geometric error EG rose up. In most
cases, our rectification method achieved the lowest vertical
disparity error Ev(Z ), resulting in the lowest mean values for
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FIGURE 7. Comparison of vertical disparity errors and geometric distortion for 0804_900mm in the SKKU_dFoVs database.

FIGURE 8. Comparison of vertical disparity errors and geometric distortion for Back_Yard in the SKKU_dFoVs+ database.

the MCL-RS, SKKU-dFoVs, and SKKU-dFoVs+ datasets.
For the Syntim dataset, although the USR-CGD method pro-

duced a lower vertical disparity error Ev(Z ) than our method,
it also contained geometric error. For all samples in four
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datasets, our method consistently kept the EG = 0, meaning
that all of our geometric errors were under the defined geo-
metric thresholds in Eq.(17). For each dataset, we selected
one example and presented them in Fig. 5, Fig. 6, Fig. 7, and
Fig. 8.

Because of our proposed method and Tran’s share many
similarities, they can be directly compared. In Table 3,
we compared the vertical disparity error Ev(Z ) and also each
of the geometric terms including the modified aspect ratio
EAR, skewness ESK , rotation angle ER, and size ratio ESR.
In terms of vertical disparity error, our proposed method
outperformed Tran’s due to our FMRmodule, which acquired
superior correspondences. Compared to our optimized cor-
respondences, Tran’s rectification module needs to handle
inputs with many outliers. In terms of geometric errors,
results were comparable between our method and Tran’.
However, in terms of size ratio ESR, Tran’s method lost
control in the SKKU-dFoVs and SKKU-dFoVs datasets, pro-
ducing values that are exceeded the geometric thresholds in
Eq.(17). Our new and updated optimization strategy play a
crucial part in geometrical results. We retained the balance
between vertical disparity error Ev(Z ) and geometric distor-
tion to identify the optimal solution based on that definition.

Table 4 displays the running times for five benchmark
methods using all 57 samples from four datasets. The FoV
neutralization running times and rectification running times
are shown separately. The executing times of initial SIFT and
NG-RANSAC are excluded because they are the same for
every benchmark method. According to the results, Dinh’s
method has the longest running time in the FoV neutralization
step because it requires an extra SIFT operation. Because
of the removal of correspondence optimization sub-module
in our FoV neutralization module, our running times were
slightly shorter than those produced by Tran’s method. In the
rectification phase, Fusiello and Dinh’s method required
multiple iterations to find the optimal solutions. The USR-
CGD method converged extremely fast, and it is the fastest
algorithm in this phase. However, Tran’s method was not
notably slower than USR-CGD, because they used a strategy
to prevent a local optimal that cost them fewer iterations com-
pared with USR-CGD. Our method requires longer times for
rectification than other methods due to the nature of our FMR
module. However, the average running time of our method
was still under 1 s, which is tolerable for a pre-processing
task that does not need to run continuously as rectification.

V. CONCLUSION
We presented an uncalibrated rectification method that can
balance the trade-off between vertical disparity error and
geometric errors. The built-in FMR module improved the
overall quality of the input correspondences. It helped remove
noisy outliers from the matching pairs to identify the most
suitable set of parameters. Our proposed optimization strat-
egy also made significant impacts on the final results. While
our vertical disparity errors were superior to those of other
benchmark methods, we kept the geometric errors under

predefined thresholds even when the matching pairs were
complex. The experiments demonstrate the advantages of our
method in both common cases of uncalibrated rectification
and the dissimilar FoV cases. In the future, we intend to
improve our process running timewhile maintaining the same
degree of accuracy. We also hope to work with more complex
sensor setups such as autonomous vehicles and industrial
robots.
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