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ABSTRACT In this paper, a method based on the successive convexification is proposed to solve the
ascent trajectory optimization problem, the algorithm converges to the optimal solution quickly even if the
initial guess is coarse. A three-dimensional motion is formulated with complex aerodynamics and terminal
constraints. Based on themodified aerodynamic coefficients, the new auxiliary control variables are designed
to deal with the complex aerodynamics and non-smooth of control variables in the discrete optimization
problem. The inner nonconvex constraints between the new control are relaxed to be convex without loss.
The artificial infeasibility and unboundedness caused by linearization are tackled by the virtual controls
and soft constraint for trust region in the successive convexification. The good convergence of the proposed
method is illustrated by the iterative solutions of the ascent trajectory optimization problem for a small guided
rocket, the accuracy is verified by the comparison with the optimal solution given by the typical optimal
control solvers, and the feasibility and stability are demonstrated by optimal solutions of the ascent trajectory
optimization problems under different missions and dispersed conditions. These excellent performances
validated by the adequate simulations indicate that the proposed algorithm can be implemented online.

INDEX TERMS Convex optimization, ascent trajectory optimization, successive convexification, online
trajectory optimization, complex nonlinear aerodynamic force.

I. INTRODUCTION
The ascent trajectory optimization problem has been devel-
oped over decades and attracting wide interests and research
attention, it is of great significance for the rockets or vehicles
to reconstruct the trajectory adaptively when the mission
changes or the non-fatal fault occurs during the flight [1].
Generally, the methods for ascent trajectory optimization
problems could be categorized as direct method and indirect
method, based on whether Hamiltonian first-order necessary
condition is satisfied [2], [3]. The former transforms the
continuous-time optimization problem into a nonlinear pro-
gramming (NLP) problem by means of the discretization,
in which the discrete state and control are both regarded as
decision variables [4]; while the latter makes full use of the
first-order necessary conditions to convert the optimization
problem into a two-point-boundary-value-problem (TPBVP)
of the state and costate variables [5].

The shooting technique and multiple shooting tech-
nique [6], [7] were firstly used to solve the TPBVPs, and
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especially, they were effective in the vacuum ascent trajectory
optimization problem, of which the optimal solution was
the explicit expression about the initial variable [8]. The
convergence of the shooting technique depended on the initial
guesses heavily, while the initial value of the costate was
difficult to be selected due to its inexplicit physical meaning.
Besides, the TPBVPs were converted into the root-finding
problems for the system with a certain number of nonlinear
algebraic equations by the means of the finite difference
approach [9]–[11], and the Newton iteration method was
utilized to work out the roots. Based on the previous works,
Huang et al. [12] presented a mixed variable variational
algorithm to solve the ascent trajectory optimization problem
under the multiple path and terminal constraints. However,
the large-scale Jacobian matrices were inevitable in these
indirect algorithms, which would cost much computational
time and memory when replaced by the finite difference
approximation, or need complicated mathematical deriva-
tions when solved analytically.

With the development of the on-board computer, the direct
methods showed enormous potential for real-time optimal
guidance [13]. The different pseudospectral methods were
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introduced to solve the trajectory optimization problems suc-
cessfully, including Chebyshev pseudospectral [14], [15]
and Radau pseudospectral [16]. Particularly, Gauss pseu-
dospectral method [13], [17] was developed to be the
sophisticated one with the application of a general pseu-
dospectral optimal control software (GPOPS). Furthermore,
the direct methods were combined with the intelligent
algorithms to solve the trajectory optimization problems,
Jiang et al. [18] proposed a hybrid optimization strategy by
taking the advantages of particle swarm optimization (PSO)
and Gauss pseudospectral method, Chai et al. [19], [20]
utilized the ‘‘discretization + optimization’’ strategies to
solve the reentry trajectory planning, such as violation learn-
ing deferential evolution-based hp-adaptive pseudo-spectral
method and multiple-shooting discretization technique with
the newest NSGA-III optimization algorithm, besides, a vio-
lation learning deferential evolution method was designed to
generate the appropriate initial guess. These works illustrated
that pseudospectral methods were effective to discrete the tra-
jectory optimization problems. However, the computational
time for the above direct methods fluctuated dramatically
without known boundaries; andwhat’s more, the convergence
of the optimal or feasible solution could not be guaranteed
after a certain number of iterations. These uncertainties hin-
dered the online application of the above direct methods.

As another direct method, the convex programming
method has been introduced to solve the ascent trajectory
optimization problem in recent decades because of the global
optimal solution and good convergence [21]. Sun et al. [22]
realized the optimization of two-dimensional ascent trajec-
tory via the sequential convex programming (SCP) with iter-
ative narrowing trust region. To deal with the nonconvexity
of the aerodynamics, the auxiliary control variables were
introduced, and then the relaxation technique was used to
relax the nonconvex constraints on the new control [23]–[25].
Açıkmeşe et al. [26] and Carson et al. [27] proposed the
lossless convexification methods to handle the nonconvex
thrust boundary and pointing constraints for the pinpoint and
precision landing problem. Besides, the SCP method was
also employed to solve the reentry trajectory optimization
problem [28]–[32]. When all of the above convex program-
ming methods were implemented, the sequential convex sub-
problems were solved iteratively until the optimal solutions
were obtained. However, the convergence of the sequential
iterations was not proved fully, thus they might suffer the risk
of non-convergence. A successive convexification (SCvx)
was proposed to solve non-convex optimal control problems
by Mao et al. [33], [34], and proof of the convergence
properties was presented in details.

In this study, the SCvx is employed to solve the ascent
trajectory optimization problem. The new auxiliary control
variables based on the fitting aerodynamic coefficients are
designed to deal with the nonconvexity of the complex aero-
dynamics with the aid of an exact relaxation. The artificial
infeasibility and unboundedness which may be caused by the
linearization in the SCP methods are tackled by the virtual

controls and soft constraint for trust region in the successive
convexification, respectively. The performance of simulation
illustrates that the proposed method solves the ascent tra-
jectory optimization problem rapidly and shows potential
for real-time optimal guidance. Compared with the previous
works on the SCP method used in the trajectory optimiza-
tion, the primary contributions of the paper are drawn as
three points: 1) the 3 degree of freedom (3-Dof) formula-
tion with accurate and tractable aerodynamics is feasible to
different ascent trajectory optimization problems; 2) the pro-
posed new control facilitates the convergence to the optimal
solution; 3) the soft constraint of the trust region avoids the
non-convergence of the sequential iterations.

The outline of the rest of this article is structured as
follows: In the upcoming section, the problem of ascent
trajectory optimization is established with the new control.
Then, the SCvx algorithm is expanded detailly to solve the
ascent trajectory optimization problem in section III. Next,
in section IV, adequate simulations and comparisons are per-
formed and discussed to illustrate the accuracy, feasibility and
stability of the proposed method. At last, the conclusions are
drawn in section V.

II. PROBLEM FORMULATION
The ascent trajectory optimization problem with the new
control will be formulated in this section. Firstly, a 3-Dof
formulation is presented in subsection II.A for the ascent
trajectory optimization problem. Then, based on the analy-
sis of the original problem, the new auxiliary control vari-
ables combined with relaxation technology are proposed
to deal with the complex and nonconvex aerodynamics in
subsection II.B. Finally, the new optimization problem for
ascent trajectory is expressed in subsection II.C.

A. ASCENT TRAJECTORY OPTIMIZATION PROBLEM
Under the assumption of a small attack angle and the flat
Earth, the dimensionless three-dimensional (3-D) motion of
the ascent trajectory for the bank to turn (BTT) vehicle can
be expressed as follows.

ẋ = f (x,u, t) :

=



dx
dt
= v cos θ cos σ

dy
dt
= v sin θ

dz
dt
= v cos θ sin σ

dv
dt
=

P
mg0
−
rEρv2Sref

2m
CD (Ma, α)− sin θ

dθ
dt
=

Pα
mg0v

+
rEρṽSref

2m
CL (Ma, α) cos υ−

cos θ
v

dσ
dt
=
rEρvSref CL
2m cos θ

CL (Ma, α) sin υ

(1)

where x, y and z are the dimensionless positions which are
normalized by the reference length rE , v is the dimensionless
velocity normalized by the reference velocity vE =

√
rEg0,
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t is the dimension-less time normalized by the reference time
tE =

√
rE/g0, g0 is the average gravitational acceleration

of Earth, θ and σ are the flight path angle and heading
angle, respectively. The state of the system is denoted as
x = [x, y, z, v, θ , σ ]T.
P andm are the thrust and mass of the vehicle, respectively,

which can be obtained from the test-run experiment. ρ is the
density of the atmosphere, of which the approximate value is
given as Eq.(2), where hs = 7110m, ρSL = 1.225kg/m3.

ρ = ρSL exp
(
−
yrE
hs

)
(2)

Sref is the reference area of the vehicle; CD and CL denote
the coefficients of the aerodynamic drag and lift. In general,
they are assumed as the functions of Mach number Ma and
attack angle α. The attack angle α and bank angle υ are
the control variables in this ascent trajectory optimization
problem, i.e. u = [α, υ]T

Notice that θ and σ in Eq.(1) are dimensionless, their
dimensionless derivatives only depend on the reference time.
According to the above definitions, we can know that all
of the reference parameters are determined by the reference
length rE . So, it is possible to set all the magnitudes of the
dimensionless states equal or near by choosing the appro-
priate reference length, which could facilitate the numerical
calculation.

Generally, the minimum-time problem with free terminal
time and the maximum-energy problem with fixed termi-
nal time are the two typical problems of ascent trajectory
optimization. The free terminal-time minimum-time problem
can be transformed into the sequential fixed terminal-time
maximum-energy problem, and the latter is easier to con-
verge [35]. Thus, only the maximum-energy problem will
be studied in this paper. When the terminal height is
fixed, the maximum-energy will be equivalent to maximum-
velocity, eventually, the performance index of the optimiza-
tion problem in our study can be expressed as Eq.(3)

J = φ(xf ) = −vf (3)

The terminal state of the ascent phase should be specially
designed when the whole trajectory is taken into consider-
ation, because it effects greatly on the following trajectory.
Without loss of generality, the boundary constraints of the
fixed interval [t0, tf ] ascent trajectory optimization problem
are given by Eq.(4).

x(t0) = x0
y(t0) = y0
z(t0) = z0
v(t0) = v0
θ (t0) = θ0
σ (t0) = σ0



x(tf ) = xf
y(tf ) = yf
z(tf ) = zf
θ (tf ) = θf
σ (tf ) = σf

(4)

Under the assumption of a small angle, the attack angle
is constrained by Eq.(5). According to the maneuver of the

vehicle, the bank angle is constrained by Eq.(6).

0 ≤ |α| ≤ αmax (5)

−π ≤ υ ≤ π (6)

In summary, the original nonlinear continuous-time ascent
trajectory optimization problem can be formulated as

P1 : min J1 = ϕ(xf )

Subject to Eqs.(1), (4) ∼ (6).

B. NEW CONTROL
It can be known that the high nonlinearity of problem P1 is
mainly generated from the complex aerodynamics. In order
to handle this, an ideal and simplified aerodynamic coef-
ficient was proposed under the assumption of a symmetri-
cal shape [24], [25], in which the lift coefficient CL was
proportional to the attack angle α, and the drag coefficient
depended on the zero lift dragCD0 and the square of the attack
angle α2. Based on the simplified aerodynamic coefficients,
the control variables were decoupled, and the system was
transformed into an affine one. Using the SCP algorithm to
solve the nonlinear affine system could avoid the nonlinearity
of controls and achieve a less iterative step of the successive
subproblems. However, the optimal solutions worked out by
the simplified aerodynamics would be less accurate when the
deviation between the actual and simplified aerodynamics
could not be ignored. Besides, the derivative of bank angle
was chosen as the control variable [31], [32] to obtain the
smooth control in the discrete optimization problem, of which
system the bank angle was transformed into the extended
state. Even so, the bank angle would still suffer the small but
unnecessary chatters.
In this paper, the aerodynamic coefficients are modified

to be more accurate and tractable. Based on the modified
aerodynamics, the nonlinear terms of the control are regarded
as the new auxiliary control variables, which are designed
to reduce the influence of nonlinear aerodynamics on the
system. The inner nonconvex constraints among the new
controls are relaxed to be convex ones, and the active sets
of the convex constraints after the relaxation are proved the-
oretically to be the same as the feasible sets of the original
problem. Moreover, the new auxiliary controls are discov-
ered to solve the optimization problem with smooth discrete
controls effectively through the results of simulation, and
this is also applied to overcome the high-frequency chatter
of the discrete controls in the reentry trajectory optimization
problem [29], [30].

1) AERODYNAMICS COEFFICIENTS MODIFICATION
The aerodynamic coefficients are modified as the quadratic
functions of attack angle and Mach number, which are
expressed as Eq.(7), thus they can fit the actual aerodynamic
data more accurately and be applied to almost all the vehicles
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with different shapes.
CL (Ma, α) = C0

L + C
α
L α + C

Ma
L Ma+ CαMaL αMa

+CMa2
L Ma2 + Cα

2

L α
2

CD (Ma, α) = C0
D + C

α
Dα + C

Ma
D Ma+ CαMaD αMa

+CMa2
D Ma2 + Cα

2

D α
2

(7)

The coefficientsC0
L ,C

α
L , . . . ,C

α2

D are obtained through fit-
ting aerodynamic data from the CFD simulations or the wind
tunnel experiments. Additionally, the aerodynamic function
in Eq.(7) is more efficient in the numerical calculation than
the interpolation of the aerodynamic data.
Furthermore, the aerodynamic coefficients (7) can be col-

lected as the function of the attack angle α and its square α2

without loss, which is expressed as Eq.(8).{
CL (Ma, α) = Ĉ0

L(Ma)+ Ĉ
α
L (Ma)α + Ĉ

α2

L α
2

CD (Ma, α) = Ĉ0
D(Ma)+ Ĉ

α
D(Ma)α + Ĉ

α2

D α
2 (8)

where
Ĉ0
L(Ma) = C0

L + C
Ma
L Ma+ CMa2

L Ma2

ĈαL (Ma) = CαL + C
αMa
L Ma

Ĉα
2

L = Cα
2

L

(9)


Ĉ0
D(Ma) = C0

D + C
Ma
D Ma+ CMa2

D Ma2

ĈαD(Ma) = CαD + C
αMa
D Ma

Ĉα
2

D = Cα
2

D

(10)

2) CHOICE OF NEW CONTROL
According to the above modified aerodynamics coefficients,
we define the new control vector as u = [u1, u2, u3, u4]T,
where the components are

u1 = α, u2 = α2, u3 = cos υ, u4 = sinυ (11)

Substituting the modified aerodynamics coefficients and
new control u into Eq.(1), the dynamics can be rewritten as

ẋ = F(x,u, t) :

=



dx
dt
= v cos θ cos σ

dy
dt
= v sin θ

dz
dt
= v cos θ sin σ

dv
dt
=

P
mg0
−
rEρv2Sref

2m
×

(
Ĉ0
D + Ĉ

α
Du1 + Ĉ

α2

D u2
)
− sin θ

dθ
dt
=

Pu1
mg0v

+
rEρvSref u3

2m

×

(
Ĉ0
L + Ĉ

α
L u1 + Ĉ

α2

L u2
)
−

cos θ
v

dσ
dt
=
rEρvSref u4
2m cos θ

(
Ĉ0
L + Ĉ

α
L u1 + Ĉ

α2

L u2
)

(12)

The range of the angle-of-attack is 0 ≤ |α| ≤ αmax, it could
be expressed as Eq.(13), where u−2 = 0 and u+2 = α2max.

And the range of the bank angle is -π ≤ υ ≤ π , which is
equal to the range of the anti-trigonometric function on the
interval [−1, 1], so there is no need for extra condition to
limit the range of new control variables u3 and u4 when they
are constrained by Eq.(14).{

g1 = u−2 − u2 ≤ 0
g2 = u2 − u

+

2 ≤ 0
(13)

h1 = u23 + u
2
4 − 1 = 0 (14)

As u1 and u2 are not independent variables, their inner
relationship can be restricted by Eq.(15).

h2 = u21 − u2 = 0 (15)

Constrained by Eqs.(13)∼(15), the feasible set of the new
control is the same as that of the original control, however, the
constraints (14) and (15) are nonconvex. Although they can
be transformed into convex constraints by the approximate
Taylor expansion in the traditional SCP methods, the non-
convex constraints will result in more successive iterations.
Thus, a relaxation technique is employed to convexify these
nonconvex constraints, it relaxes the feasible sets of con-
straints (14) and (15) which locate only at the curved bound-
aries as Eq.(16).{

g3 = u21 − u2 ≤ 0
g4 = u23 + u

2
4 − 1 ≤ 0

(16)

C. NEW ASCENT TRAJECTORY OPTIMIZATION PROBLEM
Modified by the new control and its relaxed constraints,
the new ascent trajectory optimization problem P2 is sum-
marized as

P2 : min J2 = φ(xf )

Subject to Eqs. (12), (4), (13) and (16)

As a result of the relaxation, the feasible set of the original
problem P1 is a subset of the new problem P2, thus it can be
drawn that the minimum objective of problem P2 would be
even lower than that of problem P1, i.e. J∗2 ≤ J∗1 . Now, it is
critical to prove that J∗2 = J∗1 if we want to make full use of
the relaxation.

Let the optimal solution of problem P2 be denoted as
{x∗(t), u∗(t)}, then {x∗(t), u∗(t)} will also be the optimal
solution of problem P1 if the conditions u∗21 = u∗2 and
u∗23 + u

∗2
4 = 1 are satisfied, which indicates that the optimal

solution of problem P2 lies only at the boundaries of the
relaxed constraints in Eq.(16).
Proposition: If the optimal solution of problem P2 is given

as {x∗(t), u∗(t)}, the constraints g3 and g4 of Eq.(16) will
be active during the interval [t0, tf ], i.e. u

∗2
1 = u

∗

2 and
u
∗2
3 + u

∗2
4 = 1.

Proof: See the Appendix

III. SUCCESSIVE CONVEXIFICATION
The SCvx algorithm described in this section consists
of linearization, discretization, virtual control and trust
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region constraint. The latter two are utilized to address artifi-
cial infeasibility and unboundedness introduced by lineariza-
tion. Eventually, the proposed algorithm solves the sequential
subproblems iteratively until the convergence condition is
satisfied.

A. LINEARIZATION
The linearization is used to transform the fixed terminal-
time nonlinear continuous-time problem P2 into a linear one.
By converting the nonlinear dynamics to its first-order lin-
ear items approximately, linearization produces a linear and
convex subproblem.

Based on the first-order Taylor expansion, the nonlinear
dynamic (12) is approximated as the linear continuous-time
one which is denoted by Eq.(17). The reference trajectory
is denoted by z̄ = [x̄; ū; t], which could be obtained by
the previous solution; the coefficient matrices of Eq.(17) are
given in Eqs.(18) ∼(20).

ẋ(t) ≈ A(t)x(t)+ B(t)u(t)+ w(t) (17)

A(t) : =
∂f (x,u, t)

∂x

∣∣∣∣
z̄

=



0 0 0 a14 a15 a16
0 0 0 a24 a25 0
0 0 0 a34 a35 a36
0 a42 0 a44 a45 0
0 a52 0 a54 a55 0
0 a62 0 a64 a65 0


(18)

B(t) : =
∂f (x,u, t)

∂u

∣∣∣∣
z̄

=



0 0 0 0
0 0 0 0
0 0 0 0
b41 b42 0 0
b51 b52 b53 0
b61 b62 0 b64


(19)

w(t) : = f (x̄, ū, t)− A(t)x̄(t)− B(t)ū(t) (20)

where the non-zero elements of the matrices A and B are


a14 = cos θ cos σ

a15 = −v sin θ cos σ

a16 = −v cos θ sin σ

(21)

{
a24 = sin θ

a25 = v cos θ
(22)

a34 = cos θ sin σ
a35 = −v sin θ sin σ
a36 = v cos θ cos σ

(23)



a42 =
r2Eρv

2Sref
2mhs

(
Ĉ0
D + Ĉ

α
Du1 + Ĉ

α2

D u2
)

a44 = −
rEρvSref

m

(
Ĉ0
D + Ĉ

α
Du1 + Ĉ

α2

D u2
)

−
rEρvMaSref

2m

(
Ĉ0
D

∂Ma
+

Ĉ0
D

∂Ma
u1

)
a45 = − cos θ

(24)



a52 = −
r2EρvSref u3

2mhs

(
Ĉ0
L + Ĉ

α
L u1 + Ĉ

α2

L u2
)

a54 = −
P

mgv2
u1 +

rEρSref u3
2m

(
Ĉ0
L + Ĉ

α
L u1 + Ĉ

α2

L u2
)

+
rEρMaSref u3

2m

(
Ĉ0
L

∂Ma
+

Ĉ0
L

∂Ma
u1

)
+

cos θ
v2

a55 =
sin θ
v

(25)

a62 = −
r2EρvSref u4
2mhs cos θ

(
Ĉ0
L + Ĉ

α
L u1 + Ĉ

α2

L u2
)

a64 =
rEρSref u4
2m cos θ

(
Ĉ0
L + Ĉ

α
L u1 + Ĉ

α2

L u2
)

+
rEρMaSref u4
2m cos θ

(
Ĉ0
L

∂Ma
+

Ĉ0
L

∂Ma
u1

)
a65 =

rEρvSref CL sin θu4
2m cos2 θ

(
Ĉ0
L + Ĉ

α
L u1 + Ĉ

α2

L u2
)

(26)


b41 = −

rEρv2Sref ĈαD
2m

b42 = −
rEρv2Sref Ĉα

2

D

2m

(27)



b51 =
P

mg0ṽ
+
rEρvSref ĈαL

2m
u3

b52 =
rEρvSref Ĉα

2

L

2m
u3

b53 =
rEρvSref

2m

(
Ĉ0
L + Ĉ

α
L u1 + Ĉ

α2

L u2
) (28)



b61 =
rEρvSref ĈαL
2m cos θ

u4

b62 =
rEρvSref Ĉα

2

L

2m cos θ
u4

b64 =
rEρvSref
2m cos θ

(
Ĉ0
L + Ĉ

α
L u1 + Ĉ

α2

L u2
) (29)

B. DISCRETIZATION
This step transforms the linear continuous-time problem
obtained by linearization into a discrete-time one, and then
converts the optimization problem to an NLP problem.
It’s important for this step to guarantee that the converged
solution of the discrete-time problem corresponds to the pre-
vious continuous-time dynamics precisely.

There are different methods for discretization, such as
Euler method [36], trapezoid methods [37] and pseudospec-
tral methods [14]. According to the literatures, the first-
order-hold (FOH) interpolation [38], [39] is usually utilized
to discretize the continuous-time problem. Firstly, the fixed
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interval [t0, tf ] of the ascent phase is divided into K − 1
subintervals by K evenly spaced temporal nodes.

For each subinterval (k = 1, 2, . . . ,K − 1), FOH interpo-
lation of the control is expressed as

u(t) := τ−k uk + τ
+

k uk+1 t ∈ [tk , tk+1] (30)

where uk : = u(tk ) is the discrete-time control,

τ−k :=
tk+1 − t
tk+1 − tk

and τ+k :=
t − tk

tk+1 − tk
Substituting the FOH interpolation of the control into

Eq.(17), the continuous-time dynamics for each subinterval
is expressed as follows

ẋ(t) = A(t)x(t)+ B(t)τ−k uk + B(t)τ
+

k uk+1 + w(t) (31)

The state transition matrix 8A(ξ , tk ) associated with
Eq.(31) is given by

8A(ξ, tk ) := Inx×nx +
∫ ξ

tk
A(ζ )8A(ζ, tk )dζ (32)

Let xk := x(tk ) be the discrete-time state vectors, the
discrete-time dynamics for each subinterval is expressed as

xk+1 : = Akxk + B−k uk + B
+

k uk+1 + wk
Ak : = 8A(tk+1, tk )

B−k : = Ak

∫ tk+1

tk
8−1A (ξ, tk )B(ξ )τ

−

k (ξ )dξ

B+k : = Ak

∫ tk+1

tk
8−1A (ξ, tk )B(ξ )τ

+

k (ξ )dξ

B+k : = Ak

∫ tk+1

tk
8−1A (ξ, tk )B(ξ )τ

+

k (ξ )dξ (33)

C. VIRTUAL CONTROL AND TRUST REGION CONSTRAINT
An implementable convex optimization subproblem is gener-
ated through the above steps. However, the subproblem may
suffer the artificial infeasibility and unboundedness [38],
of which the former indicates that the subproblem is infea-
sible even if there exists the feasible solution of the original
optimal problem, and the latter arises when the objective of
the linearized optimal subproblem is allowed to beminimized
or maximized infinitely. Both the artificial infeasibility and
unboundedness lead to the iteration of the successive opti-
mal subproblems stopping at an infeasible solution. In order
to tackle these, the virtual control and trust region con-
straint are proposed to modify the traditional SCP algorithm,
respectively.

1) VIRTUAL CONTROL
To address the artificial infeasibility, the virtual control term
vk ∈ Rn(n = 6) is added to the dynamics (33)

xk+1 := Akxk + B−k uk + B
+

k uk+1 + wk + vk (34)

With the unconstrained virtual control vk , the system will
be controllable, which indicates that any state in the feasible
set can be reachable in the finite time. The virtual control

makes it possible for each subproblem to be solved success-
fully if the feasible set isn’t empty, and thus the convergence
process of the iterative subproblems is not terminated with
an infeasible solution. This is why the virtual control can
keep the successive convexification away from the artificial
infeasibility.

Despite that we want to recourse to this virtual control
as expected, a penalty function in Eq.(35) is employed to
encourage sparsity in the vectors vk .

Jvc = λ
K−1∑
k=1

‖vk‖1 (35)

where λ ∈ R++ is a large weight and ‖·‖1 is the 1-norm of a
vector. It can be deduced from the penalty function of virtual
control that the virtual controls are expected to be zero until
the convergence, then Eq.(34) is equivalent to Eq.(33).

2) TRUST REGION CONSTRAINT
According to the above description, the artificial unbound-
edness can be solved directly by constraining the decision
variables z= [xT1 , u

T
1 , x

T
2 , u

T
2 , . . . , x

T
K , u

T
K ]

T of the successive
subproblem with a trust region, which can be expressed as
Eq.(36), where η is the radius of trust region and the inequal-
ity sign applies component-wise.

‖z− z̄‖ ≤ η (36)

However, the constant trust region does not always ensure
that the iterations of the successive subproblems converge to
the optimal solution. A two-dimensional optimization prob-
lem is taken as example, of which the constraint is f (x) =
0.5x21-x2 = 0,the cost is min{x2}, and the constant trust
region is ‖x− x̄‖2 ≤1. The iteration process of the SCP
algorithm with constant trust region is listed in Table 1. It can
be drawn from Table 1 that the iterative solutions of the suc-
cessive subproblems for the given two-dimensional optimal
problem don’t converge when the trust region is constant.
Eventually, the solutions change between the two points of
which one is located at the edge of the other’s trust region.

TABLE 1. Iteration of two-dimensional optimization problem using SCP
with the constant trust region.

To tackle the non-convergence, the narrowing trust region
was proposed by Sun et al. [22], but the subproblem would
be infeasible if the radius η of trust region was too small.
Besides, an alternative updating rule of trust region radiuswas
described detailly by Mao et al. [33], the convergence of the
successive convex subproblems is analyzed and proved, but
there would be several invalid iterations and computational
effort may increase.
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The above constraints of the trust region could be named
as the hard constraints. Contrarily, a soft constraint of trust
region was proposed by Szmuk et al. [40]. Compared to
the hard ones, the soft constraint of trust region is more
feasible and easier implemented, thus it is employed in this
paper to guarantee that the solution of the current subproblem
doesn’t deviate exceedingly away from the reference trajec-
tory obtained in the last iteration step. The soft constraint of
the decision variables z is defined as

Jtr = wtrδTz δz (37)

where δz = z − z̄ and wtr ∈ R++ is a positive weight. The
desirable Jtr is zero, i.e., δz = 0, under which condition the
algorithm is converged.

In summary, the convex optimization subproblem of the
ascent trajectory is modified as P3 in this paper, and the
SCvx algorithm is presented as follows.

P3 : min J = φ(xf )+ Jvc + Jtr
Subject to Eqs.(34), (4), (13) and (16)

Algorithm 1 Ascent Trajectory Optimization Problem
SCvx Algorithm

Initialize the reference trajectory z̄
while the convergence condition isn’t satisfied

solve the optimization subproblem P3 and get the optimal
solution z

if sup
1≤k≤K

|xk − x̄k | ≤ ε

convergence condition is satisfied
end if
z→ z̄

end while
return z

IV. NUMERICAL SOLUTION
In this section, a small guided rocket is taken to evaluate the
proposed method for the ascent trajectory optimization prob-
lem. Firstly, the parameters and conditions in the numerical
calculations are given in subsection IV.A. Next, the conver-
gence of the SCvx with the new control is analyzed through
the solutions of the sequential subproblems in subsection
IV.B, and in addition, the results obtained by another two
traditional controls mentioned in above are used as compar-
ison. Then, the accuracy is verified further by the compar-
ison of the solutions worked out by GPOPS and ICLOCS2
(Imperial College London Optimal Control Software) [41]
in subsection IV.C. Furthermore, the feasibility of the pro-
posed method is tested by the optimal results of different
missions IV.D. Finally, the stability of the proposed method
is illustrated by the Monte-Carlo simulation results under
the deviations in trajectory initial state variables and vehicle
uncertainties in subsection IV.E.

A. SIMULATION CONDITIONS
The parameters of the small rocket are given in Table 2,
the change of the motor thrust is presented in Fig.1, and

TABLE 2. Simulation parameters.

FIGURE 1. Thrust curve.

FIGURE 2. Mass curve.

correspondingly, the mass curve is drawn in Fig.2. The fitting
of the aerodynamic coefficients is shown in Fig.3, it is noticed
that the aerodynamic coefficients of the phase t ≤ 15s and
t > 15s are different because of the deployment of the folding
wing at t = 15s, and this is used to evaluate whether the
proposed new control can deal with the step changes of the
aerodynamic coefficients. Besides, the reference parameters
of the normalization are chosen as reference length rE =
20000m, reference velocity vE = 442.72m/s, and reference
time tE = 45.18s.
The MATLAB modeling toolbox YALMIP [42] is

used to formulate the subproblem P3 and the solver
MOSEK [43], [44] is employed to obtain the solution
iteratively in this paper. All the results are obtained by running
the proposed method on desktop with Intel Core i3-4150
3.50GHz, 4G RAM. The dimensionless convergence
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FIGURE 3. Fitting of aerodynamic coefficients.

condition is selected as

ε =

[
15
rE

15
rE

15
rE

1
vE

π

180
π

180

]

B. OPTIMAL SOLUTION OF THE PROPOSED METHOD
Table 3 lists the initial and terminal conditions of the ascent
trajectory optimization problem, where the initial values refer
to those after the oblique launching with an impulse thrust.
The performance of the proposedmethod is investigated from
the following three aspects in this subsection. Firstly, the con-
vergence of the iteration for the proposed method is presented
thoroughly. Next, the advantage of the proposed new control
is illustrated through the comparison of the solutions obtained
by another two forms of controls, of which one is made up
directly by the attack angle and bank angle, and the other
consists of the derivatives of attack angle and bank angle.
Finally, the integral solutions are calculated by the optimal
discrete controls to illustrate the accuracy of the discrete
solutions.

1) ITERATION OF THE PROPOSED METHOD
The iteration of the successive subproblems for the ascent
trajectory optimization problem is presented in Fig.4.

As shown by Fig.4(a)∼(d), we can know that all the
states will approach the convergences quickly and stably,
even the initial guesses which derive from the points spaced
evenly between the initial and terminal conditions are coarse.

TABLE 3. Initial and terminal conditions.

The terminal conditions are satisfied well. The velocity
decrease in the initial phase because of the large drag, and
the maximum terminal velocity is achieved by managing the
height in the final phase of flight. The good convergence
should not only owe to the linearization of the nonlinear
dynamics and the lossless relaxation of nonconvex control
constraints, but also benefit from the feasible soft constraint
of the trust region. Fig.4(e) and Fig.4(f) are iterations of the
actual controls, the convergences are smooth except when the
shape of the rocket changes at t = 15s, at which time there
are small steps.

Furthermore, the difference of the states among the suc-
cessive solutions is listed in Table 4, which can describe
the convergence of the iteration more quantitatively. It can
be drawn that the difference between the successive
solutions satisfies the convergence condition after 7 itera-
tions and the total CPU time is 1.39s. Besides that, the
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FIGURE 4. Iteration of the successive subproblems solved by SCvx with new control.

TABLE 4. Difference of the state among successive solutions obtained
by SCvx with new control.

difference almost decreaseswith the iterations of the subprob-
lems. These indicate the proposed method converging to the
optimal solution quickly and stably.

The subplots of Fig.5 are the relationship between u1
and u2 and the relationship between u3 and u4, respectively.
As we can see from the figure, the optimal solution meets the
conditions that u∗21 = u∗2 and u

∗2
3 + u

∗2
4 = 1. These illustrate

that the constraints g3 and g4 in Eq.(16) are active at almost
all the discretized points, which means that Proposition in
subsection II.C is true.

2) COMPARISON OF DIFFERENT CONTROLS
It is discovered in our study that when the SCvx is combined
with the other two forms of controls, the iterative steps needed
for convergence are near 20. So many successive solutions
are difficult to be displayed distinctly in one figure, here
only the differences among the successive solutions are listed
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FIGURE 5. Inner constraints of the new control of the optimal solution.

TABLE 5. Difference of the state among successive solutions obtained
by SCvx with control 1.

in Table 5 and 6 (where the attack angle and bank angle are
regards as control 1 and their derivatives as control 2).

When the above ascent trajectory optimization problem
is solved by the SCvx with control 1, the discretized attack
angle will change dramatically after 19 iterations, and even
divergence in the following iterations, thus only the difference
of the state among the first 20 iterations is given in Table 5.
Comparing the difference of the state in Table 4 and 5, we can
know that the convergence speed of control 1 is slower than
that of the new control, especially when the difference is
small. This means that the SCvx with control 1 spends much
more CPU time to solve the optimization problem with the
requirement of high accuracy. In addition, when the step CPU
time is taken into consideration, the average step CPU time
of the new control is more than that of control 1 because of
its more decision variables, but the drawback is compensated
well by its quick convergence. Thus, the SCvx with the pro-
posed new control spends near the half time of the control 1,
which can be illustrated by the total CPU time.

TABLE 6. Difference of the state among successive solutions obtained
by SCvx with control 2.

FIGURE 6. Comparison of the terminal velocity under different controls.

It can be known from Table 6 that the SCvx with control 2
takes 18 iterations to approach its solution, which is similar
to that of control 1, and the convergence speed is slower
than that of the proposed new control too. Additionally,
the average step CPU time of control 2 is less than that of
the proposed new control even though the numbers of the
decision variables for the both are the same. To the best
of our knowledge, the obvious distinction of the step CPU
time between the new control and the traditional controls
(control 1 and 2) is caused by the feasible sets of controls for
the successive subproblems, of which the former is always
larger than the latter because of the relaxation technology.
As a result, the subproblem solved by the SCvx with the
proposed new control will spendmore time to find the optimal
solution.

Fig.6 presents the comparison of the successive terminal
velocities obtained by the SCvxwith the three controls, which
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FIGURE 7. Comparison of the optimal solutions of different controls.

are the performance indexes of the optimization problem
in our study according to the previous description. It can
be seen from the figure that the performance index con-
verges more quickly when using proposed the new control.
Moreover, the difference between the first terminal velocities
of the proposed new control and the traditional controls is
conspicuous, but the following terminal velocities change
similarly and stably. These mean that the coarse initial guess
leads to the different solutions in the first iterations for the
different controls, but does not affect the convergence of the
subsequent iterations greatly because of the soft constraint of
the trust region. Therefore, the SCvx algorithm doesn’t need
the accurate initial value and has a good convergence.

Fig.7 shows the comparison of the optimal solutions
obtained by the three different controls. As we can see from
the figure, the optimal solutions of the three controls are
similar. The slight differences between the optimal solutions
under the different controls should attribute to the cutoff of

numerical calculations and convergence conditions. When
the attack angle and bank angle are used as the controls
directly, they step over 1 and 3 deg respectively at the moment
the shape of the rocket changes, which shown by Fig.7(d);
what’s more, the attack angle changes sharply in the initial
phase, and this is difficult for the vehicle to track during
the flight. Besides, it can also be seen from the changes
of the flight path angle and attack angle in Fig.7 that the
derivatives of attack angle and bank angle don’t work as
expected, the flight path angle and attack angle always fluc-
tuate around the results obtained by the other two controls.
Although the derivative of the attack angle could be used to
prevent the chatter among the discretized points, the change
over the whole interval [t0, tf ] can’t be guaranteed to be
smooth. In summary, it can be concluded that the SCvx with
the proposed new control can yield smooth discrete control
variables when there is no drastic change of aerodynamic
coefficients.
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FIGURE 8. Comparison between integral solutions and discrete solutions.

3) COMPARISON WITH THE INTEGRAL SOLUTION
Furthermore, with the purpose to study the accuracy of the
optimal solution obtained by the proposed method, the dis-
crete attack angle and bank angle transformed from the
optimal new control are interpolated to obtain the integral
solution based on the dynamics (1). The integral solution
can be regarded as continuous-time if the integration step is
considerably small, and it’s compared to the optimal discrete
solution, which is presented in Fig.8.

It can be seen from the comparison shown by Fig.8(a)
that the integral solution has a good agreement with the
discrete solution. This high accuracy of the discrete result
should attribute to the appropriate interpolation and points in
the discretization, as well as the tough convergence condi-
tion. Furthermore, to show the difference between the inte-
gral solutions and the discrete solutions more quantitively,
the deviations are shown in Fig.8(b). When the deviations
are studied with the comparison of the convergence condition
set in subsection 4.1, it will be interesting to find that the
deviations of all states except for the height change within
their convergence conditions, but the height deviation still
varies in the twice of the convergence condition. This is
greatly helpful to select the convergence condition when we
employ the SCvx to solve the ascent trajectory optimization
problem.

C. COMPARISON WITH SOLUTION OF GPOPS AND
ICLOCS2
The typical optimal control solvers ICLOCS2 and GPOPS
are utilized to work out the optimal solution of the ascent

TABLE 7. Comparison of the optimal results of Different methods.

trajectory problem mentioned above. The solutions are com-
pared to that obtained by the proposed method, which is
presented in Fig.9.

It can be seen from Fig.9(a) that the optimal trajectories
obtained by the different methods are almost the same, but
the other states and the controls are slightly different. These
negligible differences should result from the linearization and
discretization strategies of the three methods. Additionally,
the terminal velocity and total CPU time of these methods
are compared in Table 7. The table indicates that all the
methods can solve the above ascent trajectory optimization
problem successfully with similar results, but GPOPS and
ICLOCS2 expense much more time than the SCvx.

D. OPTIMIZATION RESULTS UNDER DIFFERENT MISSIONS
In this subsection, the proposed method is implemented to
solve the ascent trajectory optimization problems under dif-
ferent missions, of which the different initial and terminal
positions are listed in Table 8, the other conditions and param-
eters are the same as those in subsection 4.1.

Fig.11 shows the comparison of the optimal solutions
solved by the proposed method under different missions.
The three-dimensional trajectory together with the altitude
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FIGURE 9. Comparison of solutions obtained by proposed SCvx and GPOPS.

TABLE 8. Initial and terminal positions for different missions.

history and the ground track of three different missions is
presented in Fig.11(a), and it indicates that the proposed
algorithm is feasible and effective to solve the optimization

problems with different missions. As a fixed terminal-time
maximum-velocity problem, the maximum terminal velocity
is achieved by the managing energy in the vertical under the
mission 2 and 3, this is also illustrated by the sign of the flight
path angle in Fig.11(c), consequently, the terminal velocities
of the two missions are larger than that of mission 1. In addi-
tion, the optimal controls of different missions in Fig.11(d)
are smooth except for t = 15s, at which time small steps
are caused by the change of the aerodynamic shape, but still
within the allowable range.

E. OPTIMAL SOLUTIONS UNDER DEVIATIONS AND
UNCERTAINTIES
In this subsection, Monte-Carlo simulation is conducted to
evaluate the stability of the proposed method under the
deviations in initials and the uncertainties of the rocket.
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FIGURE 10. Comparison of the solutions under different missions.

FIGURE 11. Dispersion of the performance under the deviations and uncertainties.

The dispersion of the initial and the uncertainty are listed
in Table.9. 500 Monte-Carlo simulations are implemented
under the mission 2.

The dispersion of 500 simulations for the states and
controls under the deviations and uncertainties is shown

in Fig.12, it illustrates that the terminal conditions are sat-
isfied stably when using the proposed method to solve
the trajectory optimization problem under the deviations
and uncertainties. Furthermore, the performance of the pro-
posed method can be evaluated from the Fig.11, which
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FIGURE 12. Dispersion of the state and control under the deviations and uncertainties.

presents the dispersions of the iteration steps, total CPU
time and the terminal velocity, it can be known from the
figure that the iteration steps and the CPU time change
within the stable range, and the dispersions correspond to
the dispersion model of the deviations and uncertainties
well; the dispersion range of the terminal velocity is almost
the same as the 3σ -range of the distribution for the initial
velocity.

The comparative result of the typical optimal control
solvers ICLOCS2 and GPOPS is displayed in Table 10,
the similar conclusion can be drawn as the that in IV.C.

However, as a fixed final time problem, the system would
fail when current velocity could not reach the terminal condi-
tion because of the deviations and uncertainties, i.e., the max-
imum range of the fixed time interval under the deviations and
uncertainties is less than the range required. This drawback
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TABLE 9. Dispersions of the initial deviation and uncertainty.

TABLE 10. Statistical result of Monte-Carlo simulation.

can be addressed by replacing the time t with the downrange
x as the new independent variable.

V. CONCLUSION
In this paper, the successive convexification is successfully
applied to the 3-Dof ascent trajectory optimization problems
for the small guided rocket with complex nonlinear aero-
dynamics, the optimal solutions can be worked out rapidly.
The new control and effective relaxation are designed to
address the nonconvex of the aerodynamics, which is proved
theoretically by Karush-Kuhn-Tucker condition and Pontry-
agin’s minimum principle. A soft constraint of the trust region
is put forward to avoid the artificial unboundedness and
nonconvergence of the algorithm. Based on linearization and
discretization, the proposed method can solve the nonlin-
ear continuous-time optimal control problem accurately. The
results of simulation illustrate that 1) the SCvx with proposed
new control approaches more rapidly to the convergence than
the traditional controls even if the initial guess is coarse; 2) the
optimal solution obtained by utilizing the proposed method
is considerably accurate; and 3) the proposed algorithm is
feasible and stable to solve the ascent trajectory optimization
problem. Therefore, the method is potential to be imple-
mented online.

The future work of the paper will be transplanting the
proposed method to the real-platform, including improving
the model structural parameters, enhancing the feasibility and
stability further. In addition, the proposed method will also
be extended to solve other trajectory optimization problems,
such as the reentry trajectory optimization and trajectory
optimiza-tion of multi-vehicles.

APPENDIX
This section provides a detailed proof of the Proposition by
Karush-Kuhn-Tucker condition and Pontryagin’s minimum
principle. Generally, the Hamiltonian and Lagrange functions

of the ascent trajectory optimization problem P2 are Eq.(A1)
and (A2) respectively.

H

= λv

[
P
mg0
−
rEρv2Sref

2m

(
Ĉ0
D+Ĉ

α
Du1 + Ĉ

α2

D u2
)
− sin θ

]

+λθ

[
P

mg0v
u1 +

rEρvSref u3
2m

(
Ĉ0
L + Ĉ

α
L u1 + Ĉ

α2

L u2
)

−
cos θ
v

]
+λσ

rEρvSref u4
2m cos θ

(
Ĉ0
L + Ĉ

α
L u1 + Ĉ

α2

L u2
)

+λxv cos θ cos σ
+λyv sin θ + λzv cos θ sin σ (A1)

L

= H + λ1
(
u−2 − u2

)
+ λ2

(
u2 − u

+

2

)
+ λ3

(
u21 − u2

)
+λ4

(
u23 + u

2
4 − 1

)
(A2)

where λx , λy, λz, λv, λθ , λσ are the costate variables for the
states, and λ1, λ2, λ3, λ4 are the Lagrange multipliers for the
inequality constraints in Eq.(13) and(16).

λxf = 0, λyf = 0, λzf = 0, λvf = −1, λθ f = 0, λσ f = 0

(A3)

The stationary conditions (or KKT conditions) are as
follows.
∂L
∂u1
=
∂H
∂u1
+ 2λ1u1

= −λv
rEρv2Sref Ĉ0

D

2m
+ λθ

(
P

mg0v
+
rEρvSref ĈαL

2m
u3

)

+λσ
rEρvSref ĈαL
2m cos θ

u4 + 2λ3u1 = 0 (A4)

∂L
∂u2
=
∂H
∂u2
− λ1 + λ2 − λ3

= −λv
rEρv2Sref Ĉα

2

D

2m
+ λθ

rEρvSref Ĉα
2

L

2m
u3

+λσ
rEρvSref ĈαL
2m cos θ

u4 − λ1 + λ2 − λ3 = 0 (A5)

∂L
∂u3
=
∂H
∂u3
+ 2λ4u3 = λθ

rEρvSref
2m

(
Ĉ0
L+Ĉ

α
L u1+Ĉ

α2

L u2
)

+2λ4u3 = 0 (A6)
∂L
∂u4
=
∂H
∂u4
+ 2λ4u4 = λσ

rEρvSref
2m cos θ

(
Ĉ0
L+Ĉ

α
L u1+Ĉ

α2

L u2
)

+2λ4u4 = 0 (A7)

The complementary slack conditions are denoted as
Eqs. (A8)∼(A11).

λ1 ≥ 0, λ1
(
u−2 − u2

)
= 0 (A8)

λ2 ≥ 0, λ2
(
u2 − u

+

2

)
= 0 (A9)

λ3 ≥ 0, λ3

(
u21 − u2

)
= 0 (A10)

λ4 ≥ 0, λ4

(
u23 + u

2
4 − 1

)
= 0 (A11)
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The proof is performed through contradiction. Firstly,
it will be proven that u21 ≤ u2 is an active constraint, after
that, u23 + u

2
4 ≤ 1 is proven active during [t0, tf ] too.

A. PROOF OF ACTIVE CONSTRAINT u2
1 ≤ u2

Assume that the condition u21 ≤ u2 is not an active constraint,
i.e., u21 < u2. According to the complementary slack con-
dition Eq.(A10), we have λ3 = 0. Substituting λ3 = 0 into
Eq.(A4), Eq.(A12) can be obtained during [t0, tf ].

−λv
rEρv2Sref Ĉ0

D

2m
+ λθ

(
P

mg0v
+
rEρvSref ĈαL

2m
u3

)

+λσ
rEρvSref ĈαL
2m cos θ

u4 = 0 (A12)

Substituting Eq.(A3) into Eq.(A12), it is easy to know that
λvf = 0 when t = tf , which obviously contradicts the
transversality condition λvf = −1. Therefore, the assumption
u21 < u2 is invalid, and on the contrary, u21 ≤ u2 is an active
constraint.

B. PROOF OF ACTIVE CONSTRAINT u2
3+u2

4 ≤ 1

Assume that u23+u
2
4 ≤ 1 is not an active constraint, i.e., u23+

u24 < 1. According to the complementary slack condition
equation Eq.(A11), we have λ4 = 0. Substituting λ4 = 0
into Eq.(A6) and Eq.(A7), we can get Eq.(A13).

λθ
rEρvSref

2m

(
Ĉ0
L + Ĉ

α
L u1 + Ĉ

α2

L u2
)
= 0

λσ
rEρvSref
2m cos θ

(
Ĉ0
L + Ĉ

α
L u1 + Ĉ

α2

L u2
)
= 0

(A13)

It can be deduced easily from the Eq.(A13) that the only
terms can be zeros are λθ and λσ . Combinedwith the transver-
sality condition λθ f = 0 and λσ f = 0 in Eq.(A3), we can
know that λθ ≡ 0 and λσ ≡ 0. The derivatives of the costate
λθ and λσ which are obtained from the minimum principle
can be expressed as

λ̇θ = −
∂H
∂θ

= λv cos θ − λθ
sin θ
v
− λσ

rEρvSref CL sin θu4
2m cos2 θ

+λxv sin θ cos σ − λyv cos θ + λzv sin θ sin σ = 0

(A14)

λ̇σ = −
∂H
∂σ
= λxv cos θ sin σ − λzv cos θ cos σ = 0

(A15)

Substituting the transversality condition (A3) into
Eq.(A14), the possible condition that Eq.(A14) is satisfied
at t = tf is λvf = 0 or cosθf = 0. Because the condition
cosθf = 0 corresponds to a special trajectory, the only con-
dition for Eq.(A14) is λvf = 0, which obviously contradicts
the transversality condition λvf = −1. So, the assumption
u23 + u

2
4 < 1 is invalid, and on the contrary, u23 + u

2
4 ≤ 1 is an

active constraint.
In conclusion, u21 ≤ u2 and u23 + u24 ≤ 1 are active

constraints, therefore the relaxation technique is without loss.
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