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ABSTRACT Estimating time-varying graphs, i.e., a set of graphs in which one graph represents the
relationship among nodes in a certain time slot, from observed data is a crucial problem in signal
processing, machine learning, and data mining. Although many existing methods only estimate graphs
with a single temporal resolution, the actual graphs often demonstrate different relationships in different
temporal resolutions. In this study, we propose an approach for time-varying graph learning by leveraging
a multiresolution property. The proposed method assumes that time-varying graphs can be decomposed
by a linear combination of graphs localized at different temporal resolutions. We formulate a convex
optimization problem for temporal multiresolution graph learning. In experiments using synthetic and real
data, the proposedmethod demonstrates the promising objective performances for synthetic data, and obtains
reasonable temporal multiresolution graphs from real data.

INDEX TERMS Graph inference, graph learning, time-varying graph, temporal multiresolution graph.

I. INTRODUCTION
Many applications of signal processing, machine learning,
and data mining require the handling of sensor data, where
the sensors are often distributed nonuniformly in a physical
space. Analyzing such data by considering their underlying
spatial structure, i.e., network, can significantly improve the
quality of data analysis. Graphs are useful tools to mathemat-
ically represent such networks.

Over the last decade, considerable research has been con-
ducted on processing signals on graphs, i.e., graph signal
processing (GSP) [1]–[4]. GSP has found many applica-
tions such as brain signal analysis [5], [6], image processing
[7]–[9], and sensor networks [10].

In many cases, graphs are not given a priori. Therefore,
graph learning [11]–[14], techniques and algorithms for esti-
mating a graph from observed data and/or feature values, are
required in various GSP applications, particularly for sensor
measurements.

Various graph learning methods have been proposed thus
far, which are summarized in two overview papers [13], [15].
Most of these methods belong to a class of static graph
learning (SGL), which represents the task of learning a single
graph from a set of available data. SGL assumes that all the
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data follow the same signal generation model. However, there
often exist time-varying relationships in many applications.
In other words, underlying networks vary over time wherein
the observed data follow a time-varying generation model.
An example of a time-varying generation models is the brain
functional connectivity from EEG or fMRI data, where sig-
nals can be thought of as generated by evolving brain net-
works. Furthermore, we can easily identify the model from
the seasonal behavior of sensor measurements.

To handle these dynamic behaviors, time-varying
graph learning (TVGL) methods have been proposed
[12], [16]–[18]. Technically, a time-varying graph consists
of multiple graphs where one graph corresponds to the
relationship among vertices in a certain time slot. Typically,
TVGL divides multivariate time-series data into consecutive
(overlapped or nonoverlapped) data segments, and learns
multiple graphs from these segments.

TVGL demonstrates a trade-off in the temporal resolution.
For example, a large time window allows the capture of a
global structure but results in the loss of the local temporal
behavior. In contrast, selecting a small time window enables
the capture of fast-changing behaviors but may also result
in noise sensitivity. To tackle this problem, most existing
TVGL methods [12], [16], [17] impose constraints for tem-
poral variations of graphs between neighboring time slots.
However, they have two main limitations. First, they are not
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suitable when the data are not fitted to the prior assumption
of temporal variations. Second, even if the temporal variation
information is known, it is often difficult to determine the
hyperparameter(s) such as those in the constraints on the
temporal variation and the temporal window size.

In this study, we propose a TVGL method without using
a specific prior for network evolution. Instead, we assume
that the time-varying graphs have a temporal multiresolu-
tion (TMR) structure: They can be represented by the com-
bination of graphs at different temporal resolutions from
local (i.e., short time period) to global (i.e., static) ones.
This is desirable because multivariate time-series data tend
to have a multiresolution property. An example of such
TMR data is temperature data observed in multiple sensor
locations. The measurements in each location exhibit the
interdependence relationships which change hourly, daily,
monthly, and even yearly, where the relationships correspond
to structures localized at different temporal resolutions. Our
proposed method automatically reveals which edge sets are
localized at which temporal variation. In our problem setting,
temporal resolution levels correspond to time window sizes
in the time-varying graphs, but are not necessarily set as a
hyperparameter.

The proposed TVGL is formulated as a convex optimiza-
tion problem derived from the generation model. We also
present an iterative algorithm for solving the optimization
problem efficiently, which guarantees the convergence of the
solution.

In experiments with synthetic datasets, the proposed
method demonstrates superior performance to that of con-
ventional single-resolution TVGL methods. Experiments on
a real climate dataset demonstrate that the proposed methods
can learn reasonable time-varying graphs that capture sea-
sonal and geographical characteristics, which experimentally
proves our concept.

Our preliminary work was presented in [19]. The present
study significantly extends our previously proposed approach
to simultaneously learn graphs localized at multiple temporal
resolutions.

The remainder of this paper is organized as follows.
Related works on the proposed methods are summarized in
Section II. Notations used in this paper and preliminaries are
defined in Section III. We present a generic TVGL frame-
work from multivariate time-series signals in Section IV.
SectionV presents the proposed TMRgraph learningmethod.
Experimental results with synthetic and real data are pre-
sented in Section VI. Finally, we present our conclusions in
Section VII.

II. RELATED WORKS
Many methods for graph learning have been proposed thus
far. Most of them are summarized in the two overview
papers [13], [15]. Without being exhaustive, we review SGL
and TVGL methods related to our approach.

The basic strategy of SGL is the design of optimiza-
tion problems based on some desired criteria for learned

graphs. For example, [20]–[22] assume that signals are
smooth on a graph. This characteristic is often repre-
sented as the Laplacian quadratic form. Instead of smooth-
ness, [11], [23], [24] assume that signals are generated
from a Laplacian constrained Gaussian Markov random
field (LGMRF), and maximize its regularized likelihood.
Some studies such as like [11], [13], [15] suggest a relation
between the signal smoothness and the LGMRF likelihood;
the smoothness-based approach in [21] solves a relaxed prob-
lem of the LGMRF likelihood criterion.

As TVGL methods, [12], [16], [17] learn time-varying
graphs with the assumption of signal smoothness and impose
constraints on the network evolution. These TVGL meth-
ods are designed to learn time-varying graphs with a
user-specified single temporal resolution (i.e., window size).

In a different line of GSP research, some graph learning
methods assume that observations are generated by applying
some filters, e.g., graph variation and heat diffusion opera-
tors, to a latent signal [25]–[27]. Their extensions to TVGL,
proposed in [28], [29], focus on estimating graphs and cor-
responding filters simultaneously under the assumption on
stationarities of graph signals or signal generation models
based on graph filters. Such a simultaneous estimation is out
of the scope of this study. The method proposed in this study,
in contrast, is based on a different signal generation model.
Note that all of the previousworksmentioned above are single
temporal resolution TVGL approaches.

In contrast to the existing approaches, we estimate graphs
having multiple temporal resolutions to capture various tem-
poral relationships. To the best of our knowledge, this is the
first attempt in which TVGL has been used to extract a TMR
behavior.

Some studies focus on learning multiple graphs (not
necessarily time-varying) from observations. While they
yield multiple graphs, the learned graphs may not represent
time-varying relationships [30], [31].

From a machine learning perspective, TVGL relates to
time-varying inverse covariance estimation [32]–[35]. The
main difference between TVGL and inverse covariance esti-
mation is whether the optimization problem contains the
constraint on the graph Laplacian. For example, a well-known
inverse covariance estimation, graphical Lasso [36], yields a
covariance matrix that corresponds to a graph with negative
edges and self-loops. This would be inappropriate if we need
to learn time-varying graphs with nonnegative edge weights
without self-loops, which is a typical assumption of GSP.
In contrast, our approach constrains a solution space for
graphs such that they have nonnegative edges and no self-
loops.

III. NOTATION AND PRELIMINARIES
A. NOTATION
Lowercase normal, lowercase bold, and uppercase bold let-
ters denote scalars, vectors, and matrices, respectively. Both
Xij and [X]i,j represent the (i, j) entry of the matrix X.
Furthermore, the jth column vector of X is denoted by [X]j. 1
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is an all-one vector.X◦Y represents the Hadamard product of
X andY. The Moore–Penrose pseudo inverse ofX is denoted
by X†.

B. BASIC DEFINITIONS FOR GRAPHS
A weighted graph G = (V, E,W) is a graph with a vertex set
V and an edge set E , where the number of nodes and edges are
denoted by N = |V| and E = |E |, respectively. W ∈ RN×N

denotes a weighted adjacency matrix whose (i, j)-th element
represents an edge from the ith vertex to the jth vertex. In this
study, we assume that G is undirected with nonnegative edge
weights and does not have self-loops, i.e., W is symmetric
with nonnegative elements and all its diagonal elements are
zero. Graph Laplacian is given by L = D −W, where D is
the degree matrix defined as Dii =

∑
jWij.

C. GRAPH LAPLACIAN OPERATOR
Let w ∈ RN (N−1)/2

+ be a vector composed of edge weights.
It corresponds to the vectorized version of the lower trian-
gular part in W (excluding diagonal elements). The graph
Laplacian operator L : w ∈ RN (N−1)/2

+ → Lw ∈ RN×N

is defined as [24]

[Lw]i,j =


−wi+dj i > j
[Lw]j,i i < j∑

i6=j[Lw]i,j i = j
(1)

where dj = −j+
j−1
2 (2N−j). Simply speaking,L transforms

w into L. Its adjoint operator L∗ : Y ∈ RN×N
→ L∗Y ∈

RN (N−1)/2
+ is given by[

L∗Y
]
k = yii − yij − yji + yjj,

k = i− j+
j− 1
2

(2N − j), (i > j). (2)

D. PRIMAL-DUAL SPLITTING ALGORITHM
Let 0(Rn) be the set of all appropriate lower semicontinu-
ous convex functions on Rn. A primal-dual splitting algo-
rithm [37] can solve the following optimization problem for
some M ∈ N:

min
x
f (x)+ g(x)+

M∑
i=1

hi(Aiw), (3)

where f ∈ 0(Rn) is a ξ -Lipschitz differentiable convex
function with ξ > 0, g ∈ 0(Rn) and hi ∈ 0(Rm) are functions
that a proximal operator can be computed efficiently, and Ai
is a linear operator. The proximal operator proxγ f : Rn

→ Rn

of f with a parameter γ > 0 is defined by

proxγ f (x) = argmin
y

f (y)+
1
2γ
‖y− x‖22. (4)

If f is separable across variables such as f (x) = f1(x1) +
f2(x2) with x = [xT

1 , x
T
2 ]

T, its proximal operator can be
reduced to the proximal operator for each of them as follows:

proxγ f (v) = [(proxγ f1 (v1))
T, (proxγ f2 (v2))

T]T, (5)

where v =
[
vT
1 , v

T
2

]T
.

Let γ1, γ2 > 0 be parameters satisfying the convergence
condition γ1(

ξ
2 + γ2‖

∑M
i=1A∗iAi‖) < 1. The primal-dual

splitting algorithm is given by the following iteration: x(n+1) := proxγ1g(x
(n)
− γ1(∇f (x(n))+

∑
iA∗i y(n)))

For i = 1, . . . ,M
y(n+1)i := proxγ2h∗i (y

(n)
i + γ2Ai(2x(n+1) − x(n)))

(6)

where h∗i in the last equation is the convex conjugate function
of hi.

IV. LEARNING GRAPHS WITH LGMRF
Here, we present an overview of a generic formulation of SGL
and (single-resolution) TVGL methods based on LGMRF in
the literature because our formulation also leverages it. The
formulation is also useful to distinguish the proposed method
from existing methods.

Several existing approaches can be written using this
generic formulation, although they have been proposed inde-
pendently. We derive some representative graph learning
methods from the generic formulation and reveal the relation-
ship between them.

A. GENERAL FORMULATION
Suppose that multivariate time-series data {xt }T−1t=0 are given
where xt ∈ RN and T is the duration of the time-series.
We also assume that xt is generated by LGMRF as follows:

p(xt |Lt )

= (2π)−N/2
(
gdet(L†

t )
)−1/2

exp
(
−
1
2
xT
t Ltxt

)
, (7)

where Lt is the graph Laplacian at time t that corresponds
to the underlying graph of xt , and gdet represents the gener-
alized determinant [38]. Letting Lt = Lwt , wt ∈ RE , and
E = N (N − 1)/2, (7) can be rewritten as

p(xt |wt ) = (2π)−N/2
(
gdet((Lwt )†)

)−1/2
× exp

(
−
1
2
xT
t Lwtxt

)
. (8)

The edge weight vector wt will be sparse and nonnegative.
Assume that the prior distribution of wt is the following
E-variate exponential distribution [11]:

p(wt ) =
(α
2

)E
exp

(
−
α

2
1Twt

)
for wt ≥ 0, (9)

The maximum a posteriori (MAP) estimation of p(xt |wt )
leads to the following optimization problem:

min
w0...wT−1≥0

T−1∑
t=0

− log gdet(Lwt )+ α‖wt‖1 + xT
t Lwtxt ,

(10)

where α controls the sparsity of the graph.
The optimization problem in (10) is the general form for

the SGL and TVGL problems based on LGMRF. We also
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utilize (10) for the multiresolution TVGL proposed in this
study.

While the problem itself is generic, directly solving this
problem is impractical because it needs to learn one graph
from one data sample due to overfitting. Therefore, we often
need to divide the data into multiple segments. By assuming
that the data within the same segment have one common
graph, (10) is reduced to well-known SGL and TVGL prob-
lems. In the following subsections, we derive representative
SGL and TVGL settings from (10).

B. STATIC GRAPH LEARNING
Suppose that wt is constant for all time instances t , i.e., the
graph is static over time. This leads to wt = w, t = 0, . . .
T − 1. Then, (10) is reduced to the following problem:

min
w≥0
− log gdet(Lw)+ α‖w‖1 +

1
T

T−1∑
t=0

xT
t Lwxt . (11)

The third term in (11) represents the smoothness of the
signal as the Laplacian quadratic form xT

t Lxt . This term can
be rewritten by using the sample covariance matrix S as

T−1∑
t=0

xT
t Lwxt = tr(

T−1∑
t=0

xtxT
t Lw) = T tr(SLw). (12)

As a result, (11) can be rewritten using (12) as

min
w≥0
− log gdet(Lw)+ α‖w‖1 + tr(SLw). (13)

It is equivalent to the graphical Lasso problem with graph
Laplacian constraints [11].

C. TIME-VARYING GRAPH LEARNING
As previously mentioned, learning one graph from one sam-
ple from (10) causes overfitting. Instead, we consider a TVGL
problem by dividing the time-series data with nonoverlapping
time windows in the same manner as [12], [16], [17].

LetX(k)
= [xkr , . . . x(k+1)r−1] (k = 0, . . . ,K−1) be the

kth data chunk where r is the time window size and k is the
index for the time window.We denotew(k) as the edge weight
vector corresponding to the underlying graph of X(k).
Under the assumption that the graph within the same time

window is fixed, i.e., wt = w(k), (t = kr, . . . , (k + 1)r − 1),
TVGL is formulated as follows:

min
w(0)...w(K−1)≥0

K−1∑
k=0

− log gdet(Lw(k))+ α‖w(k)
‖1

+
1
r
tr((X(k))TLw(k)X(k))+ β

K−1∑
k=1

ψ(w(k)
− w(k−1)) (14)

where ψ(·) is an additional regularizer that characterizes
the temporal evolution based on the prior knowledge of
time-varying graphs and β is its parameter. Note that the
problem is identical to the SGL in (11) if ψ(·) = 0.
As possible regularizers, ψ(·) = ‖ · ‖

2
2 reflects a

time-varying graph whose edge weights change smoothly

over time, and ψ(·) = ‖ · ‖1 leads to the graph wherein only
a small number of edges change at any given time. A similar
problem to (14) is proposed in [18].

This approach is effective as long as we have appropriate
prior knowledge of the temporal evolution, i.e., ψ(·), and the
accurate window size r . However, an inappropriate choice
of ψ(·) or r leads to inappropriate graphs. To tackle this
problem, we propose TMR TVGL in the next section.

V. MULTIRESOLUTION TIME-VARYING GRAPH
LEARNING
In this section, we present the formulation of the TMR TVGL
and an algorithm for solving it.

A. FORMULATION
Here, we introduce a TVGL method that learns {wt }

T−1
t=0

based on a multiresolution assumption. For simplicity, sup-
pose that T is divisible by 2L , however, this method is appli-
cable to general values of T .

Suppose that Wt can be represented as a combination of
graphs localized at a temporal resolution Wl,m, as illustrated
in Fig. 1. We refer toWl,m as the TMR graph at the temporal
resolution l and the segment index m. Therefore, the multi-
scale representation of {wt }

T−1
t=0 is given by the sum of TMR

graphs corresponding to time t as

wt ≈ w̄t =

L∑
i=0

wi,bq(t)/2(L−i)c, (15)

where q(t) =
⌊ t
T 2

L
⌋
and L is the maximum temporal resolu-

tion level.
This TMR representation has two advantages. First,

it reduces the number of parameters to learn. For TMR

FIGURE 1. Overview of multiresolution graph learning.
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TVGL, we need E(2(L+1) − 1) parameters, whereas the
number of parameters in a single-resolution TVGL is ET .
E(2(L+1) − 1) ≤ ET when L ≤ log2 T − 1. It is bene-
ficial if we only have a limited amount of available data.
Second, the TMR representation enables the capture of the
edges localized in an arbitrary temporal resolution, without
specifying the temporal window size.

Now, we consider the detailed formulation of the proposed
TVGL. The goal is to learn wl,m from {xt }T−1t=0 . Substituting
(15) into (10) leads to the following problem:

min
w0,0,...,wL,2L−1≥0

T−1∑
t=0

− log gdet

(
L(

L∑
k=0

wk,bq(t)/2(L−k)c)

)

+α‖

L∑
k=0

wk,bq(t)/2(L−k)c‖1 + xT
t L(

L∑
k=0

wk,bq(t)/2(L−k)c)xt .

(16)

Letting

F = [w0,0,w1,0,w1,1, . . . ,wL,2L−1] ∈ RE×2(L+1)−1,

Xk = [xkr , . . . xkR+R−1] (k = 0, . . . , 2L − 1,R = T/2L),

(17)

(16) can be rewritten as:

min
F ≥0

α‖FM‖1 +
2L−1∑
k=0

1
R
tr((Xk )TL([FM]k )Xk )

− log gdet(L([FM]k )), (18)

whereM ∈ R2(L+1)−1×2L is given by

[M]i,j =

{
1 2L−lm ≤ j ≤ 2L−l(m+ 1)− 1
0 otherwise,

in which l = blog2(i+ 1)c and m = mod(i+ 1, 2l). Note that
[FM]k = w̄kR = · · · = w̄kR+R−1.
In (18), we need to obtain a sparsewl,m to capture the tem-

porally localized structure. However, the direct constraint on
the sparseness of FM does not result in a sparse F. Therefore,
we replace the first term in (18) with the sparse constraint on
F as follows:

min
F ≥0

α‖F‖1 +
2L−1∑
k=0

1
R
tr((Xk )TL([FM]k )Xk )

− log gdet(L([FM]k ). (19)

This is the proposed TVGL formulation for learning TMR
graphs. In the following subsection, we describe an algorithm
to solve (19).

B. ALGORITHM
The optimization problem in (19) is convex and can be solved
using the PDS algorithm. Here, we reformulate (19) to the
PDS applicable form.

Let Zk ∈ RN×N be a pairwise distance matrix computed
from

[Zk ]i,j =
R−1∑
n=0

‖[Xk ]i,n − [Xk ]j,n‖2, (20)

and zk ∈ RE be the vector form representation of Zk . The
third term of (19) can then be rewritten as

2L−1∑
k=0

tr((Xk )TL([FM]k )Xk )

=

2L−1∑
k=0

zT
k [FM]k = ‖Zall ◦ (FM)‖1 = ‖(MZT

all) ◦ F
T
‖1

(21)

where Zall = [z0, . . . , z2L−1]. Here, we denote F̄ = FT and
L̄iX = L(XT)i for notation simplicity. By using the indicator
function, (19) can be reduced to the following optimization
problem:

min
F̄
α‖F̄‖1 +

1
R
‖MZT

all ◦ F̄‖1 + ι(F̄)

−

2L−1∑
k=0

log gdet(L̄i(MTF̄)). (22)

where ι is defined by

ι(F̄) =

{
0 F̄ ≥ 0
∞ otherwise.

(23)

Owing to the nonnegative constraint on F̄, the first and sec-
ond terms in (22) can be merged as

min
F̄

1
R
‖(αH+MZT

all) ◦ F̄‖1 + ι(F̄)

−

2L−1∑
k=0

log gdet(L̄i(MTF̄)), (24)

where H = 11T
∈ RE×2(L+1)−1 . By introducing the linear

operator L̄ : RE×2L
→ R2LN×N defined as

L̄(X) = [L̄0(X), . . . , L̄2L−1(X)]
T, (25)

and a dual variable V := [VT
0 , . . . ,V

T
2L−1]

T
= L̄(MTF̄),

we can convert (24) into the form in (3) as follows:

f (F̄) = 0,

g(F̄) =
1
R
‖(αH+MZT

all) ◦ F̄‖1 + ι(F̄),

h(V) = −
2L−1∑
k=0

log gdet(Vk ). (26)

The proximal operator for the function g corresponds to
that of the weighted `1 norm with the nonnegative constraint,
and it is given by[
proxγ g(A)

]
i,j =

{
0 [A]i,j ≤ γ [B]i,j
[A]i,j − γ [B]i,j otherwise,

(27)

where B = αH+MZT
all.
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The proximal operator of h can be computed as follows.
In general, the logarithm of a generalized determinant is a
nonconvex function. Under the assumption that the learned
graph is connected (which is often the case), it can be replaced
with a convex function as follows [11, Proposition 1]:

log gdet(A) = log det(A+
1
N
11T). (28)

Then, the proximal operator is given by

proxγ (− log gdet(·))(A) = U

φ (λ0) 0
. . .

0 φ (λN−1)

UT,

(29)

where φ (λi) =
λi+

√
λ2i +4γ

2 and U and λi are the eigenvector
matrix and the eigenvalue of A + 1

N 11
T, respectively. The

eigenvalues are ordered as λ0 ≤ λ1 ≤ λ2 · · · ≤ λN−1.1

Finally, we present the algorithm for the multiresolution
TVGL in Algorithm 1. The condition of convergence is given
by

γ1γ2‖ML̄∗L̄MT
‖ < 1. (31)

Algorithm 1 Temporal Multiresolution Graph Learning

Input: F̄(0), V(0), {xt }T−1t=0 , L, ε
Output: F

Divide {xt }Tt=0 into 2L data segments X0 . . .X2L−1

Compute {Zk}2
L
−1

k=0 from {Xk}
2L−1
k=0

while ‖F̄(i+1)
− F̄(i)

‖/‖F̄(i)
‖ > ε do

F̄(i+1)
:= proxγ1g(F̄

(i)
− γ1ML̄∗V(i))

V(i)
← V(i)

+ γ2L̄M(2F̄(i+1)
− F̄(i))

for k = 0, . . . , 2L − 1 do

V(i+1)
k := V(i)

k − γ2 prox 1
γ2

(− log gdet(·))

(
V(i)
k
γ2

)
end for
V(i+1)

=

[
V(i+1)T
0 , . . . ,V(i+1)T

2L−1

]T

i← i+ 1
end while

Based on the submultiplicativity of the operator norm,
the upper-bound of ‖ML̄∗L̄MT

‖ can be computed from

‖ML̄∗L̄MT
‖ ≤ ‖M‖‖L̄∗L̄‖‖MT

‖ = ‖L̄∗L̄‖‖MMT
‖

= N (2L+2 − 2) (32)

because of ‖L̄∗L̄‖ = 2N and ‖MMT
‖ = 2L+1 − 1. Conse-

quently, the convergence condition in (31) can be rewritten as

γ1 <
1

γ2N (2L+2 − 2)
. (33)

1Even if the original graph has disconnected components, we can avoid
the problem of the calculation of the proximal operator by adding a small
regularizing parameter c to the input as follows [30]:

log gdet(A) ≈ log det(A+ c2I), (30)

The proximal operator of this approximation also can be computed in the
same manner as (29).

The computational complexity of our algorithm is
O(2LN 3) per iteration.

VI. EXPERIMENTAL RESULTS
In this section, we present experimental results on synthetic
and real datasets. The existing and proposed methods are
abbreviated as follows:

• SGL based on smoothness criterion (SGL-S) [21].
• SGL with LGMRF (SGL-LG) [11].
• TVGL based on smoothness with temporal variation
constraint (TVGL-S) [12], [16], [17].

• TVGL with LGMRF incorporating the temporal varia-
tion constraint (TVGL-LG) [18].

• Proposed TMR TVGL (TVGL-MR) described in
Section V.

The stopping criterion of the iterations for each methods is
set to ‖w(n+1)

− w(n)
‖/‖w(n)

‖ < 1.0× 10−3.

A. EXPERIMENTS ON TEMPORAL MULTIRESOLUTION
GRAPHS
To demonstrate the concept of TVGL for TMR graphs,
we first present the results by constructing a simple TMR
graph dataset.

1) DATASET
The dataset is constructed in two sequential steps: 1) con-
struction of time-varying graphs and 2) generation of data
samples based on the time-varying graphs.

First, we construct TMR graphs with four levels (l =
0, . . . , 3) as shown in Fig. 2. The number of vertices N is
set to N = 81 and the edge weights between vertices are
random values drawn from a uniform distribution from the
interval [0.1, 3]. The lowest resolution graph, i.e., the graph
reflecting the global structure, isW0,0, as shown in Fig. 2(a),
where the graph has a grid-like structure while the edges
only run vertically, except for the horizontal edges at the
center of the grid. As shown in Figs. 2(b)–(o), the graphs
at levels 1 to 3 have horizontal edges, diagonal edges from
the upper right to lower left, and diagonal edges from the
upper left to lower right, respectively. By combiningWl,m’s,
we obtain prototype graphs W(0), . . . ,W(7), as shown
in Fig. 3.

From the prototype graphs, we then construct time-varying
graphs {W0, . . . ,WT−1}. We set T = 640 in this experiment.
As the number of multiresolution graphs in the highest res-
olution is eight, each of them has been duplicated 80 times
and then they are concatenated, i.e., Wt := W(bt/80c) (t =
0, . . . ,T − 1).

Second, multivariate time-series signals X are generated
from the following GMRF:

xt ∼ N (0, (Lt + σ 2I )†), (34)

where Lt is the graph Laplacian associated with Wt . We set
σ to 0.5.
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FIGURE 2. Visualization of the ground-truth graphs.

FIGURE 3. Time-varying graphs obtained from the multiresolution graphs in Fig. 2.

2) EXPERIMENTAL CONDITION
We evaluate the performance in terms of relative error and
F-measure, each averaged over all time slots. Relative error
is given by

Relative error =
‖Ŵ −W ∗‖F
‖W ∗‖F

, (35)

where Ŵ is the estimated weighted adjacency matrix, andW ∗

is the ground-truth. It reflects the accuracy of edge weights on
the estimated graph.

The F-measure is given by

F-measure =
2tp

2tp+ fn+ fp
, (36)

where the true positive (tp) is the number of edges that are
included both in Ŵ and W ∗, the false positive (fn) is the
number of edges that are not included in Ŵ but are included in
W ∗, and the false positive (fp) is the number of edges that are
included in Ŵ but are not included in W ∗. The F-measure,
which is the harmonic average of the precision and recall,
represents the accuracy of the estimated graph topology. The
F-measure takes values between 0 and 1. The higher the F-
measure, the higher the performance of capturing the graph
topology.

In this experiment, we construct training and test data and
evaluate the performance of graph learning on the test data
using the hyperparameters that minimize the relative error
on the training data. We search for optimal hyperparameters
using Bayesian optimization [39]. Additionally, `1 norm is
used for the temporal variation regularization of the existing
TVGL approaches.

We evaluate the performance with different window sizes
to study the robustness of each method for the choice of
the window size K . The existing methods use K = 20, 40,
or 80, and the proposed method uses the maximum temporal
resolution level L = 5. The proposed method can reconstruct
time-varying graphs corresponding to K = {20, 40, 80} from
a set of TMR graphs. Note that the existing methods need to
fix K before running their algorithms, whereas the proposed
TVGLmethod simultaneously estimates time-varying graphs
in the different window sizes.

3) RESULTS
Table 1 summarizes the average performance of the learned
graphs. As shown in the table, TVGL-MR nearly outper-
forms the other methods both in terms of F-measure and
relative error. This indicates that the TVGL performances can
be improved by TVGL-MR if time-varying graphs can be
assumed to have multiresolution characteristics.

Fig. 4 visualizes the time-varying graphs learned by
TVGL-S, TVGL-LG, and TVGL-MR. As shown in Fig. 4,
the alternative TVGL methods fail to capture temporal
multiresolution structures, particularly those at the high-
resolution level. In contrast, the proposed method captures
edges localized at various temporal resolutions.

Furthermore, Fig. 5 shows the TMR graphs learned by
TVGL-MR. The figure also demonstrates that the proposed
method can successfully learn TMR graphs.

B. EXPERIMENTS ON SINGLE RESOLUTION GRAPHS
The previous experiment demonstrates the effectiveness of
the proposed method for TMR graphs. While the proposed
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FIGURE 4. Visualization of time-varying graphs. The top, middle, and bottom rows represent the time-varying graphs learned by TVGL-S, TVGL-LG, and
TVGL-MR, respectively.

TABLE 1. Comparison of the performance for learning time-varying graph.

method is not specifically designed for learning single reso-
lution TVGL, here, we compare TVGL performances with
the other methods for some single resolution time-varying
graphs.

1) DATASETS
The dataset is constructed with the same steps described in
Section VI-A. In this experiment, we construct two types of
time-varying graphs as follows:

a: EDGE-MARKOVIAN EVOLVING GRAPH (EMEG)
EMEG is a stochastic time dependency evolving graph [40].
Each edge in EMEG follows the Markovian process. EMEG

Gs = {Gt = (Vt , Et ,Wt )} is satisfied as{
p (e ∈ Et+1 | e /∈ Et) = q1
p (e /∈ Et+1 | e ∈ Et) = q2

(37)

where q1 and q2 are called birth rate and death rate, respec-
tively. We generate an Erdős–Rényi graph with N = 36,
p = 0.1 as the initial graph G0. The edge weights of the
initial graph are selected from the uniform distribution with
the interval [0.1, 3], and the weights of the newborn edges are
also selected from the same distribution. We set q1 = 0.001
and q2 = 0.01.

b: SWITCHING BEHAVIOR GRAPH (SBG)
SBG is a time-varying graph that exhibits the transition of
connectivity states. It often appears in brain connectivity
dynamics [41], [42]. We construct an SBG using the fol-
lowing procedure. We generate six static graphs used as
the connectivity states. Each of the graphs is initialized to
an Erdős–Rényi graph with N = 36, an edge connection
probability p = 0.05, and edge weights drawn from a uni-
form distribution in the interval [0.1, 3]. The initial state is
selected randomly from the six connectivity states, and its
state remains with a 98% probability and transits to another
connectivity state with the 2% probability at each time.

c: GENERATING GRAPH SIGNALS
Given graph Laplacians L(0), . . . ,L(127) of the constructed
time-varying graphs, we generate multivariate time-series
signal x0, . . . , x5119 from the following GMRF:

xt ∼ N (0, (L(bt/40c)
+ σ 2I )†), (38)

where σ 2 is the variance of the white Gaussian noise. We set
σ = 0.5 in this experiment.
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FIGURE 5. Visualization of the TMR graphs learned by TVGL-MR.

d: REGULARIZATION FUNCTIONS FOR ALTERNATIVE TVGL
METHODS
TVGLmethods, i.e., TVGL-S and TVGL-LG, require choos-
ing the regularization function based on the prior knowledge
of temporal graph evolution. For EMEG and SBG, we adopt
`1 and `2,1-norm as the possible regularization functions,
respectively.

2) RESULTS
Table 2 summarizes the performances of SGL/TVGL meth-
ods on different datasets. TVGL methods outperform the
static methods on all datasets. This implies that the regular-
ization for the temporal graph evolution or TMR assumption
improves the graph learning performance.

Among the TVGL methods, TVGL-MR ranks first or sec-
ond in this experiment. This suggests the effectiveness and
robustness of the proposed method even for single resolution
time-varying graphs. It is also worth noting that, TVGL-MR
can exhibit performance comparable to that of time-varying
methods without the prior knowledge of the graph evolution
over time, i.e., the regularization function. Typically, existing
TVGL approaches require both prior knowledge and hyper-
parameter(s). In contrast, the only assumption in the proposed
method is that time-varying graphs are characterized by the
multiresolution property, which is a natural assumption of
signal processing. This implies the flexibility of the proposed
method.

Figs. 6 and 7 show the visualization of the temporal varia-
tion in the ground-truth graphs and the learned graphs with a
window size of 40, respectively. The vertical and horizontal
axes of these figures represent the edge and time slot indices
of the time-varying graph, and the color represents the inten-
sity of the edge weights. For simple visualization, the first
100 edge indices are visualized.

As can be seen in Fig. 7, SGL-S and SGL-LG lose
the temporal relations, whereas TVGL-S, TVGL-LG, and
TVGL-MR can capture the original structures more pre-
cisely than static methods. Time-varying graphs by TVGL-
S, TVGL-LG, and TVGL-MR are similar, but the proposed
method tends to yield larger edge weights.

FIGURE 6. Visualization of the temporal variations in the ground-truth
time-varying graph of each dataset.

C. LEARNING TEMPORAL MULTIRESOLUTION GRAPHS
FROM REAL TEMPERATURE DATA
Finally, we apply TVGL-MR to the real temperature data in
Hokkaido, the northernmost island in Japan. The goal of this
experiment is to explore the common (time-invariant) and
seasonal relationships among geographical regions using the
proposed method.

We use the average temperature data2 measured at
172 recording locations in Hokkaido from March 2014 to
February 2015. We perform TVGL-MR with L = 3 (i.e.,
the number of graphs is four at the highest level).

Fig. 8 shows the lowest resolution graphW0,0 obtained by
TVGL-MR and the graph obtained by SGL-LG from data
of all time slots. Note that both of them can be regarded as
static graphs. Focusing on the graph learned by TVGL-MR,
the following characteristics are observed:

• Vertices close to each other are basically connected, and
edges between closer nodes tend to have large weights.
However, if the recording locations are separated by a
mountain (brownish area), nodes may not be connected
even if they are geographically close.

• Vertices with similar geographic features are often con-
nected, i.e., ones along the coast are connected to each

2The Japan Meteorological Agency provided the daily temperature data
from their website at https://www.jma.go.jp/jma/index.html
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TABLE 2. Comparison of the F-measure and relative error for learning time-varying graph. The bold and underlined values represent the best and
second-best performance among the methods, respectively.

FIGURE 7. Visualization of the temporal variations in the learned time-varying graph. The top row and bottom rows depict the variations for EMEG
and SBG datasets, respectively. The colors in these figures represent the weights of the edges.

other, and the similar characteristic is observed for
inland vertices.

The above-mentioned characteristics seem reasonable
because the relationship based on the distance between nodes
or geographic features is static.

In contrast, the graph learned by SGL-LG is denser than
that by TVGL-MR and includes many edges connecting dis-
tant nodes. Such edges may be derived from the seasonal
behavior, which is described later. As SGL-LG learns a static
graph from all the time slots without separating structures
localized at various temporal resolutions, the learned graph
may include both common and seasonal edges.

Fig. 9 shows W2,0, . . . ,W2,3 learned by TVGL-MR,
which corresponds to season-specific graphs. In contrast
to the static graph, these seasonal graphs have few edges
connecting nodes close to each other. This suggests that
the distance-based relationship would have a weak effect

FIGURE 8. Visualization of learned graphs. (a) W0,0 learned by the
TVGL-MR. (b) Graph learned by SGL-LG from data of all time slots.

on the seasonal behavior. Furthermore, the summer- and
winter-specific graphs have more edges than those of the
spring and autumn-specific graphs. This seems intuitive
because the seasonal effects in summer and winter are
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FIGURE 9. Visualization of the season-specific graphs learned by TVGL-MR: (a)–(b) corresponds to W2,0, . . . , W2,3, respectively.

FIGURE 10. Daily sea surface temperature. (a) August 7, 2014.
(b) January 8, 2015.

expected to be stronger than those in mild, such as spring and
fall.

Furthermore, edges connecting distant coastal nodes in the
summer and winter-specific graphs (which are also observed
in SGL-LG in Fig. 8(b)) can be attributed to the effects of
seasonal sea currents. Fig. 10 shows the sea surface tempera-
ture (SST) 3 on August 7, 2014, and January 8, 2015. As can
be seen in Figs. 9(b), 9(d), and 10, vertices connected along
coasts in the summer- and winter-specific graphs reflect SST
behaviors for the two seasons.

VII. CONCLUSION
We proposed a temporal multiresolution graph learning
method from multivariate time-series data. The proposed
method is designed based on a signal generation model in
accordance with an LGMRF, and enables the capture of
time-varying structures having a multiresolution property in
one single framework. The TVGL is formulated as a convex
optimization problem and can be solved efficiently using a
primal-dual splitting algorithm. The experiments on synthetic
and real datasets demonstrate that the proposed method out-
performs the existing static and time-varying graph learning
methods.
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