
Received September 26, 2021, accepted October 13, 2021, date of publication October 18, 2021, date of current version October 26, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3121222

More Than Two Decades of Research on
Verification of UML Class Models: A Systematic
Literature Review
ASADULLAH SHAIKH 1, ABDUL HAFEEZ 2, ASIF ALI WAGAN 2, MESFER ALRIZQ 1,
ABDULLAH ALGHAMDI 1, AND MANA SALEH AL RESHAN 1
1College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia
2Department of Software Engineering, SMI University, Karachi 75190, Pakistan

Corresponding author: Abdul Hafeez (ahkhan@smiu.edu.pk)

This work was supported by the Ministry of Education and the Deanship of Scientific Research, Najran University, Saudi Arabia, under
Grant NU/-/SERC/10/521.

ABSTRACT Error checking is easy and inexpensive in the initial stages as compared to later stages due to
when the development cycle precedes the development cost and efforts also increase. UML class model is
a key element of modern software methodologies and creates in the initial stage of software development.
Therefore, error detection and rectification of the UML class model may save software development costs
and time. This paper presents an overview of UML Class model verification approaches and identifies
open issues, current research trends, and other improvement areas. This study uses a systematic literature
review as an investigation method with six research questions and assesses 65 papers dated January 1997 to
December 2020. From 2124 published research papers, 65 papers are selected and distributed into 7 studies.
This work provides an analysis of verification approaches and the automation level of proposed approaches.
As a result, it is found that the existing UML class model verification methods provide great efforts to check
correctness. However, in some situations (when dealing with large and complex models), they consume a
significant amount of time and do not support many important features of the UML class model.

INDEX TERMS Class model, UML, model formalisation, model verification, UML-OCL models.

I. INTRODUCTION
Model Derive Engineering (MDE) is a software development
methodology where the software model is considered the
nucleus of software development activities. In theMDE, soft-
ware specifications are stated through abstract models. These
models are initially built platform-neutral and are known as
Platform IndependentModel (PIM) [1]. Then PIMmodels are
gradually refined and transformed into the Platform Specific
Model (PSM). Finally, the programming code is generated
(semi)automatically by the PSM models [1]. MDE approach
saves time and cost, and the industry extensively adopts it.
However, the MDE approach has some limitations, such as
the PIM model is developed in the preliminary phases of
software development. In the early stages, the development
team is not fully aware of the system and its constraints.
Therefore, there is a possibility that a PIM model will be

The associate editor coordinating the review of this manuscript and
approving it for publication was Haider Abbas.

built with errors, and these errors will be move implicitly into
the PSM model and code. Model verification is a promising
solution to the problem.

Model verification makes sure the model is bug-free.
Mainly, it checks the model’s correctness and ensures that
the model under consideration is consistent and satisfactory.
Unified Modeling Language (UML) is an industry adopted
graphical modeling language, and it is recurrently used in
MDE [2], [3]. It has many models for dealing with different
aspects of software [4], [5]. The class model is an essential
part of UML and performs a key role in software analysis
and design [6]. UML only provides graphical elements for
designing models without reasoning support due to a lack
of formal foundation [7], [8]. Therefore, many researchers
have used various formal/semi-formal approaches to verify
the UML class model, such as Z Notation, B method, Alloy,
CSP. This paper reviewsmany research articles on UML class
model verification to evaluate the progress and direct future
research on this MDE problem. In [9], authors performed

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 142461

https://orcid.org/0000-0003-4806-6159
https://orcid.org/0000-0003-1595-6294
https://orcid.org/0000-0003-1410-5180
https://orcid.org/0000-0002-3624-9380
https://orcid.org/0000-0002-5006-8527
https://orcid.org/0000-0002-2266-9608


A. Shaikh et al.: More Than Two Decades of Research on Verification of UML Class Models

a systematic study on verification of conceptual models in
which they also discussed verification of UML class model
verification. However, the study presented in [9] differs from
this study in the following directions:
• The study presented in [9] focuses on verification of
almost all conceptual models, including the Entity Rela-
tionship Diagram (ERD)model, domain-specificmodel,
and UML class model. The presented study only focuses
on the UML class model.

• In [9], authors also reviewed UML class model val-
idation methods such as the USE method. In this
study, the presented work only considered verification
approaches.

• Authors of [9] also reviewed approaches that only sup-
port transformation and verification of OCL without a
class model such as OCLtoFOL. The presented study
only focuses on verification approaches that performed
formalization of OCL constraints with a class model.

• They reviewed from 2002 to 2014. due to this range,
authors of [9] missed initial works such as Z andB-based
approaches, which provide a foundation for modern
verification methods. The presented study reviewed the
period from 1997 to 2020, covering a suitable range
of papers that include both foundation and up-to-date
verification approaches.

The rest of the paper is structured as follows. Section II
presents methodology for the conducted Systematic Litera-
ture Review (SLR). Section III shows the results obtained
from SLR. Discussions are explored in Section IV. Finally,
Section VI provides the conclusions.

II. METHODOLOGY
This section discusses the applied methodology for the con-
ducted SLR. The following sections, describe the process
to be followed during this work, followed by stating the
Research Questions (RQs), strategy regarding search and
selection, then defining inclusion and exclusion criteria, and
finally specified the method to follow for data extraction.

A. PROCESS
The procedure of the systematic literature review was devel-
oped according to the guidelines specified by Kitchenham
and Charters. SLR has three key stages; planning, execution,
and reporting [10].

1 Planning Stage:
a Protocol development: Scope of research

and review protocol is developed; the
protocol is iteratively improving in later
stages.

b Research Questions: Research questions
are prepared through the NHMR guide-
lines.

2 Execution Stage:
a Collecting studies: Search keywords are

formalized, and then, studies are collected.

b Data analysis: extracted information from
studies is examined to respond to the
research questions. studies: Search key-
words are formalized, and then, studies are
collected.

3 Reporting phase: Systematic discussion and
present the outcomes.

B. RESEARCH QUESTIONS
The presented work provides a comprehensive survey and
analysis of formal and semi-formal verification methods.
More significantly, focus on the following research questions:
RQ1:What are the importance of UML andUML class model
in modeling and MDE?
RQ2: What methods or techniques have been adopted for
verification of the UML class model?
RQ3: Is the verification approach is based on a metamodel?
RQ4: Which model defects have been undertaken in each
method, and which defect has been examined in most cases?
RQ5: Is an automatic or semi-automatic tool developed for
the verification method, and what are their strengths and
limitations?

RQ1 Is designed to describe UML and UML class model
role in the model-driven engineering and software indus-
try. The expected outcome will be a comprehensive view
about the use of UML and UML class models in the indus-
try. The RQ2 is formulated to identify different formal and
semi-formal methods that have been used in the verification
of the UML class model. RQ3 is specially designed to find
the answer that current verification methods still support the
metamodel’s formalization. RQ4 is designed to determine the
state-of-the-art of research on different correctness properties
which are verified in different methods. RQ5 is formulated
to examine that the proposed approaches practically demon-
strated through the software. It also helps us to identifies the
limitations and strengths of the method on which the tool is
based.

C. SEARCH AND SELECTION STRATEGY
This is the most critical and most important stage of SLR.
It must be specified very carefully as the search for studies
should ensure complete coverage of the subject under con-
sideration. The search strategy developed in this work has
4 stages. (1) Automatically searched on the most relevant
scientific digital libraries. (2) removed all duplicate studies
(3) ensuing pre-set criteria of inclusion, only related studies
were considered. (4) more papers were explored by snow-
balling. Figure 1 shows the search and selection strategy
employed in this work.

1) STAGE 1: PERFORMING AUTOMATIC SEARCH
To obtain as many related studies as possible, an automatic
search was performed on the scientific digital libraries (list
of scientific libraries shown in Table 1). These scientific
libraries have a massive amount of software engineering

142462 VOLUME 9, 2021



A. Shaikh et al.: More Than Two Decades of Research on Verification of UML Class Models

FIGURE 1. Search and selection strategy.

TABLE 1. Scientific libraries included in the search.

TABLE 2. Keywords definition based on PICOC criteria.

publications PICOC (Population, Intervention, Comparison,
Outcome, Context) criteria [10] were employed to specify
the keywords as shown in Table 2, which help to build
good search strings. These searching terms are used when
performing searches in the above-mentioned scientific digital
libraries.

The overall search string is as follows:
1) ((‘‘verification’’ OR ‘‘consistency’’ OR ‘‘analysis’’ OR

‘‘reasoning’’ OR ‘‘satisfiability’’ OR ‘‘corrections’’
OR ‘‘checking’’ OR ‘‘unsatisfiable’’ OR ‘‘formaliza-
tion’’)) AND ((‘‘UML class model’’) OR (‘‘UML class
diagram’’) OR (‘‘UML Model’’) OR (‘‘UML/OCL’’))

2) Scientific Digital libraries have different syntax, a spe-
cialized search string for each digital library was cre-
ated. This is to make sure to include as appropriate
studies as possible.

2) STAGE 2: REMOVING DUPLICATE STUDIES
Initially, Mendeley’s reference manager was used to a kept a
pool of primary studies. This repository has also helped the
process of finding duplicate papers. Two or more papers are
treated duplicate if and only if:

1) Study title, date of publications, location, and authors
are the same. The most recent paper is kept when
different versions of the same paper were found.

2) In case of paper is published in a different location, one
of them is selected (the most recent).

3) In the case of a study published in a journal and con-
ference, the journal publication is counted because the
journal publication comprises the extended study and
provides more information.

3) STAGE 3: SELECTING STUDIES
In this stage, on the inclusion and exclusion criteria, pri-
mary studies are selected. Only those studies are included
which matching the criteria. The criteria were implemented
by reading the article title, abstract/summary, keywords, and
introduction sections. However, if this is not adequate to reach
an absolute decision, other sections such as methodology and
conclusion are considered.

The search strings specified in the previous section were
very wide and returned papers that are not directly related to
the goal of the systematic literature review. After collecting
2124 papers, the pruning stage was started, which kept out
unrelated studies.

In the title pruning stage, papers title and keywords were
read. After carefully read, 40 papers were excluded because
they were focusing on the verification of other UML models.
The remaining 82 papers were finalized for further analysis.
In the last, the abstracts of the remaining papers were read,
and 48 papers were excluded because they were focused on
inter-model consistency. In the end, only 37 articles were
selected that were directly related to the purpose of this
review. The list of papers is given in Table 3. This list was
complemented with papers that are found after the snow-
balling process.

4) STAGE 4: SNOWBALLING
To ensure not miss potential studies, articles that could not be
automatically searched or published in the issues of scientific
digital libraries were also searched. The snowballing process
is done by discovering citing of the primary studies. Google
Scholar is used to discover those articles. Subsequently,
newly discovered and selected articles are included to the
pool.

In the snowballing process, references of all selected
papers were carefully read. After applying inclusion and
exclusion criteria mentioned in section 4 and pruning stages,
24more papers added to the study, as listed in Table 4. Finally,
after the pruning and snowballing stages total of 61 papers
were selected for the study. The year-wise distribution of
selected papers is shown in Figure 2.

This work includes related work published from
January 1997 to December 2020 to answer the above research
questions. 61 research papers were analyzed and combined
into 7 studies, as shown in Table 5. These studies are further
divided into sub-studies that indicate similar approaches by
different authors. However, the final study is not further
divided because it is a combination of controversial confir-
mation approaches. In this SLR, most of the papers are part
of a single research project.

D. INCLUSION AND EXCLUSION CRITERIA
In the systematic literature review, some criterion is defined
for incorporating only related research works. The inclusion
criteria focus only on the verification of the UML class model
with or without OCL. The exclusion criteria also defined,

VOLUME 9, 2021 142463



A. Shaikh et al.: More Than Two Decades of Research on Verification of UML Class Models

TABLE 3. Relevant work obtained after pruning Stage.

FIGURE 2. Paper included in the review year-wise distribution.

such as inter-model consistency and the UML class model
validation did not consider. This study only considers work
published after 1996 in English. Table 6 is showing the inclu-
sion and exclusion criteria.

E. IDENTIFICATION OF PAPERS
This review includes papers published between January 1997
and December 2020. The paper searching process was com-
pleted in December 2020. Therefore, papers published over

the time period as a result of the publication time lags. The
search strategy mainly consists of the following:

1) The first strategy was based on research reposito-
ries: ACM Digital Library, IEEE Explore, Science
Direct, Springer Link, Google Scholar, and Microsoft
Academic Search. These libraries have a massive
amount of software engineering publications, and
the following search strings were used ((‘‘verifica-
tion’’ OR ‘‘consistency’’ OR ‘‘analysis’’ OR ‘‘rea-
soning’’ OR ‘‘satisfiability’’ OR ‘‘corrections’’ OR
‘‘checking’’ OR ‘‘unsatisfiable’’ OR ‘‘formalisation’’))
AND ((‘‘UML class model’’) OR (‘‘UML class dia-
gram’’) OR (‘‘UML Model’’) OR (‘‘UML/OCL’’)).

2) In the last, references of crucial papers were searched
manually.

F. STUDY SELECTION
The study (papers) selection phases mainly focus on iden-
tifying papers related to the systematic literature review’s
goal. The search strings specified in the previous section were

142464 VOLUME 9, 2021



A. Shaikh et al.: More Than Two Decades of Research on Verification of UML Class Models

TABLE 4. Relevant work obtained after snowballing.

FIGURE 3. Distribution of paper according to the source.

TABLE 5. List of selected studies.

very wide and returned papers that are not directly related
to the systematic literature review’s goal. After collecting
125 papers, the pruning stage was started, which kept out
unrelated studies.

In the title pruning stage, the title of papers and keywords
were read. After carefully read, 41 papers were excluded

because they focused on the verification of other UML
models. The remaining 84 papers were finalized for further
analysis. In the last, the abstracts of the remaining papers
were read, and 47 papers were excluded because they were
focused on inter-model consistency. In the end, only 37 arti-
cles were selected that were directly related to the purpose
of this review. The list of papers is given in Table 3. This
list was complemented with papers that are found after the
snowballing process.

G. DATA SOURCES
Figure 3 gives a distribution of paper according to the source,
which shows that most of the included papers have been

VOLUME 9, 2021 142465



A. Shaikh et al.: More Than Two Decades of Research on Verification of UML Class Models

TABLE 6. Inclusion and exclusion criteria.

TABLE 7. General information collected from each study.

published in high esteem journals and conferences such as
Elsevier, Springer, IEEE, and ACM.

H. DATA EXTRACTION AND SYNTHESIS
This phase extracted related information from each research
work. For this purpose, an Excel sheet was prepared, which
was used for storing essential information. Mainly, infor-
mation about each work was recorded in two groups in the
following way. As shown in Table 7, general information
about each work was collected in the first group, such as
title, author name, published year, no of citation. As shown
in Table 8, the second group collected the information directly
corresponding to the research questions, such as the impor-
tance of UML and class model, the name of verification
method, and transformation level.

III. RESULTS
A. RQ1—WHAT ARE THE IMPORTANCE OF UML AND UML
CLASS MODEL IN MODELING AND MDE?
More or less, all studies (S1 to S7) reported that the UML
is an industry adapted visual modeling language. It hides the
complexity of the system and provides an appropriate level
of abstraction [59]. It is used in the software industry for
software specification, analysis, design, documentation, and
nowadays, it is also used for code generation [44]. UML has
various models that deal with various aspects of software
modeling [4], [5]. It uses simple diagrammatic notations for
describing software [7]. It is currently also used in engineer-
ing, ontology, DBMS, and other areas [32]. UML class model
is an integral part of UML [4], [22] [23], [27]–[32], and it
is widely used in the industry [27]. It describes the system
through concepts, their relationship, and constraint [6]. It is
also a key ingredient of the MDE process [6], [47] [49].

B. RQ2—WHAT METHODS OR TECHNIQUES HAVE BEEN
ADOPTED FOR VERIFICATION OF THE UML CLASS MODEL?
1) Z NOTATION
The first study uses the Z notation for formalization and
verification of the UML class model. This study is divided
into 2 sub-studies (SS1.1 and SS1.2). The SS1.1 compiles the

work of Evans et al. [11]–[14], and SS1.2 collects thework of
Kim et al. [15], [16].
In SS1.1, the authors used Z notation to provide the formal

foundation of the UML core metamodel. They argued that the
formal foundation provides various benefits such as clarity,
consistency checking, refinement, and proof [12, 13]. They
represented the UML core metamodel (also a class model)
through a compositional schema that contains several sub-
schemes. The sub-schemes formalize UML model elements
such as type, instance, values, operation, associations, etc.
The authors also describe three ways to formalize the UML
model: They also describe following three ways to formalize
UML model:

1) Supplemented: In this way, informally defined ele-
ments of the UML model are defined formally.

2) OO-Extended: In this approach, the existing formal
method is extended with object-oriented concepts such
as Object-Z.

3) Method Integration: In this method, the entire UML
model is transformed into the formal model.

They also argued that only formal UML analysis is not
enough for the discovery of semantic correctness [14]. More-
over, they suggested that industry experts’ feedback is also
essential for the UML model semantic correctness. They
developed a formal reference manual that precisely and for-
mally describes the semantics of UML concepts. The refer-
ence manual provides inference rules for analyzing different
models properties [14]. In [11], the authors extended their
work and proposed a diagrammatic transformation of the
UML class model. They further proposed five steps roadmap
for model formalization and verification [11]. The roadmap
is as follows:

1) A mature formal language must be chosen that should
be expressive and well supported by the tools.

2) The abstract syntax of modeling notation (metamodel)
should be formalized.

3) Infrastructure parts of modeling notation should be
formalized.

4) The meaning function should be defined, which maps
the syntax and semantic of the model into the formal
notation.

5) Finally, analysis techniques should be developed.

In SS1.2, the authors used the object-z for the core
UML model’s formal specification and provided a sound
mechanism for reasoning [15], [16]. They formalized core
UML class model constructs in Object-Z, verified inconsis-
tency and errors through the Z proof technique [15]. They

142466 VOLUME 9, 2021



A. Shaikh et al.: More Than Two Decades of Research on Verification of UML Class Models

TABLE 8. Information collected according to the research goal.

formalized associations, generalization, aggregation, compo-
sition, and association classes. [67]. They defined the UML
class model’s hidden semantics through the schema’s invari-
ant of the Zmachine. For example, domain and range of asso-
ciation must be classes. The public and protected attributes of
the class must be included in the child class. In the aggrega-
tion relationship, the whole class should be the range, and the
part class should be the domain. They also defined abstract
syntax of UML (meta-model) in object-z. In [16], they argued
that a single formal method could not cover all analysis tasks
of UML class model verification because different formal
methods have different strengths and limitations.

Consequently, they presented an integrated verification
and validation framework where different formalisms are
available for different analysis tasks. It is a hybrid technique
where an analyst can select appropriate formalism according
to the requirement. Mainly, in this approach, a metamodel
is automatically transformed from one formal notation to
another.

2) B METHOD
The second study used the B formal method for verification
of the UML class model. This study is divided into 2 sub-
studies (SS2.1 and SS2.2). The SS2.1 collects the work of
Ledang and Souqieres [7], [8] [17]–[19], and SS2.2 presents
the work of Marcano and Levy [20].

In SS2.1, the authors presented the transformation of UML
classes, attributes, and operations into B Machine [8, 18].
They also presented the transformation of OCL constraint
into the B method. They transformed OCL basic types (inte-
ger, float, etc.) into B method basic types and operations such
as+,−, etc., into B method basic operations [17]. They used
B prover to verify the consistency of UML class model [7].
Further, they integrated all their previous works and proposed
the UML class model and metamodel transformation with
well-formedness rules in B specification for verification [19].
In this approach, elements of the metamodel’s core package
are transformed into B abstract machine.

The authors in SS2.2 also used the B method to verify
the UML class model [20]. In the approach, the transforma-
tion process is done in two stages. Firstly, a core abstract
machine (interface) is declared, which describes the com-
plete system structure and the associations. Finally, abstract
machines are declared for classes.

3) DESCRIPTION LOGIC
The third study used description logic for verification of
the UML class model. This study is mainly divided into

3 sub-studies (SS3.1, SS3.2, and SS3.3). The SS3.1 com-
piles the work of Cal’I et al. and D. Calvanese [21]–[26],
SS3.2 collected the work of Maraee and Balaban [27]–[32],
and SS3.3 presented the work of Efiizoni et al. [33]. The
SS3.4 compiles the work of Abdul et al. [34]–[36].

In SS3.1, the authors analyzed the UML class model
through description logic and verified the model correctness
properties, such as redundancies and inconsistencies. They
argued that the description logic could adequately deal with
the UML class model expressiveness. They mainly verified
theUML classmodel satisfiability and class equivalence [24],
[25]. In [26], authors extended their work and performed var-
ious reasoning experiments (consistency and satisfiability)
on the UML class model through two well-known reason-
ers, Fact and Racer. They further investigated the computa-
tional complexity of UML class model reasoning [21]–[23].
The investigation found that reasoning on the UML class
model with minimum supporting features (binary associa-
tion, minimal multiplicity, and generalization) is ExpTime-
hard. They also argued, the reasoning task of checking
correctness properties (class subsumption, class equivalence,
class consistency) can be mutually reducible into each
other.

In SS3.2, the authors proposed bounded verification of
constraint generalization set through linear inequalities. They
analyzed different generalization types such as tree structure,
acyclic structure, and graph structure [32]. In the tree struc-
ture generalization, subclasses only inherit from the single
superclass. In the acyclic structure generalization, a subclass
inherits from multiple superclasses, but an inheritance from
a common ancestor is not allowed. In the graph structure
generalization, multiple inheritances with different ancestors
are allowed. They also proposed two algorithms that reduce
the generalization Set (GS) complexity in polynomial time.
The first algorithm deals with GS without constraints. The
algorithm replaces all GS constructs with binary associations
and represents the associations through linear inequalities.
The second algorithm supports GS with constraints and does
not support disjoint and complete constraint within the cyclic
class hierarchy. In [30], the authors proposed another algo-
rithm that supports disjoint and complete constraints over
cyclic class hierarchy and introduced a more compact version
of linear inequalities. In [31], authors extended their work
and added the support of qualifier, association classes in the
algorithm. The author also identifies that currently there are
no accepted benchmarks for class diagrams for checking the
scalability of verificationmethods. Therefore, they developed
a set of metrics for measuring the size and complexity of the

VOLUME 9, 2021 142467



A. Shaikh et al.: More Than Two Decades of Research on Verification of UML Class Models

class diagram. Furthermore, they also statistically measure
the scalability of finiteSat algorithm [68].

They further extended their work and added the support of
qualifier, association classes in the algorithm [31].

Moreover, they also introduced a constraints detecting
method that detects the causes of unsatisfiability. The
extended algorithm replaces the qualifier constraint with
associations and a new class. In [29], the authors formalized
their approach, which they presented in [31], [32] through
description logic, and built a DL formula for the multiplic-
ity constraint. In [27], they further expanded the work and
presented methods for eliminating redundancy in wider con-
straints (Universal and Extensional).

In SS3.3, the authors also used description logic for the for-
malization of a classmodel. They transformedmany elements
of the class, such as attributes (visibility, type multiplicity,
etc.), operations (visibility, parameter list, return types), com-
position, aggregation, and generalization [33].

In SS3.4, the authors proposed an ontology-based method
for verification of the UML class model. In [34], they argued
that the UML class model and OCL could be formally repre-
sented through the Web Ontology Language (OWL). In [35],
the authors presented ontology-based algorithms for check-
ing the satisfiability of association cardinality constraints.
The proposed algorithms use the ontology graph and ontol-
ogy constraints to find the optimal solution. In [36], they also
transformed xor constraints and dependency relationship into
the ontology.

4) CONSTRAINT SATISFACTION PROBLEM
In the fourth study, constraints programming used for ver-
ification of the UML class model. This study is mainly
divided into 3 sub-studies (SS4.1, SS4.2, and SS4.3).
The SS4.1 focuses on the work of Cadoli et al. [4], [69],
SS4.2 presents the work of Pérez and Porres [70],
SS4.3 presents the work of Malgouyres and Motet [5], and
SS4.3 compiles the work of Cabot et al. [37]–[46].

In SS4.1, the authors presented a linear inequality-based
method for finite model verification through constraint pro-
gramming. They represented the UML class model through
the Constraint Satisfaction Problem (CSP), and the satisfi-
ability of the UML class model is checked by the ILOG’s
Solver [4]. Furthermore, two correctness problems of the
class model were addressed and encoded into CSP. In the
first problem, they verify that all the model’s classes are
completely satisfied at the same time. In the second problem,
they verify a finite non-empty model can be obtained from
the class model.

In SS4.2 authors presented a framework for checking the
satisfiability of UML class model through CLP. The proposed
framework detects the design defects in UML class model
annotated with OCL. They used the bounded verification
approach and performed the reasoning on finite bounds for
the number of instances of the model through model-finding
tool Formula. The proposed approach checks the predefined
correctness properties such as satisfiability, lack of redundant

constraints. Furthermore, it can be used to examine complex
models for finding best fit object model for the domain. They
also implemented the proposed framework through an eclipse
plug in called CD-to-Formula.

In SS4.3, the authors used Constraint Logic Programming
(CLP) to verify the UML class model. They transformed the
UML class model, metamodel, and meta-meta-model into
CLP clauses (fact and rules) [5]. In this approach, meta-meta-
model, metamodel, and UML class model concrete elements
(which have instances) are transformed into CLP facts, and
abstract elements and constraints are transformed into the
rules. Additionally, CLP’s goals are also declared, which
negate the consistency rules. In the end, a unified checker
finds the solution to the goal, and if the goals are resolved,
then the UML class model considers inconsistent.

In SS4.3, the authors proposed incremental verification of
the OCL integrity constraint of the class model. They intro-
duced the term Potential Structure Even (PSE) and argued
that checking integrity constraints after every structure event
(Insert Entity, Update Attribute, Delete Entity, Specialised
Entity, etc.) can be costly [44]. On the other side, The PSEs
represent only those events that can violate the constraint.
Therefore, PSEs for every integrity constraint are recorded.
Moreover, only those instances of entity types and relation-
ship types that are the victim of PSEs are verified. They
implemented the proposed approach through CSP and pre-
sented a fully automatic, decidable solution for binding the
UML class model with OCL [38]. Mainly, classes and asso-
ciations of the UML class model are transformed into a set
of variables, domains, and CSP constraints. If the generated
CSP is solvable, the model is considered satisfiable otherwise
is considered unsatisfiable. They also reported different class
models (CivilStatus, WriterReview, DisjointSubclasses, and
ObjectASInteger) as a benchmark along with various analysis
questions such as consistency, invariant independence, conse-
quences [41]. They further introduced two more benchmarks,
which were not included in the previous work [42]. The pro-
posed benchmarks target different UML class model features
and specified various computational challenges for verifica-
tion tools. In [37], they pointed out bounded verification limi-
tation and argued that an inadequate bound couldmiss defects
in the model due to small search space or maybe inefficient
if set too large. In the proposed solution, large initial bounds
are set. Then bounds are tightened up as much as possible,
and unnecessary value from the bounds is eliminated through
the interval constraint propagation technique. This technique
further improved in a way that verification bounds are auto-
matically set whenever possible, then bounds are tightened
through user assistance and guide the uses regarding bound
setting.

Furthermore, they proposed techniques for the incremental
verification of the UML class and OCL model. The proposed
techniques merge the slicing technique (which will be dis-
cussed in the next study) and amodel as a certificate approach
presented in the work. In the certificate approach, the model’s
instance is considered a certificate of satisfiability [46].

142468 VOLUME 9, 2021



A. Shaikh et al.: More Than Two Decades of Research on Verification of UML Class Models

5) ALLOY
In the fifth study, a lightweight formal method Alloy has
been used to verify the UML class model. This study is
mainly divided into two sub-studies (SS5.1 and SS5.2). The
SS5.1 compiles the work of Anastasakis et al. [56], [58] [59],
and SS5.2 presented the work of Maozi et al. [57].
In SS5.1, the authors transformed the UML class model

and UML metamodel into Alloy specification [58]. They
reported different challenges faced by authors during
transformation [58]. For example, both approaches support
inheritance, but in UML, child classes can redefine the
parent class’s properties and methods. However, Alloy’s sub-
signature does not support this feature (overriding is impos-
sible in the Alloy). In [58], they further discussed challenges
such as object identifier, multiple inheritances, and collection
constraints in more detail. OCL mapping rules also presented
in [56]. According to this work, many OCL operations can
be directly mapped into the Alloy’s elements and operations.
Operations that do not have direct corresponding elements
in the Alloy are represented by the combination of other
elements.

In SS5.2, the authors claimed that the previous UML ver-
ification works through Alloy only support limited features
and only analyze the model’s consistency [57]. This work
mapped advanced features (multiple inheritances, interface)
of the class model through a combination of Alloy’s basic
construct (fact, functions, and predicate). This work also
supports various analyses on the class model, such as the
intersection and refinement analysis.

6) MODEL SLICING
In the sixth study, the authors proposed a technique for mini-
mizing UML class model verification’s complexity through
model slicing. This study is divided into 2 sub-studies
(SS6.1 and SS6.2). The SS6.1 focused on the work of
Shaikh et al. [6], [47]–[52], and SS6.2 presented the work
of Sun et al. [53]–[55].

In SS6.1, the authors proposed a model slicing technique
for solving UML class model verification’s scalability prob-
lem. In the proposed approach class model is partitioned into
sub-models (Slice); each slice only contains elements that
have some impact on model verification and constraints that
are not trivially satisfiable such as key unique value assign-
ment, drive value constraints, etc. Elements and constraints
which apply to the same model elements are combined into
the same slice. The correctness of each slice is checked
separately, and finally, the verification result of all slices is
combined to determine the correctness of the entire model.
The slicing process is initiated from the identification of
local and global constraints. The local constraints are verified
separately because they do not affect more than one instance
of the class. Mainly, a dependency graph is used for analyzing
the dependency among class elements, and slices are made
from connecting components of the dependency graph. The
authors also reported that slicing techniques minimize the

verification time of a large model with fewer constraints.
However, the slicing technique does not work with complex
models. In [50], the authors extended the work and provided
the support of non-disjoint sub-models (where a class is used
in several constraints). They also reported that if a classmodel
has a large number of disjoint sub-models, then minimum
slices will be created, and efficacy cannot be gained. The
proposed slicing technique has been applied on two verifica-
tion methods UMLtoCSP and Alloy, and reported improved
results [47]. In [6], they introduced the feedback technique
for the unsatisfied UML class model.

Moreover, they reported a slice could be unsatisfiable due
to various reasons, e.g. constraints specified an inconsistent
condition. Furthermore, they demonstrated the slicing tech-
nique on a real-world case study, ‘‘DBLP’’ [51]. In [52]
they extended the work with the support of both disjoint and
non-disjoint slicing. Furthermore, they proposed an overall
concept of disjoint and non-disjoint slicing techniques that
can split UML/OCL class diagrams into several independent
submodels to reduce the complexity. Addtionally, the rea-
sons for unsatisfiability is also discussed through feedback
technique.

In the study SS6.2, the authors presented model slicing
techniques to optimize two class model analysis techniques.
The first technique checks conformance between the object
model and class model. The latter one verifies the order
of operation invocation to discover the invariant violation.
In the first task, they verify the consistency between the object
model and the invariant specified in the UML class model and
verifies whether the object model is a valid instance of the
class model. The proposed approach takes two inputs, object
model and class model. The second task presented a rigorous
slicing technique that works with both OCL invariants and
operations contracts.

7) OTHERS
The last study S7, is a combination of heterogeneous
approaches. This study is mainly divided into 3 sub-studies
(SS7.1, SS7.2, and SS7.3). The SS7.1 compiles the work
of Queralt et al. [63], [64] [65], SS7.2 presented the work
of Seiter et al. [60]–[62]. SS7.3 focused on the work of
Abbas et al. [66].
In SS7.1, the authors formalized the UML class model

through the first-order logic and used the CQC method for
verification [62]. They proposed automatic verification of
various correctness properties (class liveliness, satisfiabil-
ity, and redundancy) of OCL integrity constraint. The pro-
posed technique automatically generated tests that verify the
association’s cardinalities, disjointness, and generalization
constraints. Furthermore, it provides a query box reasoning
facility for checking reachability for a particular state [64].
In SS7.2, the authors proposed an algorithm for automatically
reducing the UML class model’s irrelevant elements. The
proposed method only considers relevant elements, which are
necessary for verification. It takes the verification task and
model as input. An empty model is then initialized, which

VOLUME 9, 2021 142469



A. Shaikh et al.: More Than Two Decades of Research on Verification of UML Class Models

has only classes without attributes, operations, and invariants.
After that, other elements that are related to verification are
added for verification. At last, associations are added, which
affect verification [62]. In [60], [61], the authors pointed
out that current verification techniques only focus on single
model verification. They further argued that in Model-Driven
Engineering (MDE) abstract model is constructed first, and
then subsequent models are built. Focusing on a single model
without considering the previous model can sometimes lead
to consistency issues between models. It is desirable that the
refined model consistent with all preceding models. Finally,
they proposed a framework for managing consistency in the
verified models.

In SS7.1, the authors presented the UML class model’s
formal transformation into FoCaLiZe, a proof-based formal
approach. It supports various UML class model elements,
such as multiple inheritances, dependency, templates, tem-
plate bindings, and OCL constraints navigation. They con-
vert UML classes in the FoCaLiZe species, properties of
classes as a getter function, and OCL constraint as species’
properties. Furthermore, in the proposed method, the multi-
ple inheritances are converted into species hierarchy, UML
template, template binding, and dependency relationships
into species parameters substitution. Species properties that
represent OCL constraints converted into FoCaLiZe inheri-
tance and parameterization relationships. They used Zenon
for verification [66].

C. RQ3—IS THE VERIFICATION APPROACH IS BASED ON A
METAMODEL?
Numerous studies have focused not only on formalizing the
UML class model but also on the UML class model meta
model partially or completely. In the study [SS1.1], the UML
core metamodel was formalized in Z-notation and repre-
sented through compositional schemes. In SS1.2, the authors
transformed the core UML metamodel in Object-Z meta-
Schema. In SS2.1, the authors transformed the UML core
metamodel and its well-formedness rules into B abstract
machine. They transformed classes, data types, associations,
attributes, operations, association ends, and operation param-
eters of the UML core metamodel into the B method. They
also transformed semantic rules of the UML core meta-
model into the B method. In SS4.3, the authors trans-
formed the UML class model’s metamodel basic elements
into the constraint logic program. The metamodel elements
such as namespace, class, property, features, named element,
and static features were transformed into a CLP meta-fact.
In SS5.1, the authors constructed the UML class model’s
metamodel equivalent metamodel in Alloy. They transformed
most UML metamodel constructs into Alloy, such as type,
class, package, association, attributes, etc.

D. RQ4—WHICH MODEL DEFECTS HAVE BEEN
UNDERTAKEN IN EACH METHOD, AND WHICH DEFECT
HAS BEEN EXAMINED IN MOST CASES?
Model validation ensures that the model is error-free and has
satisfied correctness features such as satisfactory (strong and

weak), consistency, and accuracy such as a class system. The
model is considered incorrect when it does not justify any
single correctness feature and is considered correct when it
meets all the correctness features.

In logic theories, satisfiability means checking the validity
of formulas. If the formula is found correct, it is called
satisfiable; otherwise, it is called unsatisfiable. Satisfiability
is the most crucial correctness property, and it makes sure
that a non-empty instance of a model may be created with-
out violation of any constraint. Furthermore, other correct-
ness properties can be covered under it. Some authors also
divide satisfiability into two types: weak satisfiability and
strong satisfiability. Strong satisfiability checks whether an
instances model of the UML class model may be instantiated
successfully in which at least one instance of each element
successfully populates. Weak satisfiability checks whether at
least one or more elements of the model can be instantiated
successfully. Class liveliness checks whether a class can be
populated successfully. Redundancy of OCL integrity con-
straint checks the duplication of OCL constraints.

In SS1.1 and SS1.2, the authors verified the UML
class model’s consistency against the well-formedness rules.
In SS1.1, the authors also performed a diagrammatic transfor-
mation of the UML class model where one model infer from
another through transformation rules. In SS2.1 and SS2.2,
the authors checked the consistency of the UML class model
against well-formedness rules. They also checked the OCL
syntax error, incompatible types of expression, use of the ille-
gal operation. In SS3.1, the authors verified the satisfiability
of the UML class model and individual classes. Additionally,
they checked class equivalence, class subsumption, and logi-
cal consequence.

In SS3.2, the authors verified the finite satisfiability of
the unconstrained generalized set, constrained generalized
set, and association qualifier of the UML class model.
Finite satisfiability (strong satisfiability and weak satisfi-
ability) is checked in SS4.1 and SS4.1. The consistency
of the UML class model against the metamodel is veri-
fied in SS4.2. In SS4.3, the authors mainly checked finite
satisfiability (Weak and Strong Satisfiability) of the UML
class model along with OCL constraints. They also veri-
fied other correctness features: lack of constraint subsump-
tions, strong class liveliness, and constraint redundancies.
In SS5.1, the authors checked the satisfiability of the UML
class model in conjunction with OCL constraints. In SS5.2,
the authors checked the intersection of different class mod-
els and refinements. The SS7.1 verified satisfiability, class
liveliness, redundancy of OCL integrity constraint, and state
reachability. In SS7.2, the authors test the state reachabil-
ity of the model. Figure 4 shows the correctness proper-
ties verified by different sub-studies. As shown in Figure 4
satisfiability and consistency have been checked in most of
the sub-studies. The correctness property ‘‘well-formedness’’
only checked by the initial works, and only two sub-studies
verified the UML class model’s well-formedness against the
metamodel.

142470 VOLUME 9, 2021



A. Shaikh et al.: More Than Two Decades of Research on Verification of UML Class Models

FIGURE 4. Correctness properties verified in different sub-studies.

In most cases, class liveness and constraints redundancy
are verified by the works that focus on satisfiability, and
3 sub-studies have verified these properties. Only 1 sub-
study also checked the consequences/state reachability. One
sub-study checks that the deducedmodel does not contain any
contradiction.

E. RQ5—IS AN AUTOMATIC OR SEMI-AUTOMATIC TOOL
DEVELOPED FOR THE VERIFICATION METHOD, AND WHAT
ARE THEIR STRENGTHS AND LIMITATIONS?
In SS2.1, the authors reported a prototype tool called
ArgoUML+B based on the ArgoUML platform. This tool
takes the UML class model in XMI format and automat-
ically transforms it into the B specification. The authors
of SS2.2 also developed a prototype tool called OCL2B,
which takes the UML class model and OCL file for analysis.
This tool used OCAML higher-order language for mapping
transformation rules. In SS3.2, the authors presented a tool
called FiniteSatUSE, which uses a FiniteSat algorithm for
verification of class model with constraints generalization.
In SS4.3 authors presented the tool calledUMLtoCSP. It takes
the class model in the XMI format and OCL as a separate
text file. The model and OCL are transformed into the CSP
and then checked by the CSP solver. Metadata Repository
API parses the XMI file, and the Dresden OCL Toolkit pro-
cesses OCL constraints. In SS5.1, the authors presented the
tool UML2Alloy, which transformed the UML class model
and OCL constraint into the Alloy specification. In SS5.2,
the authors developed a plug-in CD2Alloy for ECLIPSE.
In CD2Alloy, the transformation rules are specified through
FreeMarker templates. It provides the facility of class model
editing and analyzing. In SS7.1, the authors developed a
Java-based prototype tool called AuRUS for Automated Rea-
soning on UML/OCL Schemas.

IV. DISCUSSIONS
In modern software development, software design mod-
els perform critical roles. They are not only used for

documentation but also used for analysis, design, testing,
and even for code generation through automatic transforma-
tion technique. The transformation technique provides auto-
matic reuse of existing software artifacts. However, it has
some problems, such as through the transformation, mod-
els’ defects are automatically transferred in the transformed
model. These defects are difficult to discover and repair.
Model verification is a promising solution for the problem.

Verification of the UML class model performs a vital
role in ensuring the model quality before the transformation.
Verification of the UML class model through formal notation
has been discussed in several works. In the existing literature,
different facets of UML class model correctness have been
discussed by the researchers according to different factors
such as static vs. dynamic and inter vs. intra-model [66].
Under the static factor, only the UML class model’s structural
elements are considered for verification, such as association
multiplicities and generalization. In the dynamic category,
the behavior part, such as operation, is considered for analy-
sis. In the inter-model verification, consistency between two
different models is verified, and in the intra-model verifi-
cation, consistency and satisfiability of the model against
constraints are verified.

Consistency and well-formedness are the most funda-
mental correctness features [48]. The consistency verifies
whether the model elements are consistent with the decla-
ration, whereas well-formedness verifies whether a model
is a correct instance of its metamodel [66]. However, well-
formedness only verifies the initial level of syntax weak-
nesses and is not concerned with the model’s semantic
correctness. Semantic correctness concerns the constraints
that are graphically specified in the model, such as asso-
ciations, dependencies, generalizations, or textually defined
through constraint languages OCL.

The most fundamental semantic correctness property of
the static model is satisfiability [66]. It checks the possi-
bility of the creation of an instance model without viola-
tion of any constraint. Other important correctness properties
which are verified and come under the umbrella of satisfia-
bility are strong satisfiability, weak satisfiability, and class
liveliness [38]. The UML class model provides graphical
modeling notation without any formal foundation [7]. The
well-formedness rules are specified through metamodel and
OCL without any formal proof facility.

Consistency and finite satisfiability are two major correct-
ness features of the UML class model, and both guaran-
tee a non-empty and finite instance model. The consistency
focuses on non-emptiness, and finite satisfiability focuses
on finiteness [71]. Contradicting constraints such as creating
a subclass of two disjoint classes can cause an emptiness,
and little mistake in association multiplicity constraints spec-
ification can cause non-finiteness. A class model is con-
sidered consistent if it has legitimate non-empty instances
of all classes (maybe infinite) and finitely satisfiable if it
has one legitimate finite instance where all classes are non-
empty [71]. Hence, finding a single legitimate instance of

VOLUME 9, 2021 142471



A. Shaikh et al.: More Than Two Decades of Research on Verification of UML Class Models

TABLE 9. Limitation of verification methods.

TABLE 10. Efficiency analysis for some verification tools.

TABLE 11. Prototype tools availability on the internet.

the class model is adequate to guarantee consistency in
which all classes are non-empty. Therefore, finite satisfia-
bility can cover consistency [71]. Many other correctness
properties such as class liveliness, constraint redundancy,
and subsumption can be verified under satisfiability [66].
However, another important aspect of model verification is
consequences, which infer new properties from the existing
properties [41].

Current UML class model verification methods efficiently
verify the correctness of the model. However, in some cases,
their performance goes down mostly when they deal with the
large and complex model or consume a lot of computational
resources (CPU, Memory). Furthermore, they do not support
some essential elements of the UML class model. The major
limitations of each verification method regarding the UML
class model’s supporting features are shown in Table 9. The
majority of the methods support association, aggregation,
and generalization relationships and do not support the xor
constraint, dependency relationships, and stereotypes.

Another analysis is presented in Table 9 based on 7 stud-
ies, which describes some verification methods’ efficiency.
As shown in Table 10, current methods work well on a
small model with few constraints, such as the performance of
UMLtoCSP goes down when it performs verification on the
large and complex model. Table 10 also depicts the execution
time of UML2Alloy, which depends upon the scope, and its
efficiency goes down when deals with a larger scope. Addi-
tionally, some improvement can be achieved by the slicing
techniques on both approaches. However, UOST also has

some limitations, such as it does not work with the com-
plex (constraints rich) UML class model. Approximately all
existing verification methods supported their method through
prototype tools. Table 11 shows the availability of the tools
on the internet.

Therefore, there are two open issues. First, some impor-
tant UML class model elements have not been supported
by existing verification methods, such as xor associations,
dependency relationships, and stereotypes. Second, there is a
need for an optimized technique that reduces the verification
time.

V. THREAD TO VALIDITY
It is very important for every SLR to identify all relevant
studies. To deal with this threat, the research protocol was
formed and validated rigorously to reduce the risk of elimi-
nating relevant studies. The Searching terms were designed
in a way that only a trivial number of relevant studies could
be missed, and very few irrelevant studies could be included.
Manual search and snowballing were also performed besides
the automatic search. The protocol was carefully designed to
be reusable by others for reproducing the same study. This
review has a few limitations. Like all reviews, it was limited
by the search conditions used, the journals and conferences
included, and the time period. However, the research works
presented in this literature review provide a snapshot of UML
class model verification methods. This review excluded non-
English papers. Although many aspects of UML class model
verification are discussed here, there may be other important

142472 VOLUME 9, 2021



A. Shaikh et al.: More Than Two Decades of Research on Verification of UML Class Models

aspects in model verification. The review studies are coded
with respect to their strengths and weaknesses, although the
verification methods’ challenges during transformation and
verification have not been discussed.

VI. CONCLUSION
This study is based on a systematic review of UML
class model verification literature with and without OCL
constraints. This work identifies numerous challenges the
researcher faces during the model transformation process and
presents potential strategies to tackle these challenges. This
work presents the findings in two phases: The first phase
provides quantitative information on the number of works
published each year since 1996, the type of methods reported
in reviewed work, and the reported studies’ contextual factor.
In the second phase, studies are analyzed and extracted data
interpreted to answer research questions.

Our findings suggest that existing UML class model veri-
fication methods provide great efforts in verifying the UML
class model. However, there are some limitations. Firstly,
almost all works only focus on core UML class elements such
as classes, binary associations, generalization, and aggrega-
tion. They do not focus on the other elements such as xor
constraint over the associations, dependency relationships,
and qualified associations, n-ary associations, and stereo-
types. Most of the initial studies only focus on the UML
class model’s well-formedness due to the unavailability of a
formal foundation in UML. Modern studies mainly work on
consistency and satisfiability. Some other correctness prop-
erties such as class liveliness, constraint redundancy, and
subsumption have also been verified in different research
studies. However, less attention has been paid to them than
consistency and satisfaction.

REFERENCES
[1] M. Kardoš and M. Drozdová, ‘‘Analytical method of CIM to PIM transfor-

mation in model driven architecture (MDA),’’ J. Inf. Organizational Sci.,
vol. 34, no. 1, pp. 89–99, 2010.

[2] F. Hilken and M. Gogolla, ‘‘User assistance characteristics of the USE
model checking tool,’’ 2017, arXiv:1701.08471. [Online]. Available:
http://arxiv.org/abs/1701.08471

[3] N. Przigoda, J. G. Filho, P. Niemann, R. Wille, and R. Drechsler, ‘‘Frame
conditions in symbolic representations of UML/OCL models,’’ in Proc.
ACM/IEEE Int. Conf. Formal Methods Models Syst. Design (MEM-
OCODE), Nov. 2016, pp. 65–70.

[4] M. Cadoli, D. Calvanese, G. De Giacomo, and T. Mancini, ‘‘Finite satis-
fiability of UML class diagrams by constraint programming,’’ CSP Techn.
Immediate Appl., vol. 2, pp. 2–16, Sep. 2004.

[5] H. Malgouyres and G. Motet, ‘‘A UML model consistency verification
approach based on meta-modeling formalization,’’ in Proc. ACM Symp.
Appl. Comput. (SAC), 2006, pp. 1804–1809.

[6] A. Shaikh and U. K. Wiil, ‘‘A feedback technique for unsatisfiable
UML/OCL class diagrams,’’ Softw., Pract. Exper., vol. 44, no. 11,
pp. 1379–1393, Nov. 2014.

[7] N.-T. Truong and J. Souquières, ‘‘An approach for the verification of UML
models using B,’’ in Proc. 11th IEEE Int. Conf. Workshop Eng. Comput.
Syst., May 2004, pp. 195–202.

[8] H. Ledang and J. Souquières, ‘‘Integrating UML and B specification tech-
niques,’’ in Proc. Informatik Workshop Integrating Diagrammatic Formal
Specification Techn., 2001, p. 8.

[9] C. A. González and J. Cabot, ‘‘Formal verification of static software
models in MDE: A systematic review,’’ Inf. Softw. Technol., vol. 56, no. 8,
pp. 821–838, Aug. 2014.

[10] B. Kitchenham and S. Charters, ‘‘Guidelines for performing system-
atic literature reviews in software engineering,’’ Softw. Eng. Group
School Comput. Sci. Math., Keele Univ., Keele, U.K., EBSE Tech.
Rep. EBSE-2007-01, 2007.

[11] R. France, A. Evans, K. Lano, and B. Rumpe, ‘‘The UML as a formal mod-
eling notation,’’Comput. Standards Interfaces, vol. 19, no. 7, pp. 325–334,
Nov. 1998.

[12] A. S. Evans, ‘‘Reasoning with UML class diagrams,’’ in Proc. 2nd
IEEE Workshop Ind. Strength Formal Specification Techn., Oct. 1998,
pp. 102–113.

[13] T. Clark and A. Evans, ‘‘Foundations of the unified modeling language,’’
in Proc. 2nd Northern Formal Methods Workshop. Ilkley, U.K.: Springer,
Jul. 1997, pp. 1–15.

[14] A. Evans, R. France, K. Lano, and B. Rumpe, ‘‘The UML as a formal
modeling notation,’’ in Proc. Int. Conf. Unified Modeling Lang. Berlin,
Germany: Springer, 1998, pp. 336–348.

[15] S.-K. Kim and D. Carrington, ‘‘A formal mapping between UML models
and Object-Z specifications,’’ in Proc. Int. Conf. B Z Users. London, U.K.:
Springer-Verlag, 2000, pp. 2–21.

[16] S.-K. Kim and D. Carrington, ‘‘A formal V&V framework for UML
models based on model transformation techniques,’’ in Proc. 2nd MoDeVa
Workshop-Model Design Validation, Inria, France, 2005, pp. 1–7.

[17] H. Ledang and J. Souquieres, ‘‘Integration of UML and B specification
techniques: Systematic transformation from OCL expressions into B,’’ in
Proc. 9th Asia–Pacific Softw. Eng. Conf., 2002, pp. 495–504.

[18] H. Ledang, ‘‘Automatic translation from UML specifications to B,’’ in
Proc. 16th Annu. Int. Conf. Automated Softw. Eng. (ASE), 2001, p. 436.

[19] N. T. Truong and J. Souquieres, ‘‘Verification of UML model elements
using B,’’ J. Inf. Sci. Eng., vol. 22, pp. 357–373, Oct. 2007.

[20] R. Marcano and N. Levy, ‘‘Using B formal specifications for analysis
and verification of UML/OCL models,’’ in Proc. Workshop Consistency
Problems UML Softw. Develop., 5th Int. Conf. Unified Modeling Lang.,
2002, pp. 91–105.

[21] A. Artale, D. Calvanese, and A. Ibáñez-García, ‘‘Full satisfiability of UML
class diagrams,’’ in Proc. Int. Conf. Conceptual Model. Berlin, Germany:
Springer-Verlag, 2010, pp. 317–331.

[22] D. Berardi, D. Calvanese, and G. De Giacomo, ‘‘Reasoning on UML class
diagrams,’’ Artif. Intell., vol. 168, nos. 1–2, pp. 70–118, Oct. 2005.

[23] D. Berardi, D. Calvanese, and G. D. Giacomo, ‘‘Reasoning on UML class
diagrams is EXPTIME-hard,’’ in Proc. Int. Workshop Description Logics,
DL, CEUR Workshop, vol. 81. Rome, Italy: CEUR-WS.org, 2003.

[24] A. Cali, D. Calvanese, G. De Giacomo, and M. Lenzerini, ‘‘A formal
framework for reasoning on UML class diagrams,’’ in Proc. Int. Symp.
Methodol. Intell. Syst. Berlin, Germany: Springer, 2002, pp. 503–513.

[25] A. Calı, D. Calvanese, G. De Giacomo, and M. Lenzerini, ‘‘Reasoning
on UML class diagrams in description logics,’’ in Proc. Workshop Pre-
cise Modeling Deduction Object Softw. Develop. (PMD IJCAR), 2001,
pp. 77–86.

[26] D. Berardi, D. Calvanese, and G. De Giacomo, ‘‘Reasoning on UML class
diagrams using description logic based systems,’’ in Proc. Workshop Appl.
Description Logics, vol. 44, 2001, pp. 1–12.

[27] A. Maraee andM. Balaban, ‘‘Removing redundancies and deducing equiv-
alences in UML class diagrams,’’ in Proc. Int. Conf. Model Driven Eng.
Lang. Syst. Cham, Switzerland: Springer, 2014, pp. 235–251.

[28] M. Balaban and A. Maraee, ‘‘Finite satisfiability of UML class diagrams
with constrained class hierarchy,’’ ACM Trans. Softw. Eng. Methodol.,
vol. 22, no. 3, pp. 1–42, Jul. 2013.

[29] M. Balaban and A. Maraee, ‘‘A UML-based method for deciding finite sat-
isfiability in description logics,’’ in Description Logics. Berlin, Germany:
Springer, 2008, pp. 1–11.

[30] A. Maraee and M. Balaban, ‘‘Efficient recognition of finite satisfiability
in UML class diagrams: Strengthening by propagation of disjoint con-
straints,’’ in Proc. Int. Conf. Model-Based Syst. Eng., Mar. 2009, pp. 1–8.

[31] A. Maraee, V. Makarenkov, and B. Balaban, ‘‘Efficient recognition and
detection of finite satisfiability problems in uml class diagrams: Han-
dling constrained generalization sets, qualifiers and association class con-
straints,’’ inMCCM. Berlin, Germany: Springer, 2008.

[32] A. Maraee and M. Balaban, ‘‘Efficient reasoning about finite satisfiability
of UML class diagrams with constrained generalization sets,’’ in Proc. Eur.
Conf. Model Driven Archit.-Found. Appl.Berlin, Germany: Springer, 2007,
pp. 17–31.

[33] L. Efrizoni, T. Informatika, W. M. N. Wan-Kadir, and R. Mohamad,
‘‘Formalization of UML class diagram using description logics,’’ in Proc.
Int. Symp. Inf. Technol., vol. 3, Jun. 2010, pp. 1168–1173.

VOLUME 9, 2021 142473



A. Shaikh et al.: More Than Two Decades of Research on Verification of UML Class Models

[34] A. Hafeez, S. H. A. Musavi, and A. U. Rehman, ‘‘Ontology-based veri-
fication of UML class/OCL model,’’ Mehran Univ. Res. J. Eng. Technol.,
vol. 37, no. 4, pp. 521–534, 2018.

[35] A. H. Khan, S. H. A. Musavi, A.-U. Rehman, and A. Shaikh, ‘‘Ontology-
based finite satisfiability of UML class model,’’ IEEE Access, vol. 6,
pp. 3040–3050, 2018.

[36] A. Hafeez, S. Abbas, and A.-U. Rehman, ‘‘Ontology-based transformation
and verification of UML class model,’’ Int. Arab J. Inf. Technol., vol. 17,
no. 5, pp. 758–768, Sep. 2020.

[37] R. Clarisó, C. A. González, and J. Cabot, ‘‘Towards domain refinement
for UML/OCL bounded verification,’’ in Proc. Collocated Workshops
(SEFM). Berlin, Germany: Springer-Verlag, 2015, pp. 108–114.

[38] J. Cabot, R. Clariso, and D. Riera, ‘‘Verification of UML/OCL class
diagrams using constraint programming,’’ in Proc. IEEE Int. Conf. Softw.
Test. Verification Validation Workshop, Apr. 2008, pp. 73–80.

[39] J. Cabot and E. Teniente, ‘‘Incremental integrity checking of UML/OCL
conceptual schemas,’’ J. Syst. Softw., vol. 82, no. 9, pp. 1459–1478,
Sep. 2009.

[40] J. Cabot, R. Clarisó, and D. Riera, ‘‘On the verification of UML/OCL class
diagrams using constraint programming,’’ J. Syst. Softw., vol. 93, pp. 1–23,
Jul. 2014.

[41] M. Gogolla, F. Büttner, and J. Cabot, ‘‘Initiating a benchmark for uml
and ocl analysis tools,’’ in Proc. Int. Conf. Tests Proofs. Berlin, Germany:
Springer-Verlag, 2013, pp. 115–132.

[42] J. Cabot, R. Clarisó, and D. Riera, ‘‘UMLtoCSP: A tool for the formal
verification of UML/OCLmodels using constraint programming,’’ inProc.
22nd IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Nov. 2007,
pp. 547–548.

[43] M. Gogolla and J. Cabot, ‘‘Continuing a benchmark for UML and OCL
design and analysis tools,’’ in Proc. Fed. Int. Conf. Softw. Technol., Appl.
Found. Cham, Switzerland: Springer, 2016, pp. 289–302.

[44] J. Cabot and E. Teniente, ‘‘Incremental evaluation of OCL constraints,’’
in Proc. Int. Conf. Adv. Inf. Syst. Eng. Cham, Switzerland: Springer, 2006,
pp. 81–95.

[45] R. Clarisó, C. A. González, and J. Cabot, ‘‘Smart bound selection for
the verification of UML/OCL class diagrams,’’ IEEE Trans. Softw. Eng.,
vol. 45, no. 4, pp. 412–426, Apr. 2019.

[46] R. Clariso, C. A. Gonzalez, and J. Cabot, ‘‘Incremental verification of
UML/OCL models,’’ J. Object Technol., vol. 19, no. 3, pp. 1–3, 2020.

[47] A. Shaikh, U. K. Wiil, and N. Memon, ‘‘Evaluation of tools and slicing
techniques for efficient verification of UML/OCL class diagrams,’’ Adv.
Softw. Eng., vol. 2011, pp. 1–18, Sep. 2011.

[48] A. Shaikh, R. Clarisó, U. K. Wiil, and N. Memon, ‘‘Verification-driven
slicing of UML/OCL models,’’ in Proc. IEEE/ACM Int. Conf. Automated
Softw. Eng. (ASE), 2010, pp. 185–194.

[49] A. Shaikh and U. K. Wiil, ‘‘UMLtoCSP (UOST): A tool for efficient
verification of UML/OCL class diagrams through model slicing,’’ in Proc.
20th Int. Symp. Found. Softw. Eng. (FSE ACM SIGSOFT), 2012, pp. 1–4.

[50] A. Shaikh, U. K. Wiil, and N. Memon, ‘‘UOST: UML/OCL aggres-
sive slicing technique for efficient verification of models,’’ in Proc. Int.
Workshop Syst. Anal. Modeling. Berlin, Germany: Springer-Verlag, 2010,
pp. 173–192.

[51] A. Shaikh and U. Kock, ‘‘Efficient verification-driven slicing of
UML/OCL class diagrams,’’ Int. J. Adv. Comput. Sci. Appl., vol. 7, no. 5,
pp. 530–547, 2016.

[52] A. Shaikh and U. K. Wiil, ‘‘Overview of slicing and feedback techniques
for efficient verification of UML/OCL class diagrams,’’ IEEE Access,
vol. 6, pp. 23864–23882, 2018.

[53] W. Sun, R. B. France, and I. Ray, ‘‘Contract-aware slicing of UML class
models,’’ in Proc. Int. Conf. Model Driven Eng. Lang. Syst. Miami, FL,
USA: Springer, 2013, pp. 724–739.

[54] W. Sun, B. Combemale, R. B. France, A. Blouin, B. Baudry, and I. Ray,
‘‘Using slicing to improve the performance of model invariant checking,’’
J. Object Technol., vol. 28, p. 28, Jul. 2015.

[55] W. Sun, B. Combemale, and R. B. France, ‘‘Towards the use of slicing
techniques for an efficient invariant checking,’’ in Proc. Companion 14th
Int. Conf. Modularity, Mar. 2015, pp. 23–24.

[56] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray, ‘‘On challenges of model
transformation from UML to alloy,’’ Softw. Syst. Model., vol. 9, no. 1,
pp. 69–86, Jan. 2010.

[57] S. Maoz, J. O. Ringert, and B. Rumpe, ‘‘CD2Alloy: Class diagrams anal-
ysis using Alloy revisited,’’ in Proc. Int. Conf. Model Driven Eng. Lang.
Syst. Berlin, Germany: Springer-Verlag, 2011, pp. 592–607.

[58] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray, ‘‘UML2Alloy: A chal-
lenging model transformation,’’ in Proc. Int. Conf. Model Driven Eng.
Lang. Syst. Springer, 2007, pp. 436–450.

[59] B. Bordbar and K. Anastasakis, ‘‘UML2ALLOY: A tool for lightweight
modelling of discrete event systems,’’ in Proc. IADIS AC, 2005,
pp. 209–216.

[60] R. Drechsler and U. Kühne, Formal Modeling and Verification of
Cyber-Physical Systems: 1st International Summer School on Meth-
ods and Tools for the Design of Digital Systems. Bremen, Germany,
Sep. 2015.

[61] J. Seiter, R. Wille, U. Kühne, and R. Drechsler, ‘‘Automatic refine-
ment checking for formal system models,’’ in Proc. Forum Specifi-
cation Design Lang. (FDL). Cham, Switzerland: Springer, Oct. 2014,
pp. 3–22.

[62] J. Seiter, R. Wille, M. Soeken, and R. Drechsler, ‘‘Determining rel-
evant model elements for the verification of UML/OCL specifica-
tions,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), 2013,
pp. 1189–1192.

[63] A. Queralt and E. Teniente, ‘‘Reasoning on UML class diagrams with OCL
constraints,’’ in Proc. Int. Conf. Conceptual Modeling. Berlin, Germany:
Springer-Verlag, 2006, pp. 497–512.

[64] C. Farré, A. Queralt, G. Rull, E. Teniente, and T. Urpí, ‘‘Automated reason-
ing on UML conceptual schemas with derived information and queries,’’
Inf. Softw. Technol., vol. 55, no. 9, pp. 1529–1550, Sep. 2013.

[65] A. Queralt, G. Rull, E. Teniente, C. Farré, and T. Urpí, ‘‘AuRUS:
Automated reasoning on UML/OCL schemas,’’ in Proc. Int. Conf.
Conceptual Modeling. Berlin, Germany: Springer-Verlag, 2010,
pp. 438–444.

[66] M. Abbas, C.-B. Ben-Yelles, and R. Rioboo, ‘‘Formalizing UML/OCL
structural features with FoCaLiZe,’’ Soft Comput., vol. 24, no. 6,
pp. 4149–4164, Mar. 2020.

[67] S.-K. Kim and C. David, ‘‘Formalizing the UML class diagram using
Object-Z,’’ in Proc. Int. Conf. Unified Modeling Lang. Berlin, Germany:
Springer-Verlag, 1999, pp. 83–98.

[68] V.Makarenkov, P. Jelnov, A.Maraee, andM. Balaban, ‘‘Finite satisfiability
of class diagrams: Practical occurrence and scalability of the FiniteSat
algorithm,’’ in Proc. 6th Int. Workshop Model-Driven Eng., Verification
Validation (MoDeVVa), 2009, pp. 1–10.

[69] M. Cadoli, D. Calvanese, G. De Giacomo, and T. Mancini, ‘‘Finite model
reasoning on UML class diagrams via constraint programming,’’ in Proc.
Congr. Italian Assoc. Artif. Intell.Berlin, Germany: Springer-Verlag, 2007,
pp. 36–47.

[70] B. Pérez and I. Porres, ‘‘Reasoning about UML/OCL class diagrams
using constraint logic programming and formula,’’ Inf. Syst., vol. 81,
pp. 152–177, Mar. 2019.

[71] J. Cabot and R. Clarisó, ‘‘UML/OCL verification in practice,’’ in
Proc. Workshop Int. Workshop Challenges Model-Driven Softw. Eng.
(ChaMDE), 2008, pp. 31–35.

142474 VOLUME 9, 2021


