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ABSTRACT Research of traffic phenomena is the application basis of intelligent transportation systems
and plays an important role in enriching the theoretical system of modern traffic flow. Various nonlinear
traffic phenomena in the transportation system often alternately change, and the essence of these changes
is theoretically a branching behavior. When the traffic system parameters change to a critical value,
the qualitative state of the traffic flow, such as the free-running state, the blocking state, and the stop-and-
go state, will undergo abrupt changes. However, previous studies on the bifurcation phenomenon of traffic
flow mainly focused on the microscopic car-following model from the perspective of local stability, and
the bifurcation analysis of the macroscopic traffic flow model has not been reported. Therefore, this article
applies branch theory to study the classic macroscopic traffic flow model. First, the types of equilibrium
points and their stable states of the model equations are studied, and the global distribution structure of
the equilibrium points in the phase plane is drawn to verify the consistency of the numerical and analytical
solutions. Secondly, the theory deduces the existence conditions of the model, and simulations have obtained
various systems such as Hopf bifurcation, saddle knot bifurcation, limit cycle bifurcation, cusp bifurcation
(CP), Bogdanov-Takens (BT) bifurcation, and so on. Finally, starting from the Hopf branch and the saddle-
node branch point, by drawing the density space-time diagram of the system, the stop-and-go phenomenon
and local aggregation phenomenon in actual traffic are better explained. The results obtained in this paper
show that the branch analysis method can better describe the nonlinear traffic phenomena on urban roads,
and can provide a theoretical basis for the implementation of traffic control strategies. At the same time,
it also has a very broad application prospect for the development of traffic control software in intelligent
transportation systems.

INDEX TERMS Intelligent transportation system, computer simulation, nonlinear traffic phenomenon,
stability analysis, branch analysis, traffic congestion.

I. INTRODUCTION
In today’s rapid economic development, building a strong
transportation country is an important support for compre-
hensively building a modern and powerful socialist country.
However, as traffic demand continues to increase, the number
of motor vehicles continues to increase, which intensifies the
degree of congestion in the city and reduces travel efficiency.
To solve the problem of traffic congestion, we cannot simply
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increase the number of traffic roads and restrict vehicles.
We must rely on theoretical analysis and research of traffic
flow, deeply think about the internal mechanism of traffic
phenomena, dredge and control traffic, and alleviate and
prevent traffic congestion.

Intelligent Transportation Systems (ITS) is currently the
international public as one of the effective measures to solve
the problem of urban traffic congestion. The system relies on
real-time traffic flow to deliver the hand way, the effective
analysis and control of the traffic system, to achieve the max-
imum alleviation of traffic congestion. The study of traffic
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phenomena is the basis of applications in the fields of intelli-
gent transportation systems, plays an important role in enrich-
ing the theoretical system of modern traffic flow. Researchers
analyze actual traffic phenomena and use traffic flow the-
ory to establish a mathematical model that can describe the
general characteristics of the traffic, explore the relationship
between traffic flow density and speed, reproduce complex
traffic phenomena. The mathematical model describing the
actual traffic law is the main tool to reveal the basic law of
traffic flow. Researchers have now proposed a large number
of traffic flow models, mainly including three types: cellular
automata model [1]–[3], micro car-following model [4]–[8],
and macro dynamics model [9]–[13]. However, due to the
complexity of the traffic system, various traffic phenomena in
actual traffic such as stop-and-walk phenomenon, increased
vehicle density, increased vehicle speed, etc. often appear
alternately, and it is difficult to find a universal model to
solve all problems. Secondly, since the previous research on
traffic flow theory mainly focused on the microscopic car-
following model, the study of traffic flow phenomena from
the perspective of local stability has limitations. The new
generation of intelligent transportation systems puts forward
a higher level of research on traffic phenomena. The research
on the microscopic car-following model traffic flow phe-
nomenon can no longer meet the needs of current intelligent
systems. Therefore, this paper proposes a branch analysis
method of a macroscopic traffic model, which can describe
and predict the nonlinear traffic phenomena on the road from
the perspective of the global stability of the system. The
study of traffic flow branching theory can not only effectively
explain various traffic flow phenomena, but also contribute
to the development of traffic control software in intelligent
transportation systems.

The transportation system is a complex integrated system
and a time-varying nonlinear dynamic system. There are
complex non-linear relationships among the various factors
that make up the transportation system, and the various
factors that reflect traffic characteristics and affect traffic
are also non-linear, which makes a large number of non-
linear phenomena in the transportation system. At present,
researchers have further analyzed traffic system problems
from the perspective of nonlinear scientific theory. For exam-
ple, in 2001, Y. Igarashi et al. proved that there will be multi-
ple exact solutions in a certain range of automobile density
in the optimal speed model with time lag, and confirmed
the existence of the subcritical Hopf branch [14]. In 2002,
L.A. Safonov et al. studied the phenomena of Hopf branch
and limit cycle caused by the delay time of the driver [15].
In the same year, H.J.C. Huijberts et al. studied the syn-
chronous movement of the circular bus route following the
model, found their local stability described the branches of
the synchronous movement [16]. In 2004, Orosz.G et al.
found the Hopf bifurcation point after analyzing the stability
of the steady-state solution and local branching in the study of
the optimal speed model of the driver’s reflection time [17].
In the same year, I. Gasser described the model of N cars on a

ring road and found that if the density of the cars is changed,
it will prove that the loss of stability is usually caused by the
Hopf branch [18]. In 2006, Liu et al. considered branching to
be one of the main reasons for various nonlinear behaviors in
traffic flow, and reviewed the current research on branching
phenomena in traffic flow [19]. In 2008, Zhou Wei et al.
analyzed the cycle-doubling bifurcation and chaos phenom-
ena in traffic flow through a new type of traffic flow car-
following model [20]. In 2009, Ling Daijian et al. studied a
class of nonlinear time-delay car-following models, analyzed
the stability of the system and Hopf branch characteristics
and obtained the influence of the driver’s response time and
safety distance on the stability range of the system [21].
In 2010, Jin Yanfei et al. used the Hopf bifurcation theory
to calculate the full speed difference vehicle following model
using Hopf bifurcation theory. The study found that the Hopf
bifurcation critical point is located at the boundary of the
linearly unstable regions, the uniform traffic flow will lose
linear stability and appear when passing through the Hopf
bifurcation point [22]. In 2013, Xu Jian et al. reviewed
the research on various branching phenomena in the time-
delayed car-following model with continuous time and space,
proposed to study various nonlinear traffic phenomena in the
time-delayed car-followingmodel through the theory of time-
delay dynamic system [23]. In 2015, Delgado.J et al. studied
the traveling wave solution of the Kerner-Konhauser model
and proved the existence of the DTB branch in the model,
thus explaining the existence of the Hopf branch and the GH
branch in the model, and compared it with the GH branch
curve, depicts the stability limit cycle of the system [24].
In 2017, Yasunari Miura et al.’s analysis of the optimal speed
traffic flow model revealed a branch structure [25]. In 2018,
in a heterogeneous traffic flowmodel with periodic boundary
conditions, Yu-Qing et al. used branch analysis to discuss
the branching mode of the heterogeneous system in three
cases in detail, explained the branching pattern diagram [26].
In the same year, Wang Wei et al. obtained two balance
points by solving the low-dimensional macroscopic traffic
flow model, and discussed its stability, and found that the
model has a transcritical bifurcation point [27]. In 2020,
Ren Weilin et al. carried out a bifurcation analysis on the
heterogeneous continuous traffic flow model that took into
account the differences in the psychological travel of drivers,
and discussed the existence and stability of the Hopf bifurca-
tion from a theoretical perspective [28]. At the same time,
Zhu et al. proposed a new short-term traffic flow predic-
tion method based on wavelet transform (WT) and multidi-
mensional Taylor network (MTN). The proposed prediction
model provides better prediction performance and time cor-
relation. In addition, when considering data from different
dates and locations, the new model shows good robustness
and generalization ability [29]. ArzooMiglani et al. discussed
various deep learning models used for self-driving vehicle
traffic flow prediction and compared the applicability of these
models in modern intelligent transportation systems [30].
Chen et al. used multiple heterogeneous data to establish
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a random traffic flow model method based on vehicle tra-
jectory information, revealing the internal mechanism of the
complex dynamics and random evolution of traffic flow, and
providing a theoretical basis for a new generation of intel-
ligent transportation systems [31]. Jia et al. developed an
enhanced cooperative micro-traffic model considering V2V
and V2I communication, and studied how vehicle commu-
nication affects vehicle cooperative driving, especially in the
case of traffic interference [32]. D. Ngoduy and others applied
coupled Langevin equations to simulate complex human
driver behaviors, used stochastic processes to describe time-
varying random acceleration, and proposed a new continuous
stochastic car-following model to study implies a theoret-
ical significance for the design of CACC or ACC control
algorithm to reduce the negative impact of human/machine
delays in traffic flow [33]. In addition, D. Ngoduy et al.
established a multi-delay car-following model and studied
the boundary of the linearly unstable region formed by the
Hopf bifurcation point, and found that increasing the delay of
the perception space interval will expand the unstable region,
thereby destroying the traffic flow stability [34].

Traffic flow bifurcation phenomenon refers to the phe-
nomenon that when the system parameters change and exceed
a certain critical value, the stable state of the traffic system
changes substantially, such as the transition between the free-
running state, walking stop state, traffic congestion, and other
traffic states. To deal with traffic congestion, the nonlinear
dynamic behavior of traffic flow at the branch critical point
should be well understood by people. At present, branch as
the main concept of nonlinear scientific theory has attracted
wide attention of researchers. It starts from the most common
traffic flow state instability phenomenon in traffic flow and
explores the internal state changes hidden in the complex
traffic flow system. Themechanism provides a newmethod to
reveal the inherent regularity behind the phenomenon of non-
linear traffic flow, to detect and relieve traffic congestion in
time. However, the researchers mainly study the phenomenon
of traffic flow branching based on the car-following model.
Compared with the car-following model, the macro-traffic
flow model can better describe the collective behavior of
traffic flow and is more suitable for dealing with traffic flow
problems composed of a large number of vehicles, to relieve
and prevent traffic congestion. At present, there are few stud-
ies on the analysis of traffic flow branching phenomena based
on the macroscopic traffic flow model. Therefore, the traffic
flow real-time transmission system in the ITS system is used
to carry out statistical analysis on the density and average
speed of the actual traffic flow, which provides data support
for the study of traffic flow branching phenomena. Using the
branch analysis method, the nonlinear dynamic behavior of
traffic flow at various branch points in the system is analyzed
through the density space-time diagram and the branch phase
plane diagram. According to unstable branch points, specific
management control strategies under different situations are
proposed. Use traffic information boards, traffic guidance
variable display screens, etc. to adjust traffic flow, density,

and other data, thereby changing the appearance or nature
of branch points, turning unstable branch points into stable
branch points or disappearing, and at the same time, feed-
back the analysis results to ITS system realizes congestion
mitigation or preventive control.

The remainder of the paper is organized as follows.
In Section 2, a new macroscopic traffic flow model is pro-
posed through variable substitution. In Section 3, the clas-
sification and stability of the equilibrium points of the new
model are studied and the overall distribution structure of the
nearby equilibrium solutions are drew in the phase plane by
selecting four sets of parameters. In Section 4, the existence
conditions of Hopf bifurcation and saddle-node bifurcation of
the model is proved. Then various bifurcations of the system
such as Hopf bifurcation, saddle-node bifurcation and Limit
Point bifurcation of cycles are found by numerical simula-
tion. In Section 5, we explained the stop-and-go wave and
stability mutation in real traffic by the numerical simulations.
We conclude the paper in Section 6.

II. MODEL EQUATIONS
Serge P. Hoogendoorn et al. proposed a macroscopic traf-
fic flow model considering the different driving characteris-
tics [35], which consists of the following two equations, one
is the equation for the conservation of the number of vehicles,

∂ρ

∂t
+
∂ (ρv)
∂x
= 0 (1)

and an equation of motion,

∂u
∂t
+ v

∂u
∂x
= 2

[
Ve( (ρ)− v

]
τ

+ 2v
∂ρ

∂x
+
k
ρ

∂2v
∂x2

(2)

where ρ is the density, v is the velocity, τ is the driver
reaction time, k is the speed difference of different driving
characteristics, ∂

2v
∂x2

is a sticky item, its role is to help eliminate
the impact or discontinuities, without significantly changing
the dissection of the original model. Ve (ρ) is the optimal
velocity function and has the following form:

Ve [ρ] = vf

{[
1+ exp

(
ρ/ρm − 0.25

0.06

)]−1
− 3.72× 10−6

}
(3)

Here vf = 30m/s is the free-flow speed, ρm = 0.2veh/m
is the maximum or jam density and the related parameters of
the model are set as follows: T=10s, c0 = 11m/s, µ0 = 550.

Assuming that the model has a traveling wave solution
ρ (z) and v (z), where z = x − ct , traveling wave velocity
c < 0. Bring it into the equation (1) and (2), can get:

−cρz + qz = 0 (4)

−cvz + vvz =
2Ve − 2Vek − 2u− uk − 2τkVeρz + kvz

τk

+
kδ2

2τk
vzz (5)
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where q is the flow which equals the product of the density
and speed. From Eq. (4), get:

vz =
cρz
ρ
−
qρz
ρ2

(6)

The integration of Eq. (4) over z yields:

−cρ + q = const = q∗ (7)

q = q∗ + cρ (8)

Substituting Eq. (6) and (8) into Eq. (2), we obtain:

ρzz +

(
q2∗ρk − q

3
∗k − kVe (ρ) q

2
∗ρ

3

τ

)
× ρz −

1
τ

(
Ve (ρ)−

q∗
ρ
− k

)
= 0 (9)

The equation may be written as the following second-order
ordinary differential equation for solving ρ (z):

ρzz − g (ρ, q∗) ρz − f (ρ, c, q∗) = 0 (10)

where:

g (ρ, q∗) =
kq2∗

[
τc0ρ − kq∗ − kVe (ρ) ρ3

]
τ

(11)

f (ρ, c, q∗) = f (ρ, c, q∗)=
ρ

τkq∗
[q∗ + kρ − ρVe (ρ)]

(12)

Let y = dρ
dz Then, Eq. (10) is transformed as follows:

dρ
dz
= y

dỹ
dz
= g (ρ, q∗) y+ f (ρ, c, q∗)

(13)

III. TYPES AND STABILITIES OF EQUILIBRIUM
POINTS IN THE MODEL
The significance of studying the type and stability of the
balance point of the new model is to find the various branch
points of the transportation system from the balance point
as the starting point on the phase plan and draw the global
distribution structure of the traffic trajectory near the branch
point. Theoretically analyze the possible branches of the
traffic system, branch conditions, and the stability changes
of the traffic flow passing these branch points.

If we set the terms on the right-hand side of Eq. (13) to
be zero, then we have y = 0 and F = 0. So the equilibrium
points (ρi, 0) of the system can be determined. The linearized
system of Eq. (13) can be derived through the Taylor expan-
sion at the equilibrium points and we write it as follows:

dρ
dz
= y

dy
dz
= G (ρi, q∗) y+ F ′ (ρi, c, q∗) (ρ − ρi)

(14)

The Jacobian characteristic equation of (14) reads:

λ2 − Giλ− F ′i = 0 (15)

where Gi = G (ρi, q∗) and F ′i = F′ (ρi, c, q∗).

TABLE 1. Types and stabilities of some equilibrium points of the
linearized system (14) with the given parameters, where
1i = G2

i + 4F ′i , i = 1,2,3.

According to the qualitative theory of differential equa-
tions, the types of the equilibrium point (ρi, 0) for the sys-
tem (14) can be judged as (a) a saddle point for F ′i > 0; (b) a
nodal point for G2

i + 4F ′i > 0 with F ′i < 0; (c)a spiral point
forG2

i +4F
′
i < 0 withGi 6= 0, and (d) a center for F ′i < 0 and

Gi = 0. The system is always unstable at a saddle point for
z→±∞. It is stable at a nodal or a spiral point for z→+∞
(or z→−∞) if Gi < 0 (or Gi > 0).
The non-linear system (13) shares the same equilibrium

points as the linearized system (14). Moreover, the two sys-
tems are uniformly stable or unstable at these equilibrium
points if the equilibrium point is not the center point accord-
ing to the Hartman-Gorban linearization theorem. The equi-
librium points ρi (i = 1, 2, . . .) of the linearized system of
Eq. (14) can be solved when parameter values of c and q∗
are given. We can identify the types and stabilities of these
points according to the discussion mentioned above. Next,
we take four sets of parameter values for examples and show
the results in Table 1. It is to be noted here that ρi = 5 is
a trivial equilibrium point and has no practical significance
because ρ is equal to 0 at this time. So there is no need to
discuss it.

Since the analytical solution of the nonlinear system (13)
is unlikely to be derived, the numerical solutions nearby the
equilibrium points can be given in the phase-plane. We use
the four sets of parameters in Table 1 respectively to study
the stabilities of system (13) at these equilibrium points. The
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results are shown in Figs. 1 and 4. The equilibrium points are
represented by (ρi, 0) , i = 1, 2, 3, ρ1 < ρ2 < ρ3.

FIGURE 1. The phase plan of the trajectory corresponding to the
equilibrium point when the variable parameters are c = 1.371 and
q∗ = 0.2.

Figure 1 corresponds to the first case in Table 1. We use
the equilibrium point as the starting point to draw the trajec-
tory distribution structure diagram of the nonlinear system,
and we can find that the various equilibrium points in the
phase diagram affect each other, resulting in a relationship
of divergence and aggregation. From the perspective of the
overall stability of the system, it shows the influence of the
equilibrium point on the traffic state. This is the same as
what we have observed in actual traffic. It can be seen from
Figure 1: When z → ±∞, the system is unstable at the
equilibrium point (ρ1, 0) and (ρ3, 0), the trajectory close to
this point is also far away from this point. When z → +∞,
multiple spiral trajectories near saddle point (ρ3, 0) tend to
focus (ρ2, 0). When z → −∞, these trajectories move
away from the focus and eventually tend to infinity. This
shows that: When z → +∞, the system is stable at (ρ2, 0);
when z → −∞, the system is stable at (ρ2, 0), the tra-
jectory can be regarded as the saddle-focus solution of the
system.

Figure 2 corresponds to the second case in Table 1. As the
parameters increase, we observe that the equilibrium point
gradually changes from an unstable state to an aggregate state
over time. This is consistent with the formation of traffic
congestion in actual traffic flow over time. It can be seen
from Figure 2: The system is unstable at the equilibrium point
(ρ1, 0). The spiral trajectory starting from (0.12, 0), when
z → +∞, the spiral trajectory tends to the focus (ρ2, 0),
the system is stable at this point. When z → −∞, these
trajectories are far away from the focal point (ρ2, 0) and
eventually form a constant amplitude oscillation, the system
is unstable. Further research found that the spiral trajectory
starting from (0.06, 0), when z → −∞, all trajectories in
the figure approach the outermost circle of the curve; when
z → +∞, it tends to infinity far. Therefore, a limit cycle is
created between the trajectories.

FIGURE 2. The phase plan of the trajectory corresponding to the
equilibrium point when the variable parameters are c = −1.38 and
q∗ = 0.64.

FIGURE 3. The phase plan of the trajectory corresponding to the
equilibrium point when the variable parameters are c = −2.5 and
q∗ = 0.8.

Figure 3 corresponds to the third case in Table 1. With
the continuous increase of the parameters, we observe that
the equilibrium point changes with time, and the aggrega-
tion state of the trajectory also increases significantly, which
indicates that the traffic congestion has also reached the
maximum. In actual traffic, the vehicle has fallen into a
standstill. It can be seen from Figure 3: When z → ±∞,
the system is unstable at the equilibrium point (ρ1, 0), its
nearby trajectories are far away from this point. When z →
+∞, the spiral trajectory near the saddle point (ρ1, 0) tends
to the focus (ρ2, 0). When z → −∞, these trajectories are
far away from the focal point and eventually tend to infinity.
It shows that: when z→+∞, the system is stable at (ρ2, 0);
when z→ −∞, the system is unstable at (ρ2, 0). The spiral
degree of these trajectories is obviously increased compared
to Fig. 1, which is due to the absence of the function of saddle
point (ρ3, 0) in Fig. 1. Because the vehicle density presents a
monotonously increasing relationship, compared with Fig. 1,
the vehicle density value near the focal point (ρ2, 0) also
presents a larger oscillation state.
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Figure 4 corresponds to the fourth case in Table 1. It can be
seen from Figure 4: when z → ±∞, the system is unstable
at the equilibrium point (ρ1, 0), its nearby trajectories are
far away from this point. Since the value of vehicle density
in the figure continues to show a monotonous increasing
relationship, it indicates that the value of vehicle density
corresponding to this set of parameters will also continue
to increase, and the transportation system is unstable and
eventually tends to be congested.

FIGURE 4. The phase plan of the trajectory corresponding to the
equilibrium point when the variable parameters are c = −6.7 and
q∗ = 0.2.

It can be seen from the above figure that the type and
stability of the equilibrium point on the phase plane are

consistent with the theoretical results in Table 1. In addition,
they show the influence of the equilibrium point on the traffic
state from the perspective of the global stability of the system.

IV. BIFURCATION ANALYSES
A. HOPF BIFURCATION CONDITIONAL DERIVATION
According to the Hopf bifurcation condition theorem given
in literature [36], analysis of system (13), let q∗ be a variable
parameter, which has an equilibrium point (ρ0, 0) for all
q∗. The derivative matrix L at the equilibrium point is also
the Jacobian matrix of the system at the equilibrium point,
as follows in (16), as shown at the bottom of the page.

Because the equilibrium point satisfies equations y = 0
and F = 0, we have q∗ρ + (1− ρmρ) (Ve (ρ)− c) = 0 and
the Eq. (14) can be rewrite as (17), shown at the bottom of the
page.

Let its eigenvalue be λ, λ = α(q∗) ± iβ(q∗), then its
characteristic equation is:

λ2 − (A1 + A4) λ+ (A1A4 − A2A3) = 0 (18)

Suppose that the equation has a pair of complex eigenval-
ues α(q∗)± iβ(q∗), then (19)–(21), as shown at the bottom of
the page.

Since V ′∗(ρ) < 0, c is not equal to 0. Let α(ρ0, q∗0 ) = 0,
get:

α
(
ρ0, q∗0

)
=
ρ2q2∗ + k

2 (ρmρ − 1)2

2τ 2 (ρmρ − 1) ρq2∗
|q∗=q∗0

, 0 (22)

⇒ q∗0 =
k (ρmρ0 − 1)

ρ0
(23)

L (q∗) =

 0 1

−2y2

ρ2
−
y
k

(
q∗

(ρmρ − 1)2
+

k2

q∗ρ2

)
+

1− 2ρmρ
τ

+
(1− ρmρ)2 V ′e (ρ)+ 2ρm (ρmρ − 1) (Ve (ρ)− c)

τq∗

4y
ρ
+

1
τ

(
q∗ρ

ρmρ − 1
− k

)
∣∣∣∣∣ η = η0y = y0

q∗ = q∗0
(16)

L (q∗) =


0 1

q∗ + (1− ρmρ)2 V ′e (ρ)
τk

1
τ 2

(
q∗ρ

ρmρ − 1
−
γ 2 (ρmρ − 1)

q∗ρ

)
∣∣∣∣∣∣∣∣
η = η0
y = y0
q∗ = q∗0

,

(
A1 A2
A3 A4

)
(17)

α (q∗) =
A1 + A4

2
=

1
2τ 2

(
q∗ρ

ρmρ − 1
−
k2 (ρmρ − 1)

q∗ρ

)
(19)

β (q∗) =

√
(A1A4 − A2A3)−

(A1 + A4)2

4

=

√
−

1
4τ 2

(
q∗ρ

ρmρ − 1
−
k2 (ρmρ − 1)

q∗ρ

)2

−
q∗ + (1− ρmρ)2 V ′e (ρ)

τk
(20)

c = ȧ (q∗)∣∣q∗0 = ρ

2τ 2 (ρmρ − 1)
+
k2 (ρmρ − 1)

2τ 2q2∗ρ
=
ρ2q2∗ + k

2 (ρmρ − 1)2

2τ 2 (ρmρ − 1) ρq2∗
6= 0 (21)
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So we have:

β
(
ρ0, q∗0

)
=

√
−q∗ − (1− ρmρ)2 V ′e (ρ)

τkq∗
∣∣∣∣∣ η = η0q∗ = q∗0

(24)

Because of V ′∗(ρ) < 0, when −ρ20V
′
∗(ρ0) > q∗0 > 0,

β(ρ0, q∗0 ) > 0. At this time, the system has Hopf bifurcation
at q∗ = q∗0 .

B. THE HOPF TYPE DERIVATION OF THE MODEL
For the Hopf bifurcation problem, because the ndimensi-onal
system can be restricted to the 2-dimensional center manifold
by the center manifold method, only the Hopf bifurcation of
the 2-dimensional system is considered.
Lemma 3.1 ([36]): suppose a two-dimensional systemwith

parameters

x ′ = f (x, γ ) x = (x1, x2)T ∈ R2, γ ∈ R (25)

The equilibrium point is the origin O (0, 0), and the eigen-
value at the origin is α (γ ) ± iω (γ ). And when γ = 0,
the partial derivative matrix of the system has pure imaginary
eigenvalue iω0, that is α (0) = 0, ω (0) = ω0 > 0.
Through coordinate transformation, the system (25) can be
written as:{

x ′1 = α (γ ) x1 − ω (γ ) x2 + f̃1 (x1, x2, γ )

x ′2 = ω (γ ) x1 + α (γ ) x2 + f̃2 (x1, x2, γ )
(26)

where f̃1, f̃2 = O
(
x21 + x

2
2

)
◦

Theorem 4.1: (Hopf bifurcation theorem of ODE) suppose
that the partial derivative matrix D (γ ) of the system (25)
at the origin has an eigenvalue α (γ ) ± iω (γ ) and satisfies
α (0) = 0, ω (0) = ω0 > 0 and c = α′ (0) 6= 0, then there
exists an analytic function.

γ (ε) =

∞∑
k=2

γkε
k (27)

So that for γ = γ (ε) 6= 0, the system (26) has a unique
closed orbit 0ε in a sufficiently small neighborhood of the
origin, and its period:

T (ε) =
2π
ω0

(
1+

∞∑
k=2

τkε
k

)
(28)

When ε → 0, γ (ε) → 0, 0ε tend to the origin. Let γk1
be the coefficient of the first term not equal to zero in the
expansion (29), then when γk1 and c are the same sign, 0ε is
a stable limit cycle; when γk1 and c are different sign, 0ε is
an unstable limit cycle.

The proof of theorem 4.1 and the formula of coef-
ficient γk , τk are given in document [44], especially
when k = 2,

γ2 = −a/c, τ2 = −
(
b+ γ2ω′ (0)

)
/ω0 (29)

Among

a = (1/16)
[
f̃1xxx + f̃1xyy + f̃2xxy + f̃2yyy

]
+ (1/16ω0)

×

[
f̃1xy

(
f̃1xx + f̃1yy

)
− f̃2xy

(
f̃2xx + f̃2yy

)
− f̃1xx f̃2xx + f̃1yy f̃2yy

]
(30)

For the system (13), let q∗ be a variable parameter, which
has an equilibrium point (ρ0, 0) for all q∗. Let ρ̃ = ρ − ρ0
carry out coordinate translation and move the equilibrium
point to the origin. At this time, the system can be expressed
as follows:

Where f̃1xxx , f̃2xxx , etc. are the partial derivatives of f̃1, f̃2 at
(0, 0, 0). Here a is an important parameter to judge the sta-
bility of limit cycle. Assuming that the condition of theorem
4.1 holds, according to the Hopf bifurcation, the following
stability conclusions are obtained.

(I) If a < 0 (> 0), then the limit cycle 0ε is stable
(unstable);

(II) if a and c are of the same sign, the Hopf bifurcation is
supercritical (subcritical);

(III) if a = 0, then the Hopf bifurcation is degenerate.
For the system (13), let q∗ be a variable parameter, which

has an equilibrium point (ρ0, 0) for all q∗. Let ρ̃ = ρ − ρ0
carry out coordinate translation and move the equilibrium
point to the origin. At this time, the system can be expressed
as follows:

ρ̃′ = y

y′ =
q2∗ + 2τk (ρ̃ + ρ0) q∗ − α (ρ̃ + ρ0)

2 c2(ρ)
2τ 2k2 (ρ̃ + ρ0) q∗ (ρ̃ + ρ0)

y

−
α (ρ̃ + ρ0) [V∗ (ρ̃ + ρ0) (ρ̃ + ρ0)− q∗ − c0 (ρ̃ + ρ0)]

2τ 2k2 (ρ̃ + ρ0) q∗
(31)

The system can be linearized by Taylor expansion at the
equilibrium point (ρ̃, y) = (0, 0).

x̃ ′ = L (q∗) x̃ + f (32)

where f is a smooth vector function, its constituent element
f1,2 is the Taylor expansion of the least quadratic term of
x̃, which can be expressed as follows in (33), shown at the
bottom of the next page.

Jacobian matrix L (q∗) can be expressed as follows:

L (q∗)

= L(q∗)

=

 0 1
α[q∗ + ρ20V

′
∗(ρ0)]

2τ 2k2(ρ0)q∗

q2∗ + 2k(ρ0)q∗ − αρ20c
2(ρ0)

2τ 2k2(ρ0)q∗ρ0


=

(
0 1

b (q∗) d (q∗)

)
(34)

Its eigenvalue is the root of the following characteristic
equation:

λ2 − σλ+1 = 0 (35)
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inside, σ = σ (q∗) = d (q∗) = trL (q∗), 1 = 1(q∗) =
−b (q∗) = detL (q∗),

λ1,2 (q∗) =
1
2

(
σ (q∗)±

√
σ 2 (q∗)− 41(q∗)

)
(36)

According to the Hopf bifurcation condition, it is shown
that:

σ (0) = 0,1 (0) = ω2
0 > 0 (37)

For smaller |q∗| variables can be introduced:

α (q∗) =
1
2
σ (q∗) , ω (q∗) =

1
2

√
41(q∗)− σ 2 (q∗) (38)

Thus, the following eigenvalue expression can be obtained:

λ1 (q∗) = λ (q∗) , λ2 (q∗) = λ̄ (q∗) (39)

where,

λ (q∗) = α (q∗)+ iω (q∗) , α (0) = 0, ω (0) = ω0 > 0

(40)

Let ωre + iωim be the eigenvector of L (q∗) corresponding
to the eigenvalue λ (q∗), there has:

L (ωre + iωim) = iω0 (ωre + iωim) (41)

Considering that the real part and imaginary part of both
sides of the equal sign are equal, we can get:{

Lωim = ω0ωre

Lωre = −ω0ωim
(42)

The finishing equation (42) is as follows:

L [ωim ωre] = [ωim ωre]
[
0− ω0
ω0 0

]
(43)

Thus,

[ωim ωre]−1 L [ωim ωre] =
[
0− ω0
ω0 0

]
(44)

Order,

ỹ = [ωimωre]−1 x̃ (45)

Namely,

ỹ′ = [ωimωre]−1 x̃ ′ (46)

Substituting equation (32) into equation (46), we can get:

ỹ′ = [ωimωre]−1 L [ωimωre] ỹ+ [ωimωre]−1 f

=

[
0− ω0
ω0 0

]
ỹ+ [ωimωre]−1 f (47)

In addition, the eigenvector of L (q∗) can be calculated as
follows:

ωre + iωim =
[
0
1

]
+ i

[
−

1
√
−b(q∗)

0

]
(48)

Substituting equation (33) and the values of ωim and ωre
into equation (48), we obtain (49), as shown at the bottom of
the next page.

Equation (49) has the same form as equation (26),
so according to equation (38), the value in system (13) can
be calculated as follows:

a = (1/16)
[
f̃2ỹ1ỹ1ỹ2 + f̃2ỹ2ỹ2ỹ2

]
+ (1/16ω0)

×

[
−f̃2ỹ1ỹ2

(
f̃2ỹ1ỹ1 + f̃2ỹ2ỹ2

)]
(50)

Further, the value of C can be calculated as follows:

c = α′ (0) =
1

4kc2ρ20
(1+

αρ20c
2

q2∗
) > 0 (51)

Therefore, for the system (13), the Hopf bifurcation is
supercritical when a < 0, and subcritical when a > 0.

C. DERIVATION OF SADDLE NODE BIFURCATION
CONDITIONS
Lemma 3.2 ([36]): consider that system ẋ = f (x, λ),
x ∈ Rn, λ ∈ R, and λ are variable parameters. If (x0, λ)
satisfies the equilibrium condition f (x, λ)|(x0,λ0) = 0n×1,
records L = Dx f (x, λ)|(x0,λ0), let ψ and φ are L left and right
unit characteristic vectors, namely ψL = 0 and Lφ = 0.
When the following conditions satisfy, λ = λ0 is the saddle
node type of the system.

i) a = ψ ·
∂

∂λ
f (x, λ)

∣∣(x0,λ0) 6= 0 (52)

ii) b = ψ ·
∑n

i=1
ei[φT

∂2

∂x2
fi(x, λ)

∣∣(x0,λ0) φ] 6= 0 (53)

For the system (13), we let q∗ be a variable parameter and
the differential matrix at this equilibrium point is written as
Eq. (17).

ψL = 0⇒ ψ =

(
1
τ

(
k2 (ρmρ − 1)

q∗ρ
−

q∗ρ
ρmρ − 1

)
1
)
(54)

By substituting ψ and φ into Eq. (52) and Eq. (53),
we have:

a = ψ ·
∂

∂q∗
f (x, q∗)

∣∣∣(x0,q∗0 )
=

(
1
τ

(
k2 (ρmρ − 1)

q∗ρ
−

q∗ρ
ρmρ − 1

)
1
)( 0

(1−ρmρ0)ρ0
kτq∗0

)
=
(1− ρmρ0) ρ0

kτq∗0
6= 0 (55)

f =
[

0
k11ρ̃2 + k22y2 + k12ρ̃y+ k111ρ̃3 + k222y3 + k112ρ̃2y+ k122ρ̃y2 + O (ρ̃, y)

4

]
(33)
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The equation 1−ρmρ0 = 0 is tenable only when ρ is equal
to 0. But it is a trivial equilibrium point and can be neglected.
So we have a 6= 0. Eq. (56), as shown at the bottom of the
page.

So the system (13) undergoes a saddle-node bifurcation at
q∗ = q∗0 , if q∗0 = − (1− ρmρ0)

2 V ′e (ρ0).

FIGURE 5. The bifurcation diagram for a wide range of the parameter q∗.

V. NUMERICAL SIMULATIONS
In order to study the various branching phenomena of nonlin-
ear systems, we need to choose different equilibrium points
as the starting point and draw the corresponding branch
diagrams. Next, we use the mathematical software package
MATCONT that can perform numerical analysis, select the
equilibrium point (ρ2, 0) = (0.0546, 0) calculated in the
third part as an example, select the parameter q∗ as a variable

parameter with an initial value of 0.2. The actual calculation
ranges of q∗ is about −30 − 30. Three special points can be
found within this range. As shown in Figure 5(a), one is the
Hopf branch (H) and the other is the limit point branch (LP).
Figure 5(b) is a bifurcation diagram of the appropriate range
of the parameter q∗.
The Hopf bifurcation point is appeared when the variable

parameter q∗ is taken as 0.6525412. The state variables of
it are (0.0537971,0) and the corresponding vehicle density
is ρ0 = 0.652541veh/m. The characteristic values of it
are −5.15597e (−8) + i0.01873044 and −5.15597e (−8) −
i0.01873044. That is, the real parts of the pair of conjugate
eigenvalues are 0. This is considered a mark of a Hopf
bifurcation.

By substituting the value of ρ0 into the Eq.− (1− ρmρ0)2

V ′e (ρ0), we have − (1− ρmρ0)2 V ′e (ρ0) = 1.8945. Obvi-
ously, the inequality 1.8945 > 0.64890957 > 0 satisfies
the model’s Hopf bifurcation existence conditions deduced in
the section 4.1. The numerical results also confirm the theory
obtained.

The limit point bifurcation is appeared when the variable
parameter q∗ is taken as 0.19925. The state variables of it
are (0.12737, 0) and the corresponding vehicle density is
ρ0 = 0.17554veh/m. The characteristic values of it are
−0.153508 and 8.48099e − 11. That is, the second charac-
teristic value is 0 and it is a mark of a limit point bifurcation.
Moreover, the real part of the first characteristic value is
negative. That means it is a stable limit point, namely a
saddle-node bifurcation.

By substituting the value of ρ0 into the Eq.− (1− ρmρ0)2

V ′e (ρ0), we have − (1− ρmρ0)2 V ′e (ρ0) = 0.1601. Obvi-
ously, the equation q∗0 = − (1− ρmρ0)

2 V ′e (ρ0) satisfies

ỹ′ =
[
0− ω0
ω0 0

]
ỹ

+

[
0

k11ρ̃2 + k22y2 + k12ρ̃y+ k111ρ̃3 + k222y3 + k112ρ̃2y+ k122ρ̃y2 + O (ρ̃, y)
4

]
(49)

b=ψ ·
∑n

i=1
ei[φT

∂2

∂x2
fi(x, λ)

∣∣(x0,λ0) φ]
=

(
1
τ

(
k2 (ρmρ − 1)

q∗ρ
−

q∗ρ
ρmρ − 1

)
1
)

·



[10]
[
0 0
0 0

] [
1
0

]

[1 0]


−2ρmq∗ + 2ρm

 ρm (Ve (ρ)− k)+ (1− ρmρ)2 V ′′e (ρ)
+ (ρmρ − 1) (1+ 2ρm)V ′e (ρ)


kτq∗

−
1
τ
·

[
q∗

(ρmρ − 1)2
+

k2

q∗ρ2

]
−

1
τ 2
·

[
q∗

(ρmρ − 1)2
+

k2

q∗ρ2

]
4
η


[
1
0

]


∣∣∣∣ q∗=q∗0

=
−2ρmq∗ + 2ρm

[
ρm (Ve (ρ)− k)+ (ρmρ − 1) (1+ 2ρm)V ′e (ρ)+ (1− ρmρ)

2 V ′′e (ρ)
]

kτq∗
6=0 (56)
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the model’s saddle-node bifurcation existence conditions
deduced in the section 4.3. The numerical result is compatible
with the analysis of theory.

Next, we discussed the continuation of solutions when the
Hopf bifurcation point mentioned above is selected as the
starting point. The first limit point bifurcation of cycles (LPC)
is appeared and the parameter q∗ varies to 0.64112 at this
time. The period of the limit cycle is 364.61441. The corre-
sponding bifurcation diagrams of it are shown as Fig. 6.

FIGURE 6. Continuation solution graph starting from Hopf branch:
(a) Branch graph with variable q∗ and period as coordinates; (b) Branch
diagram with variables ρ, q∗ and y as coordinates.

From Figure 6(a)-6(b), it can be seen that since the param-
eters and state variable values of the last four limit cycles
are not much different, these four limit cycles almost overlap
together, and compared with the first limit cycle, they are all
small in size and only appear as a single point.

Next, we analyze the stability variation of traffic system
when the parameters pass through some bifurcation critical
points calculated above. First, to investigate the effects of
Hopf bifurcation on traffic flow, we study the system stabili-
ties in the phase-plane when q∗ passes through 0.64112.
Fig.7 (a) shows that for q∗ > 0.64112, the equilibrium

point (0.0228, 0) is a saddle point and the equilibrium point
(0.0589, 0) is a spiral point. All the curves within the red line
tend to the point (0.0589, 0) and this point is a sink. So the

system inside the red line is stable and the system outside it
is unstable.

FIGURE 7. The Hopf bifurcation for q∗ > 0.64112 and q∗ < 0.64112:
(a) Phase plane diagram when the variable parameter q∗ = 0.65;
(b) Phase plane diagram when the variable parameter q∗ = 0.638.

It can be seen from Fig. 7(b) that for q∗ < 0.64112,
a twisted trajectory starting from (0.05, 0) approaches the
spiral point (0.0593, 0) for z→ +∞ and eventually evolves
into the oscillation with the constant amplitude for z→−∞.
However, a twisted trajectory goes very closely to the afore-
mentioned area outside for z→−∞ and approaches infinity
for z→+∞. So a periodic solution existed between the two
trajectories. Thus no new equilibrium point arise at a Hopf
bifurcation. Instead, a periodic solution is born. These theo-
retical analyses are also compatible with the numerical results
obtained above. A limit point bifurcation of cycles (LPC)
appears when q∗ varies to 0.64112 and the period of
it is 336.105071. Moreover, the First Lyapunov exponent
a = 6.2769562 is greater than zero. So the Hopf bifurcation
is subcritical and the limit point of cycles is unstable. The
uniform traffic flow loses linear stability via Hopf bifurcation
and the oscillations appear.

We can also see the effects of Hopf bifurcation in the den-
sity temporal evolution of traffic flow. By selecting the Hopf
bifurcation point as the initial average density of the density
temporal evolution, it may help to improve our understanding
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of complex phenomena in congested traffic. The case that a
localized perturbation is exerted in an initial homogeneous
condition is analyzed by the traffic flow models. The initial
density is used as in Ref. 21.

ρ (x, 0) = ρ0 +1ρ0

{
cosh−2

[
160
L

(
x −

5L
16

)]
−

1
4
cosh−2

[
40
L

(
x −

11L
32

)]}
x ∈ [0,L]

(57)

v (x, 0) = V (ρ (x, 0)) x ∈ [0,L] (58)

where ρ0 is the initial average density, 1ρ0 = 0.01veh/m
is the amplitude of localized perturbation, L = 32.2km is
the length of road section under consideration. The dynamic
approximate boundary condition was given by:

ρ (1, t) = ρ (2, t) , ρ (L, t) = ρ (L − 1, t) ,

v (1, t) = v (2, t) , v (L, t) = v (L − 1, t) (59)

For computational purpose, the space domain was divided
into equal intervals of length 100m and time interval was
chosen as 1s. The related parameters of our model were as
follows:

T = 10s, c0 = 11m/s, µ0 = 550, vf = 30m/s,

ρm = 0.2veh/m (60)

Corresponding to the above parameters, according to the
stability conditions, the critical density of the model is
0.042veh/m and 0.07veh/m, that is, the traffic flow is lin-
early unstable when the initial density is within the range of
0.042veh/m < ρ0 < 0.07veh/m.
Firstly, we select ρ0 = 0.058991797veh/m corresponding

to the Hopf bifurcation point as the initial average density and
the density temporal evolution is shown as the Fig.8.
FromFigure 8we can see that when the initial density value

is within the unstable range of the model, as time increases,
the initial small disturbance will continue to propagate down-
ward, the amplitude of the initial small disturbance will
increase with time, and finally formed a constant amplitude
periodic oscillation. The traffic flow is in an unstable state.
From the nature of the Hopf branch analyzed above, it can

be known that when the variable parameter passes through the
Hopf branch point in the system, the transportation system
will generate a limit cycle branch from the corresponding
equilibrium point. This limit cycle branch can also be called
a period solution. This is the characteristic of the limit cycle
solution, it also illustrates the existence of the limit cycle
solution.
From the results of the density space-time diagram and

theoretical analysis, this is consistent with the development of
an oscillating and congested traffic pattern under the uniform
road conditions in actual traffic. It further shows that the
obtained results are consistent with actual phenomena and
numerical calculation results, which verifies the correctness
of the theoretical analysis.

FIGURE 8. Density spatiotemporal graph with Hopf branch as initial value.

If the limit point (LP) is selected as the starting point of the
bifurcation calculation, the bifurcation calculation starting at
this limit point will have a bifurcation type with a codimen-
sion of 2. At the same time, the activation parameters q∗ and
c1 are free parameters, and the codimension can be found
to be 2 bifurcations, such as Bogdanov-Takens bifurcation
(BT), cusp bifurcation (CP). The corresponding bifurcation
diagram is shown in Figure 9.

FIGURE 9. Continuation solution graph starting from the limit point
branch.

BT bifurcation is obtained when the parameters
c1 = −9.3370322, q∗ = 0.92428529, obtained the
state variable of the BT bifurcation point is (0.044025, 0),
the two eigenvalues are 1.13868e − 7 + i4.43522e −
5 and 1.13868e − 7 − i4.43522e, it can be considered
that both eigenvalues are 0. In addition, its coefficient is
(a, b) = (4.571890e− 3,−2.380277e− 1).
CP bifurcation is obtained when the parameters

c1 = −22.588037, q∗ = 1.900568, obtained the state
variable of the CP bifurcation point is (1.93756, 0), the two
eigenvalues are 1.36395e − 8 and 0.0374581, it can be
considered that both eigenvalues are 0.

Next, we study the effects of the limit point bifurca-
tion on traffic flow when q∗ passes through 0.143582.
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When q∗ > 0.143582, here we set q∗ = 0.15. Then
we have a saddle at (0.1266,0), a focus at (0.1017, 0),
as shown in Fig. 9(a). As the density of vehicles has been
increasing monotonically, all the curves on the left of the
red line are attracted and approach the point (0.1017, 0).
Therefore, the system on the left of the red line is stable,
and the system on the right of the red line is unstable. With
the change of the variable parameter q∗, the two equilib-
rium points gradually move closer to the middle, but when
the parameter q∗ = 0.143582, the two equilibrium points
(0.1017, 0) and (0.1266,0) shown in Figure10(a) merge into
point (0.1124, 0) One point, a saddle knot branch occurred,
as shown in Figure 10(b). Similarly, the traffic system within
the red line is stable, and the traffic system outside the red
line is unstable. However, the curves within the red line
all approach the point (0.1124, 0). At this time, the linear
system has a zero eigenvalue. When the variable parameters
continue to change, when q∗ > 0.143582, the equilibrium
point disappears and all the solutions move to the right, as
shown in Figure 10(c), the traffic system becomes unstable.

We can also see the effects of LP bifurcation in the den-
sity temporal evolution of traffic flow. By selecting the LP
bifurcation point as the initial average density of the density
temporal evolution, it may help to improve our understanding
of complex phenomena in congested traffic. The case that a
localized perturbation is exerted in an initial homogeneous
condition is analyzed by the traffic flow models. The initial
density is used as in Ref. 21.

ρ (x, 0) = ρ0 +1ρ0

{
cosh−2

[
160
L

(
x −

5L
16

)]
−

1
4
cosh−2

[
40
L

(
x −

11L
32

)]}
x ∈ [0,L]

(61)

v (x, 0) = V (ρ (x, 0)) x ∈ [0,L] (62)

where ρ0 is the initial average density, 1ρ0 = 0.01veh/m
is the amplitude of localized perturbation, L = 32.2km is
the length of road section under consideration. The dynamic
approximate boundary condition was given by:

ρ (1, t) = ρ (2, t) , ρ (L, t) = ρ (L − 1, t) ,

v (1, t) = v (2, t) , v (L, t) = v (L − 1, t) (63)

For computational purpose, the space domain was divided
into equal intervals of length 100m and time interval was
chosen as 1s. The related parameters of our model were as
follows:

T = 10s, c0 = 11m/s, µ0 = 550, vf = 30m/s,

ρm = 0.2veh/m (64)

Corresponding to the above parameters, according to the
stability conditions, the critical density of the model is
0.042veh/m and 0.07veh/m, that is, the traffic flow is lin-
early unstable when the initial density is within the range of
0.042veh/m < ρ0 < 0.07veh/m.

FIGURE 10. The saddle–node bifurcation when, from left to right,
q∗ > 0.143582,q∗ = 0.143582 and q∗ < 0.143582: (a) q∗ = 0.15;
(b) q∗ = 0.143582; (c) q∗ = 0.13.

Firstly, we select ρ0 = 0.143582veh/m correspond-
ing to the LP bifurcation point as the initial average
density and the density temporal evolution is shown as
the Figure 10(a)-10(b).

Knowing the nature of the LP branch, when the variable
parameters pass through the LP branch point, the traffic
system will produce a local clustering phenomenon from
the equilibrium point. Since the initial density value at this
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FIGURE 11. Density spatiotemporal graph with LP branch as initial value:
(a) Phase plane diagram when the initial density ρ0 < 0.143582veh/m;
(b) Phase plane diagram when the initial density ρ0 > 0.143582veh/m.

time is set within the stable range of the model, although the
small disturbance on the initial uniform density is magnified,
as time increases, the small disturbance eventually diverges,
as shown in Figure 11(a). It can be seen from Figure 11(b)
that the initial density value at this time is within the unstable
range of the model, and the small disturbance on the initial
uniform density is amplified, and then it evolves into a local
clustering phenomenon, that is, traffic congestion. This is
consistent with the characteristics of the LP branch point,
which shows that under the initial uniform traffic conditions,
when the parameters pass the LP branch point, the small
disturbance will change into a local cluster wave, which
further shows the obtained results and actual phenomena and
numerical calculation results They are consistent, verifying
the correctness of the theoretical analysis.

When we do not change the value of other parame-
ters, reduce the value of vf , choose vf = 20m/s, which
means that the vehicles on the road are moving forward
at a moderate speed. We can see from Figure 12, The
Hopf bifurcation point is appeared when the variable param-
eter q∗ is taken as 0.5723621. The state variables of it
are (0.0497789, 0) and the corresponding vehicle density
is ρ0 = 0.05723veh/m. The characteristic values of it

FIGURE 12. The bifurcation diagram for a wide range of the parameter
q∗, vf = 20m/s.

are −5.15597e (−8) + i0.0187304 and −5.15597e (−8) −
i0.0187304. That is, the real parts of the pair of conjugate
eigenvalues are 0. This is considered a mark of a Hopf
bifurcation.

By substituting the value of ρ0 into the Eq.− (1− ρmρ0)2

V ′e (ρ0), we have − (1− ρmρ0)2 V ′e (ρ0) = 1.8945. Obvi-
ously, the inequality 1.8945 > 0.5723261 > 0 satisfies the
model’s Hopf bifurcation existence conditions deduced in the
section 4.1. The numerical results also confirm the theory
obtained.
The first limit point bifurcation is appeared when the vari-

able parameter q∗ is taken as 0.61005. The state variables
of it are (0.041725, 0) and the corresponding vehicle den-
sity is ρ0 = 0.61354veh/m. The characteristic values of
it are −0.153508 and 8.48099e − 11. That is, the second
characteristic value is 0 and it is a mark of a limit point
bifurcation. Moreover, the real part of the first characteristic
value is negative. That means it is a stable limit point, namely
a saddle-node bifurcation.

By substituting the value of ρ0 into the Eq.− (1− ρmρ0)2

V ′e (ρ0), we have − (1− ρmρ0)2 V ′e (ρ0) = 0.1601. Obvi-
ously, the equation q∗0 = − (1− ρmρ0)

2 V ′e (ρ0) satisfies
the model’s saddle-node bifurcation existence conditions
deduced in the section 4.3. The numerical result is compatible
with the analysis of theory.
The second limit point bifurcation is appeared when the

variable parameter q∗ is taken as 0.187918. The state vari-
ables of it are (0.113602, 0) and the corresponding vehicle
density is ρ0 = 0.1806veh/m. The characteristic values of it
are 3.69898e− 9 and 0.0296604. That is, the first character-
istic value is 0 and it is a mark of a limit point bifurcation.
By substituting the value of ρ0 into the Eq.− (1− ρmρ0)2

V ′e (ρ0), we get − (1− ρmρ0)2 V ′e (ρ0) = 0.8872. Obvi-
ously, the equation q∗0 = − (1− ρmρ0)

2 V ′e (ρ0) satisfies
the model’s saddle-node bifurcation existence conditions
deduced in the section 4.3. The numerical result is compatible
with the analysis of theory.
We still choose the above equilibrium point (ρ2, 0) =

(0.0546, 0), and analyze the effect of the Hopf bifurcation
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FIGURE 13. Density spatiotemporal graph with Hopf branch as initial
value.

in the time evolution of traffic density when q∗ = 0.2 and
vf = 20m/s. By choosing the Hopf bifurcation point as the
initial average density of the density time evolution, it may
help to improve our understanding of complex phenomena in
congested traffic. The traffic flow model analyzes the local
disturbance under the initial uniform condition. Selecting the
same numerical simulation conditions as above, at this time
we choose ρ0 = 0.057236veh/m corresponding to the Hopf
bifurcation point as the initial average density, and the time
evolution of the density is shown in Figure 13.

It can be seen from Figure 13 that when the initial density
value is within the instability range of the model, as time
increases, the initial small disturbance will continue to propa-
gate downward, and the amplitude of the initial small distur-
bance will increase with time, eventually forming a denser
Large-scale periodic oscillation. The traffic flow is in an
unstable state. This is a clear comparison with Figure 8.

As the vehicle speed decreases, the traffic density value
gradually increases, the number of vehicles on the road
section increases, the distance between vehicles becomes
smaller, and the transportation system becomes unstable.
Combining the density space-time diagram and the branch
diagram, it can be seen that when the variable parameter q∗
passes through the Hopf branch point in the system, the trans-
portation system produces a periodic solution from the equi-
librium point. The small disturbance in the initial uniform
density was amplified and then evolved into a constant ampli-
tude periodic oscillation. Small disturbance changes to stop
the wave while walking. It further shows that the obtained
results are consistent with actual phenomena and numerical
simulation results.

We still choose the above equilibrium point (ρ2, 0) =
(0.0546, 0), and analyze the effect of the LP bifurcation in
the time evolution of traffic density when q∗ = 0.2 and
vf = 20m/s. By choosing the LP bifurcation point as the
initial average density of the density time evolution, it may
help to improve our understanding of complex phenomena in
congested traffic. The traffic flow model analyzes the local
disturbance under the initial uniform condition. Selecting the

FIGURE 14. Density spatiotemporal graph with LP branch as initial value:
(a) Phase plane diagram when the initial density ρ0 < 0.61354veh/m;
(b) Phase plane diagram when the initial density ρ0 > 0.61354veh/m.

same numerical simulation conditions as above, at this time
we choose ρ0 = 0.61354veh/m corresponding to the LP
bifurcation point as the initial average density, and the time
evolution of the density is shown in Figure 14.

We can see from the above-mentioned density space-time
diagram that the traffic system will produce a local clustering
phenomenon from the equilibrium point. The transportation
system will generate local clustering from the equilibrium
point. Compared with Fig. 11(a), with the increase of time,
the small disturbance is greatly amplified, but eventually
diverges, as shown in Fig. 14(a). It can be seen from
Figure 14(b) that the small disturbance of the initial uniform
density is greatly amplified and then evolved into a strong
local clustering phenomenon, that is, severe traffic conges-
tion, which has a significant change from Figure 11(b). This
shows that the decrease in vehicle speed, the sharp increase
in traffic volume, the smaller the distance between vehicles,
and the rapid traffic congestion. This is in obvious contrast
with Figure 11.

When do not change the value of other parameters, con-
tinue to reduce the value of vf , choose vf = 15, which
means that the vehicles on the road are moving forward at
a low speed. We can see from Figure 15, the Hopf bifurcation
point is appeared when the variable parameter q∗ is taken as
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FIGURE 15. The bifurcation diagram for a wide range of the parameter
q∗, vf = 15m/s.

0.4723685. The state variables of it are (0.041289, 0) and the
corresponding vehicle density is ρ0 = 0.047889veh/m. The
characteristic values of it are −5.15597e (−8)+ i0.0163041
and −5.15597e (−8)− i0.0163041. That is, the real parts of
the pair of conjugate eigenvalues are 0. This is considered a
mark of a Hopf bifurcation.

By substituting the value of ρ0 into the Eq.− (1− ρmρ0)2

V ′e (ρ0), we have − (1− ρmρ0)2 V ′e (ρ0) = 1.6245. Obvi-
ously, the inequality 1.6245 > 0.4723685 > 0 satisfies the
model’s Hopf bifurcation existence conditions deduced in the
section 4.1. The numerical results also confirm the theory
obtained.

The first limit point bifurcation is appeared when the vari-
able parameter q∗ is taken as 0.48027. The state variables
of it are (0.040925, 0) and the corresponding vehicle den-
sity is ρ0 = 0.48054veh/m. The characteristic values of
it are −0.123508 and 8.18099e − 11. That is, the second
characteristic value is 0 and it is a mark of a limit point
bifurcation. Moreover, the real part of the first characteristic
value is negative. That means it is a stable limit point, namely
a saddle-node bifurcation.

By substituting the value of ρ0 into the Eq.− (1− ρmρ0)2

V ′e (ρ0), we have − (1− ρmρ0)2 V ′e (ρ0) = 0.1401. Obvi-
ously, the equation q∗0 = − (1− ρmρ0)

2 V ′e (ρ0) satisfies
the model’s saddle-node bifurcation existence conditions
deduced in the section 4.3. The numerical result is compatible
with the analysis of theory.
The second limit point bifurcation is appeared when the

variable parameter q∗ is taken as 0.187918. The state vari-
ables of it are (0.113602, 0) and the corresponding vehicle
density is ρ0 = 0.1806veh/m. The characteristic values of it
are 3.69898e− 9 and 0.0296604. That is, the first character-
istic value is 0 and it is a mark of a limit point bifurcation.
By substituting the value of ρ0 into the Eq.− (1− ρmρ0)2

V ′e (ρ0), we have − (1− ρmρ0)2 V ′e (ρ0) = 0.8872. Obvi-
ously, the equation q∗0 = − (1− ρmρ0)

2 V ′e (ρ0) satisfies
the model’s saddle-node bifurcation existence conditions
deduced in the section 4.3. The numerical result is compatible
with the analysis of theory.

FIGURE 16. Density spatiotemporal graph with Hopf branch as initial
value.

We still choose the above equilibrium point (ρ2, 0) =
(0.0546, 0), and analyze the effect of the Hopf bifurcation
in the time evolution of traffic density when q∗ = 0.2 and
vf = 15m/s. By choosing the Hopf bifurcation point as the
initial average density of the density time evolution, it may
help to improve our understanding of complex phenomena in
congested traffic. The traffic flow model analyzes the local
disturbance under the initial uniform condition. Selecting the
same numerical simulation conditions as above, at this time
we choose ρ0 = 0.047889veh/m corresponding to the Hopf
bifurcation point as the initial average density, and the time
evolution of the density is shown in Figure 16.

It can be seen from Figure 16 that when the initial density
value is within the unstable range of the model, as time
increases, the amplitude of the initial small disturbance
increases sharply in the early stage, the density fluctuation is
very strongly, the cycle oscillation amplitude becomes very
short. Finally, a strong and large-scale periodic oscillation is
formed. The traffic flow is in an unstable state. This is a very
obvious contrast between Figure 8 and Figure 13.

As the vehicle speed continues to decrease, the traffic
density value gradually increases, the number of vehicles
on the road section increases, the distance between vehi-
cles becomes smaller, and the transportation system becomes
unstable. Combining the density space-time diagram and the
branch diagram at this time, it can be seen that when the
variable parameter q∗ passes through theHopf branch point in
the system, the transportation system still produces a periodic
solution from the equilibrium point. The small disturbance of
the initial uniform density is amplified and then evolved into
a strong constant amplitude periodic oscillation. Small dis-
turbances will change into stronger waves while walking and
stopping. It further shows that the obtained results are consis-
tent with actual phenomena and numerical simulation results.

We still choose the above equilibrium point (ρ2, 0) =
(0.0546, 0), and analyze the effect of the LP bifurcation in
the time evolution of traffic density when q∗ = 0.2 and
vf = 15m/s. By choosing the LP bifurcation point as the
initial average density of the density time evolution, it may
help to improve our understanding of complex phenomena in
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FIGURE 17. Density spatiotemporal graph with LP branch as initial value:
(a) Phase plane diagram when the initial density ρ0 < 0.48054veh/m;
(b) Phase plane diagram when the initial density ρ0 > 0.48054veh/m.

congested traffic. The traffic flow model analyzes the local
disturbance under the initial uniform condition. Selecting the
same numerical simulation conditions as above, at this time
we choose ρ0 = 0.48054 corresponding to the LP bifurcation
point as the initial average density, and the time evolution of
the density is shown in Figure 17.

From the above-mentioned density space-time graph,
we can see that the vehicle speed drops to the lowest driv-
ing speed, the traffic volume increases sharply, the dis-
tance between vehicles changes to small, and the traffic
system is congested sharply. The traffic system starts from
the equilibrium point and will produce local clustering.
The transportation system will generate local clusters from
equilibrium points. Compared with Figure 14(a), as time
increases, small disturbances are greatly amplified, and
finally, high-density convergence is formed, and the traffic
system is densely congested, as shown in Figure 17(a).
It can be seen from Figure 17(b) that the small disturbance
of the initial uniform density is greatly amplified and then
evolved into a strong local aggregation phenomenon, that
is, severe traffic congestion, which has a significant change
from Figure 14(b). Compared with Figure 11 and Figure 14,
the density spatio-temporal diagram at this time has obvious
changes.

From vf = 30m/s to vf = 15m/s, the correspond-
ing branch diagram and density space-time diagram can be

seen that with the increase of time, the density of vehicle
flow increases, the speed of vehicles decreases, the distance
between vehicles becomes smaller, and the traffic conges-
tion intensify. When vf = 30m/s, the speed is taken as
a constant speed, the density space-time graph drawn with
the Hopf branch point can see the phenomenon of constant
amplitude oscillation. With the increase of traffic volume and
the decrease of vehicle speed, when vf = 20m/s, the density
spatiotemporal map drawn with Hopf branch points reflects
that the frequency of constant amplitude oscillation is more,
and the interval of constant amplitude oscillation becomes
smaller, which indicates that congestion happened earlier, and
the phenomenon of stopping while walking has continued.
When vf = 15m/s, the traffic flow speed is already in a
low state. It can be seen that when the density space-time
map was drawn by the Hopf branch point is 0-100km, the
constant amplitude oscillation has already occurred, and the
tidal oscillation has formed, which shows that, at this time,
the traffic system quickly reached a state of congestion and
reached a climax. At the same time, when vf = 30m/s,
the density space-time map was drawn with saddle-node
branch points can see the sudden change of traffic stability
and the occurrence of local clustering. With the increase
of traffic volume and the decrease of vehicle speed, when
vf = 20m/s, the density space-time map was drawn with
the saddle-node branch point reflects the change process of
the traffic system from a stable state to a congested state.
When the parameter changes and exceeds the critical value,
the qualitative state of the system such as free-running state,
blocking state, stop-and-go, etc. will change suddenly. When
vf = 15m/s, it can be seen that the average density value of
the road section in the density space-time graph was drawn by
the saddle-node branch point gradually increases with time
fluctuations, indicating that the disturbance in the traffic flow
is amplified and the traffic system tends to be unstable. This is
consistent with the actual traffic flow, which further verifies
the correctness of the theoretical results.

VI. CONCLUSION
To describe and predict the nonlinear traffic phenomenon
of the urban road from the perspective of global stability,
this paper changes the traveling wave of the macro traffic
flow model based on the speed difference of different driv-
ing characteristics, thus obtaining a new model suitable for
traffic flow stability analysis. At the same time, the branch
analysis of the macro traffic flow model is conducted. The
article first discusses the types of system equilibrium points
and their stable states. Secondly, for further analysis and
comparison, the researcher chooses four sets of parameters
to describe the global distribution structure of the trajectory
on the phase plane diagram, and the data results show that
this method is consistent with the theoretical analysis. After
that, the conditions of Hopf bifurcation and saddle-node
bifurcation are derived, and the types of Hopf bifurcation are
discussed further. Taking the balance point in the model as
an example, we can obtain various system branches, such as
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Hopf branch, saddle-node branch, limit cycle branch, cusp
branch, BT branch by choosing different parameters as the
continuous variable parameters of the system, which indi-
cates that the theoretical and numerical results can be verified
with each other. Starting from the Hopf branch and the saddle
knot branch, the stop-and-walk phenomenon and the stability
mutation phenomenon of urban roads can be better explained
by drawing the phase plane diagram and density space-time
diagram of the system. The experimental results show that
the branch analysis method can provide a detailed theoretical
basis for the implementation of traffic control strategies.
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