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ABSTRACT For more than a decade, ‘‘big data’’ has been an industry and academia buzz phrase. Over
this time, many companies adopted Apache Hadoop and Spark frameworks for their massive data storage
and analysis efforts, using powerful, energy-hungry, general-purpose server as their big data processing
platforms. But not all industry or academic fields want, or even need, such large systems. Moreover,
capital costs aside, power consumption has also become a primary data center concern. Consequently,
lower-cost, lower-power microservers have emerged as viable alternatives in many settings. Now, the latest
generation Raspberry Pi (RPi), model 4B, exhibits significant computational performance improvements
over its predecessors, and is presently considered a sufficiently powerful single board computer (SBC)
to run many mainstream operating systems and accommodate heavy workloads. This paper reexamines
SBC cluster big data processing possibilities by integrating the most powerful (presently) RPi model–the
RPi 4B with 4 Gigabytes (GB) main memory. We examine external storage’s performance impact on such
an SBC cluster’s big data processing performance by employing three different external storage solutions
with measurably distinct performance characteristics. Moreover, we discuss challenges we encountered
and identify further SBC cluster performance optimizations. We perform several representative big data
application benchmarks and measure various key performance metrics such as execution time, power
consumption, throughput, performance-per-dollars, etc. Our extensive experiments and comprehensive
studies conclude this current, fourth-generation RPi has evolved to become the first generation to effectively
run massive (i.e., more than 100GB) workloads in big data processing applications.

INDEX TERMS Raspberry Pi, big data, Hadoop, Spark, UFS, SBC, single board computer, cluster.

I. INTRODUCTION
Widespread high-speed Internet has exacerbated data pro-
duction, driving efficient big data processing platforms in
a ‘‘big data era’’. For the last decade, the big data has
been a buzzword and various big data technology advances
have made a crucial impact on our daily life as well as
numerous industries [1]. Both the Apache Hadoop and Spark
platforms provide the foundation for this big data revolution.
Many companies employed Hadoop and Spark for storing
and analyzing their big data. Thus, Hadoop and Spark
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have undoubtedly become representative hallmarks of big
data [2], [3]. Industries have built powerful servers and
clusters to best exploit these big data software platforms
and they have been industries’ general-purpose big data
processing or analysis workhorses (Figure 1). However,
because of their high cost and high power consumption, not
all industries and academic fields need or can afford such
powerful servers.

Today, server architecture is transitioning from general-
purpose rack servers to purpose-built servers such as blade
servers and microservers [4]. A principal goal of these
purpose-built servers is to reduce power and space require-
ments. Particularly, microservers have been in the spotlight
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FIGURE 1. A general-purpose rack server architecture for big data
processing (Hadoop cluster example).

since 2010s. Microservers are server class computers based
on a system on a chip (SoC) with the goal of integrating
all server motherboard functions onto the SoC except
main memories and power circuits. Multiple microservers
generally can be built together in a small package to
construct dense data centers [4]. Thus, they typically had
denser architectures than blade servers and adopted ultra-low-
powered processors. They tried re-balancing computing and
performance to achieve extreme energy conversation, space,
and cost efficiencies [4].

A single board computer (SBC) is a complete computer
built on a single circuit board. It has a microprocessor, mem-
ory, general-purpose I/O ports (GPIO), and other features
for processing [3]. An SBCs’ reduced power consumption
and lower cost enable them to bridge the gap between
controller boards and personal computers (PCs). That is, both
characteristics enable SBCs to address situations where PCs
are inappropriate, but where controller boards cannot meet
processing requirements [5]. However, though one SBC’s
processing power may not be powerful enough to effectively
run heavy big data processing or scientific computing
applications, it is possible to link multiple SBCs together to
build low-power, low-cost small clusters.

The advent of the Raspberry Pi (RPi) has significantly
changed the SBC market since 2012. Even though similar
SBCs (e.g., Gumstix and BeagleBone) had existed since
2003, RPi now dominates the SBC market and has become
the third most popular personal computer to date, following
the Apple Macintosh and the Windows PC [1], [5]. Early
RPi-based clusters were mostly built to support educational
challenges or practical use cases where traditional general-
purpose server-based clusters would be inappropriate, such
as hands-on educational and learning experiences [23]–[25].
As RPi’s computing power, including CPU and RAM,
evolved, some researchers have examined RPi clusters
for more compute-intensive applications such as big data
processing, micro data center, and edge computing [5], [6].
However, their workloads were typically not realistic for big
data processing (for instance, mostly hundreds ofMegabytes)
because previous generation RPis were not powerful enough
to accommodate ‘real’ big data (that is, more than hundreds
of Gigabytes to Terabytes).

Compared to the previous generations, the latest generation
RPi (i.e., RPi 4B) exhibits significantly improved compu-
tational capabilities by adopting a fully-redesigned quad-
core CPU, up to 4GB RAM,1 USB 3.0 ports, dual 4K
video support, 1Gb Ethernet, etc. Consequently, more users
started to employ this RPi 4B as a personal home computer
alternative.

In this paper, we explore the challenges and possibilities
of the latest generation RPi for cluster-based big data
processing. We build a cluster of 5 RPi 4B nodes with
a separate master node (6 nodes total) and install Apache
Hadoop and Spark (please refer to table 5). We then perform
several representative benchmarks (for example, Wordcount,
TeraGen/TeraSort, TestDFSIO, and Pi computation) to eval-
uate single RPi performance as well as cluster performance.
Moreover, we compare the RPi 4B cluster to both an
RPi 3B cluster and a desktop PC for a more objective
performance evaluation. Furthermore, we study storage
media performance impact on RPi cluster-based big data
processing platforms by adopting three distinctly different
storagemedia with different performance characteristics (i.e.,
typical, fast, fastest storage media available for RPi 4B).
To the best of our knowledge, this is the first extensive study
that not only addresses storage performance impact on RPi
cluster performance, but also comprehensively explores the
big data processing possibilities using the most powerful,
latest generation RPi-based processing cluster.

The main contributions of this paper are as follows:

A. STORAGE PERFORMANCE IMPACT STUDY
Most RPi research studies do not consider storage per-
formance and only employ a default media card (i.e.,
microSD cards) with typical performance. However, this
paper explores how much cluster performance improves for
big data processing according to different storage media
with distinctly different performance characteristics. To this
end, we adopt a fast storage media card, a Universal Flash
Storage (UFS) card, that exhibits up to 500MB/s read perfor-
mance versus a typical microSD card (up to 95MB/s read)
and the fastest microSD card (up to 170MB/s read) available
to date. We evaluate their big data processing performance
improvement impacts on these clusters (Section IV).

1) SUMMARIES
Adopting faster storage media is a significantly effective way
to improve cluster performance, achieving 1.3× to 7.07× big
data processing performance improvements.

B. EXTENSIVE PERFORMANCE EVALUATION
The RPi 4B is the most powerful RPi as of now. Its com-
putational capabilities have been unprecedentedly improved.
To explore big data processing possibilities on an RPi
cluster using this processor, we perform popular Hadoop and
Spark benchmarks including Wordcount, TeraGen/TeraSort,

1An 8GB model has been recently introduced on the market.

142552 VOLUME 9, 2021



E. Lee et al.: Big Data Processing on SBC Clusters: Exploring Challenges and Possibilities

TestDFSIO and Pi computation. In addition, we evaluate
diverse RPi performance metrics by measuring CPU, net-
work, storage performance, and power consumption. Further,
comparing a latest generation RPi cluster performance to
both a previous generation RPi cluster and a desktop PC
performance informs a useful intuition for an RPi 4B’s
objective performance (Section IV and V).

1) SUMMARIES
The RPi 4B cluster exhibited, on average, 6.65× to 9.56×
improved performance than the RPi 3B cluster particularly
under the Spark platform and a typical microSD card.We also
observed the 5 node RPi 4B cluster exhibited close big
data processing performance (on average 1.45×) to one
desktop PC.

C. CHALLENGES AND SUGGESTIONS
An RPi cluster does not have abundant computing resources.
Thus, big data processing on the RPi 4B cluster intro-
duces unexpected challenges (e.g., CPU throttling due to
overheating). We also provide further suggestions for RPi
cluster big data processing that conserve resources (e.g.,
Cyclic Redundant Check (CRC) disablement and master
node separation). We discuss RPi performance in terms of
performance-per-watt and performance-per-dollar. Finally,
we conclude our discussion section by verifying ‘real’
big data processing possibilities using the latest generation
RPi-based cluster with 1TB data (Section VI).

1) SUMMARIES
We observed the RPi 4B’s CPU throttling mechanism (due to
inadequate cooling) severely reduced performance by up to
1.97×. Disabling CRC saved 7% CPU capacity. Master node
separation achieved 29% I/O traffic reduction and 42.2%
memory saving. Unlike previous generations, the RPi 4B
finally competes with a desktop PC for big data processing
in terms of performance-per-watt and per-dollar. Further,
we concluded RPi 4B is the first generation RPi to handle
‘real’ big data successfully and efficiently (i.e., with low-cost
and low-power).

The remainder of this paper is organized as follows.
Section II gives a Raspberry Pi overview and describes vari-
ous storage media for Raspberry Pi. In addition, it presents
related and previous research studies. Section III explains
our Raspberry Pi cluster architecture and configurations. Sec-
tions IV and V provide a variety of experimental results and
analyses. Section VI discusses diverse challenging problems
and suggestions. Section VII concludes the discussion.

II. BACKGROUND AND RELATED WORK
A. RASPBERRY PI
Raspberry Pi is a small single board computer (SBC) family
developed by the Raspberry Pi (RPi) Foundation since
2012. Originally it was intended to promote teaching basic
computer science in schools by inspiring students to engage
in electronics and programming [3]. The Raspberry Pi’s
popularity has far exceeded the Foundation’s expectation and

TABLE 1. Specification comparison for the Raspberry Pi model 3B and
model 4B [8]. ‘‘Power’’ stands for power consumption.

it has become the third most popular personal computer,
following the Apple Macintosh and the Windows PC. It is
now widely adopted for various applications such as home
automation, manufacturing, robotics, and mobile devices [1].

The Raspberry Pi 4 Model B (4B) was released in
June 2019 and exhibits a tremendous performance improve-
ment over the previous model due to its full-chip redesign,
the first in Raspberry Pi history: more powerful processing
cores, the first graphics processor upgrade, vastly improved
memory and external hardware bandwidth, including the first
UBS 3.0 ports, full-speed Gigabit Ethernet, micro HDMI
ports for 4K displays, up to 4GB RAM, etc. [21], [22]

Raspberry Pi is a very low-cost and low-energy consuming
computing platform [19], [20]. The major historic drawback
was the computing performance. Table 1 compares hardware
specifications of both the Raspberry Pi 3B and 4B.

B. STORAGE MEDIA FOR RASPBERRY PI
This section describes various storage media types for
Raspberry Pi. AmicroSD (SecureDigital) card is the standard
Raspberry Pi storage media and uses an integrated microSD
card slot. A Universal Flash Storage (UFS) card provides
for highest Raspberry Pi 4B storage performance through its
USB 3.0 port with a UFS adapter.

1) microSD CARD
The Raspberry Pi has one microSD (Secure Digital) card
slot for loading an operating system and data storage. This
microSD card is the most widely used Raspberry Pi storage
media. The microSD card is a removable, miniaturized SD
flash memory card, developed primarily for mobile devices
such as smart phones that need a smaller, lighter form factor
than the original SD card form factor.

There are four capacity types of SD cards and three
different form factors (table 2). The four capacity types
include: the original Standard-Capacity (SDSC), a High-
Capacity (SDHC), an eXtended-Capacity (SDXC), and an
Ultra-Capacity (SDUC) [16]. The two form factors are the
original size (SD) and the micro size (microSD). Electrically

VOLUME 9, 2021 142553



E. Lee et al.: Big Data Processing on SBC Clusters: Exploring Challenges and Possibilities

TABLE 2. SD card capacity choices. An SD card with a higher capacity
class is not interoperable with host devices with a lower capacity class.

TABLE 3. SD card speed classes. Speed class symbols with a number
indicate minimum writing speed (MB/s).

passive adapters allow smaller cards to fit and operate in
devices supporting a larger card.

In addition, SD cards have three speed ratings: an original
speed class, a UHS (Ultra High Speed) speed class, and a
video speed class according to a minimum sustained write
speed (please refer to table 3) [16]. For example, the SD
card with UHS speed class U1 and U3 support a minimum
write performance of 10MB/s and 30MB/s respectively.
We employ both U1 and U3 class microSD cards for our
evaluations.

2) UNIVERSAL FLASH STORAGE (UFS) CARD
Universal Flash Storage (UFS) is a Flash storage specification
for mobile systems requiring low power consumption and
high data transfer speed, such as mobile phones, consumer
electronic devices, and recently automotive systems [17].
It also uses NAND Flash memory. UFS was originally
developed to replace SD cards and considered an eMMC
(embedded Multi-Media Card) successor that has been
predominantly adopted for built-in storage in most Android
mobile OS-based smart phones. Unlike eMMC that supports
104MB/s (eMMC v4.4) and up to 400MB/s (eMMC v5.0),
UFS cards bring up to 600MB/s (UFS card v1.0) and 1.2GB/s
(UFS card v2.0) (please refer to table 4). Unlike SD or
eMMC, UFS adopted latest technologies such as command
queuing, parallel and out-of-order execution, advanced
asynchronous I/O protocol, etc. [17]. To study storage
performance impacts on big data processing performance
improvement on the clusters, we adopt this UFS card in
addition to microSD cards.

C. RELATED WORK
Abrahamsson and Helmer implemented a 300 node Rasp-
berry Pi Model B (i.e., the first generation Raspberry Pi)

TABLE 4. UFS card version comparison. Here, BW stands for bandwidth.

cluster [25] to explore the challenges of building such a large
scale Raspberry Pi cluster. They described each procedure of
hardware and software setup and configuration. Although this
work did not provide any performance numbers, it tackled
several challenges such as supplying power, connecting
and housing a large scale RPi cluster, and installing and
configuring system software.

The Glasgow Raspberry Pi Cloud (PiCloud) Raspberry Pi
clusters, a miniature cloud data center, provided a low-cost
cloud computing testbed [23] to overcome limited software
simulation. PiCloud consists of 56 Raspberry Pi model B
devices which are divided into 4 racks with 14 Raspberry
Pis each. This work presented the design and implementation
of the PiCloud to emulate a cloud data center, from its
overall architecture to the software stack on each individual
machine. However, they did not provide detailed performance
evaluations.

Kaewkasi and Srisuruk built a Hadoop cluster
of 22 Cubieboards each of which is an ARM Cortex-
A8 processor-based single board computer (SBC) [26].
They conducted Apache Spark over Hadoop Distributed
File System (HDFS) experiments on the Hadoop cluster.
They claimed the cluster could process a 34GB Wikipedia
article file in acceptable time, while generally consumed the
power of 0.061-0.322kWh for all benchmarks. The authors
concluded cluster processing bottlenecks resulted from both
I/O and CPU’s processing power deficiencies.

Baun built a cluster of 8 Raspberry Pi Model B nodes
for academic purposes such as student projects or scientific
projects because typical clusters consisting of servers,
workstations or personal computers as nodes may not
be appropriate for academic projects [27]. He conducted
performance experiments including computation time, I/O,
and network throughput, and concluded the SBC cluster’s
performance and energy-efficiency could not compete with
higher-value systems. However, the RPi clusters were still
useful for academic purposes and research projects due to
lower purchase costs and operating costs.

Morabito investigated Docker container virtualization
performance on a low-power SBC cluster to provide insights
for optimally using SBCs during virtualized instance exe-
cution [28]. He quantified the overhead introduced by the
virtualization layer under compute-intensive and networking-
intensive workloads by deploying Docker-based containers
on the systems. The author concluded employing container
virtualization technologies on SBCs produced an almost
negligible impact in terms of performance when compared
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to native (non-virtualized) execution [28]. Noronha et al. con-
ducted a similar study [29]. They deployed Docker containers
on various embedded microprocessor systems including the
Raspberry Pi and made an extensive experiments on CPU,
memory, and network performance. They also came to a
similar conclusion to the aforementioned Morabito’s work.

Johnston et al. investigated diverse SBC clusters including
the Raspberry Pi and explored their use cases [5]. They
outlined the broad domains where SBC clusters might be
deployed including education, edge compute, expendable
compute, resource constrained compute, portable clusters,
and next-generation data centers. They claimed SBCs could
run mainstream operating systems and workloads. Further-
more, SBC clusters became a game changer in pushing
application logic towards the network edge. However, this
work did not provide performance evaluations.

Recently, Qureshi and Koubaa addressed the energy effi-
ciency of a small scale data center by building two different
ARM-based clusters (RPi 2B and Odroid XU-4 platforms)
of 20 SBC nodes and one regular cluster of 4 desktop
PCs [3]. They deployed Apache Hadoop on the clusters
and performed extensive testing to analyze the clusters’
performance by adopting popular benchmarks measuring
task execution time, memory and storage utilization, network
throughput, and energy consumption. Their studies showed,
for lower workloads, the Odriod XU-4 cluster outperformed
other clusters in terms of cost-effectiveness and power
efficiency. For heavy workloads, it consumed 2.41× more
energy than the PC cluster. They claimed the RPi cluster
exhibited poor performance results compared to the other
clusters for all performance benchmarks. However, this is
mainly because they employed a very old generation RPi.

We found diverse research studies on SBC clusters.
However, no research studies specifically investigated storage
media performance impacts on cluster performance for
big data processing or adopted the Raspberry Pi 4B–the
most recent and the most significantly upgraded generation
Raspberry Pi model.

III. CLUSTER ARCHITECTURE AND CONFIGURATIONS
Figure 2 exhibits the overall Raspberry Pi (RPi) cluster
architecture for our big data processing platform. Our single
board computer (SBC) cluster is composed of five Raspberry
Pi Model 4B (RPi 4B) and one separate master node
(for cluster configurations, please refer to table 5). Each
node (the five RPis and the master node) connects to a
Gigabit Ethernet (GbE) switch via each node’s RJ45 Gigabit
Ethernet (GbE) port that fully supports a native Gigabit
network connection.

To provide readers with meaningful hints, we also built
another cluster (i.e., a 5 node RPi 3 model B cluster)
and compared its performance with our RPi 4B cluster’s
performance to identify performance improvement. Please
note that since the RPi 3B does not support USB 3.0 ports
and limits its maximum SDIO (Secure Digital Input Output)
bandwidth to 25MB/s, it is inappropriate to evaluate various

FIGURE 2. Our latest generation Raspberry Pi 4B cluster architecture. The
Raspberry Pi 3B cluster configuration is identical.

TABLE 5. Cluster configurations. Note: in addition to the RPi 4B cluster,
we built a 5 RPi 3B node cluster for reference and evaluation purposes.

storage performance impact on the RPi 3B cluster by
adopting higher-performance storage media cards such as
the UFS card (i.e., Samsung UFS card) and fast microSD
card (i.e., Sandisk Extreme Pro). Thus, we could only use
a typical microSD card (32GB) as storage media for both
clusters and we necessarily omitted both storage media cards
for this evaluation. Consequently, for fair evaluation, we built
both RPi 4B and 3B clusters with a typical microSD card,
and performed Hadoop and Spark TeraSort benchmarks to
measure average execution time. Our main research goal lies
in exploring big data processing possibilities on the most
powerful RPi-based cluster to date, not to provide a one-to-
one performance comparison between an RPi 3B cluster and
an RPi 4B cluster.

Due to stability and compatibility problems, we installed
the Ubuntu 18.04 LTS (Long Term Support) 64-bit OS
(Operating System) on each microSD card instead of the
Raspberry Pi OS (previously called ‘‘Raspbian’’) that is an
officially supported OS for RPi. At the time we built our RPi
4B cluster, Raspberry Pi OS for RPi 4B had just been released
for experimentation. However, extensive testing indicated it
was not stable and had Apache-based open source software
compatibility problems at that time. In addition, Ubuntu is
one of the third-party OSes the RPi foundation officially
suggested a Raspberry Pi OS alternative. To conserve RPi
computing resources, we adopted Ubuntu 18.04 LTS without
a GUI (Graphic User Interface) such as GNOME desktop.
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TABLE 6. Features of the three storage media with distinctly different
performance characteristics employed for our experiments. Performance
numbers are excerpted from their product specifications.

For big data processing and analysis, we installed Apache
Hadoop version 3.1.3 and Spark version 2.3.0.

Table 6 presents three representative RPi storage media
cards and their specifications. Samsung EVO microSD card
(referred to as microSD1) is one of the best selling microSD
cards in the market [7]. Thus, we employed it as a typical
(i.e., widely used) microSD card for our Raspberry Pi
cluster nodes. We adopted the Sandisk Extreme Pro microSD
card (referred to as microSD2) as a faster storage media
for our Raspberry Pi 4B cluster. This Sandisk Extreme
Pro microSD card was specifically selected as one of the
best microSD card for Raspberry Pi among 10 different
brand microSD cards because it exhibits all-around excellent
performance [18]. It performed 2× to 3× faster than the
Samsung Evo microSD card. As a fastest storage media card
for our Raspberry Pi cluster, we employed SamsungUFS card
because it dominates all microSD cards in every performance
metric. Please note this UFS card form factor fits standard
microSD card slots, but its interface is not compatible with
the microSD interface. Therefore, we installed it through
the RPi USB 3.0 port with a UFS adapter since the USB
3.0 interface has sufficient bandwidth (5Gbps) to support
the UFS card’s bandwidth (500MB/s). Unlike previous
Raspberry Pi generations, the Raspberry Pi 4B supports USB
3.0 ports. Thus, we can utilize the high speed USB 3.0 port
to provide a faster storage media in the Raspberry Pi 4B
cluster.

For storage performance impact studies, we employed each
identical storage media cards to all RPi 4B nodes in the
cluster and set up identical Hadoop and Spark platforms.
Then, we performed various representative benchmarks to
measure average execution time (seconds), I/O rate (Mb/s),
and throughput (Mb/s).

IV. INDIVIDUAL RASPBERRY PI PERFORMANCE
Individual RPi node performance directly affects overall
cluster performance. Thus, we first evaluate the compu-
tational capabilities of the latest RPi. For comparison,
the previous generation (RPi 3B) is also evaluated to verify
RPi 4B’s performance improvements. This section evaluates
each Raspberry Pi (RPi)’s performance in CPU processing,
network, storage performance, and energy consumption.

TABLE 7. Power consumption of the RPi 3B and 4B in idle and stress
modes.

TABLE 8. Average CPU performance (events per second) for each RPi
with n threads.

A. POWER CONSUMPTION
To measure individual RPi (i.e., 4B and 3B) power con-
sumption, we used a Bplug S01 power meter which provides
both real-time and accumulated power consumption in terms
of watts. For precise measurement, nothing was plugged
into the USB ports. Two power consumption modes were
measured: an idle mode and a stress mode. In an idle mode,
the RPi node remained without any application running for
5 hours. In a stress mode, we assigned a 400% CPU load
(stress --cpu 4) for 1 hour. We then measured the RPi 4B’s
power consumption. The RPi 3B’s power consumption was
similarly evaluated and added for reference.

As table 7 indicates, an RPi 4B consumes more power
(1.9× in idle mode and 1.7× in stress mode) than the
previous generation RPi 3B. This is because RPi 4B’s
advanced computing capabilities requires more power. Thus,
considering the RPi 4B as a desktop PC alternative may
not be the best choice for battery-powered and portable
applications. However, plugged into a wall and sitting on the
desk as a cluster node for big data processing, RPi 4B can
exploit its more powerful computing capabilities at the cost
of portability [9]. Section V describes this tradeoff in more
detail.

B. CPU PERFORMANCE
For CPU performance measurement, we adopted sysbench
which has been in the MySQL ecosystem for a long time.
sysbench was originally developed to run synthetic MySQL
benchmarks and the hardware (CPU, RAM, and I/O) it
runs on. Now it is widely used to perform Linux file I/O,
CPU, and memory performance tests. We ran sysbench
(Version 1.0.11) CPU tests for 1, 2, 4, 8, and 16 threads
(e.g., sysbench --num-threads = 4 --test = cpu --
cpu-max-prime = 2000 run)
Table 8 presents average CPU performance for each model

RPi and demonstrates that the RPi 4B’s CPU performance
is approximately 2.49× better than the RPi 3B’s CPU
performance. Based on [21], RPi 3B’s CPU performance
improved approximately 1.5× compared to the RPi 2B. Con-
sidering this, our CPU performance measurement indicates
the RPi 4B’s CPU performance unprecedentedly improved
due to its fully-redesigned CPU architecture. sysbench CPU
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TABLE 9. Average on-board network (both Ethernet and WiFi)
performance of RPi 3B and 4B.

performance of both RPi 4B and 3B keeps increasing with the
number of threads. That is, CPU performance with 2 threads
shows 2× faster than the one with 1 thread. Similarly, 4-
thread performance doubles 2-thread performance. However,
we did not observe notable performance gain with 8 and
16 threads because both RPis have CPUs with 4 physical
cores without hyperthreading.

C. NETWORK PERFORMANCE
RPi 4B is the first generation that natively supports a 1Gb
Ethernet network with a maximum theoretical throughput
of 1,000Mbps. In contrast, the RPi 3B uses a 100Mbps
Ethernet network. In the real world, utilizations vary, tending
to reach about 90–95% of the theoretical maximum.

Network performance is one of the most straightforward
aspects to benchmark. However, it also has a caveat-laden
aspect. For example, file upload/download performance or
network file copy performance is dependent on other RPi
components such as memory I/O, bandwidth, disk I/O, USB
bus speed, etc [9]. Therefore, we focus on raw network
throughput.
iperf is an active measurements tool for a maximum

achievable raw network throughput. We used iperf to test
on-board raw network (e.g., iperf -c 10.0.10.1 -i1). Table 9
presents the average network throughput after several runs.
Please note we disabled WiFi power management (e.g., sudo
iwconfig wlan0 power off ) to improve WiFi connection sta-
bility. Otherwise, many packets can get dropped, corrupting
network throughput measurements [9].

As indicated in table 9, with the help of the RPi 4B’s
native gigabit Ethernet support, the RPi 4B exhibits almost
10× higher on-board LAN performance than the RPi 3B.
For on-board WiFi performance, the RPi 4B shows a 2.3×
performance improvement over the RPi 3B due to the RPi
4B’s new WiFi chipset.

D. STORAGE MEDIA PERFORMANCE
In general, there is an order-of-magnitude performance
difference between the inexpensive storage media cards
and the slightly more expensive ones especially for
small (e.g., 4KB) random I/O performance [10]. Thus,
we employed three different storage media cards (please
refer to table 6) and performed benchmarks to evaluate their
performance.

For objective evaluation, we employed three widely used
storage performance benchmark tools: hdparm, dd, and
iozone. hdparm gives basic raw throughput statistics for
buffered disk reads (e.g., sudo hdparm -t /dev/mmcblk0). dd

TABLE 10. Storage media card performance on a desktop, RPi 4B, and
RPi 3B (MB/s). 4K read and 4K write correspond to 4K random read and
4K random write performance respectively.

simply copies data from one place to another. Please note
the count parameter value must be sufficiently large to avoid
file system cache effects (e.g., sudo dd if = /dev/zero of =
/drive/output bs = 8k count = 50k conv = fsync; sudo rm -f
/drive/output).
iozone is a popular file system benchmark tool that

provides a broad overview of read and write performance
with various block sizes and situations. We adopted this
especially for its small (typically 4KB) block random I/O
performance test. This 4KB random I/O performance has a
critical performance impact on many big data or database
operations such as logging, bulk data loading, writing to
RDBMS (Relational DatabaseManagement System), etc [10]
(e.g., iozone -e -I -a -s 100M -r 4k -r 512k -r 16M -i 0 -i 1 -i
2 [-f /path/to/file]).

As indicated in table 10, even identical storage media
cards exhibit very different performance according to the
host node. For reference, we added a desktop environment
(Intel i5-8400 CPU @2.8GHz, 8GB RAM) in addition to the
exiting both RPi 4B and 3B comparison. All media cards
show dominant performance on the desktop environment
over the other two RPi environments. Particularly, a UFS
card outperforms other microSD cards in all performance
aspects. Please note UFS card performance on the RPi 3B is
unreasonably lower than the RPi 4B because RPi 3B does not
support USB 3.0 ports. In general, each storage media card on
the RPi 4B shows approximately 2× better performance than
that on RPi 3B.

Interestingly, unlike the product specifications (up to
95MB/s vs. 170MB/s in table 6) for both the Samsung EVO
and the Sandisk Extreme Pro, read performance of bothmedia
cards did not show notable difference (i.e., they were nearly
identical). That is, the Sandisk Extreme Pro microSD card
never reached its maximum read performance (170MB/s), not
even 100MB/s. For a more objective evaluation, we adopted
other widely-known benchmarks such as IOmeter,2 Crys-
talDiskMark,3 and ATTO disk benchmark,4 in addition to
hdparm, dd, and iozone. However, no benchmark program
exhibited a meaningful read performance difference between
the two cards.

2Iometer, http://www.iometer.org/.
3CrystalDiskMark, https://crystalmark.info/en/software/crystaldiskmark/.
4ATTO technologies, https://www.atto.com/disk-benchmark/.
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TABLE 11. Properties in Hadoop configurations.

V. RASPBERRY PI CLUSTER PERFORMANCE FOR BIG
DATA PROCESSING
Table 11 presents major Hadoop configuration properties for
our Hadoop and Spark cluster performance evaluation. Please
note that, for ‘large’ data (500GB and 1TB) test on our RPi 4B
cluster, we changed an HDFS replication factor from 3 to 1 to
get enough working space to run benchmarks (please refer to
Section VI).

A. WORDCOUNT
‘‘Wordcount’’ is one of the most popular and representative
micro-benchmarks to evaluate a MapReduce job. It counts
the number of separate word occurrences from input data
(i.e., text or a sequence file). That is, it splits input data into
each word (in terms of key-value pair) via a Map function.
The Map function then generates intermediate data which
correspond to Reduce function’s input data. The Reduce
function aggregates each map’s intermediate data to final
word count data [11].

For objective evaluation, we adopted public data (2006.csv,
678MB) from the American Statistical Association (ASA)
website which consist of flight arrival and departure details
for all commercial flights within the USA from Octo-
ber 1987 to April 2008.5 We prepared four large input files
(i.e., 500MB, 1GB, 2GB, and 4GB) based on the public data.
Please note we did not manipulate any data except simple file
cropping or appending to meet data sizes. On our Raspberry
Pi (RPi) 4B cluster, we ran the Wordcount benchmark five
times on both popular big data processing/analysis platforms
(i.e., Apache Hadoop and Spark) with different storage media
(i.e., typical microSD, faster microSD, and the UFS card).
The number of cluster nodes varies from one to five.

Figure 3 presents averageWordcount benchmark execution
time with 2GB data on our RPi 4B cluster for each
different number of nodes. As the number of nodes increases,
Wordcount execution time decreases for both Hadoop and

5American Statistical Association, Data Expo 2009 - Airline on-time
performance

FIGURE 3. Average wordcount benchmark execution time with 2GB data
on the Raspberry Pi 4B cluster.

TABLE 12. Hadoop wordcount benchmark results (seconds).

TABLE 13. Spark wordcount benchmark results (seconds).

Spark. In Hadoop Wordcount, a single node using UFS
and microSD2 is 1.3× and 1.2× faster than a single
node with microSD1 respectively (Figure 3 (a)). Similarly,
for Spark Wordcount on a single node, both UFS and
microSD2 show 1.4× and 1.2× faster execution time than
microSD1 respectively (Figure 3 (b)).

Table 12 presents all experimental results of our Hadoop
Wordcount benchmark with diverse configurations. As we
increase the number of RPi 4B nodes and adopt faster
storage media, it exhibits noticeably improved performance.
In addition, as the data size increases from 0.5GB to
4GB, total execution time also increases almost linearly.
Please note the table omits the experimental results of a
microSD1 with 4GB data because the RPi 4B cluster with
these configurations did not work properly.

B. TeraSort
Originally, TeraSort benchmark goal was to sort 1TB data
as quickly as possible. TeraSort was named after this 1TB
data sorting. The TeraSort benchmark combines testing the
HDFS (Hadoop Distributed File System) and MapReduce
layers of a Hadoop cluster. Thus, it is often used to compare
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FIGURE 4. Average execution time of TeraGen benchmark with 2GB data
on Raspberry Pi 4B cluster.

FIGURE 5. Average execution time of TeraSort benchmark with 2GB data
on Raspberry Pi 4B cluster.

the results of one cluster with another. It measures file
distribution and processing capabilities (i.e., map and reduce
functions), and consists of 3 components: TeraGen, TeraSort,
and TeraValidate [12], [13]. TeraGen generates random
data. TeraSort sorts these random data using a MapReduce
processing framework. Finally, TeraValidate ensures the
TeraSort output is correct (i.e., data were sorted correctly).
During the map phase, TeraSort reads input files and sorts
them. Additionally, it writes HDFS output files during the
reduce phase. We performed both TeraGen and TeraSort
benchmarks on our RPi cluster with various data sizes
(500MB, 1GB, 2GB, and 4GB) by varying the node numbers
from one to five.

Unlike Wordcount, that typically generates final data of
a reduced size, TeraSort does not change its data size.
It simply rearranges (i.e., sorts) the data sequence in
ascending or descending order. Therefore, both read and
write performances of storage media cards have a significant
impact on overall performance (i.e., execution time).

As shown in figure 5 (a), the performance difference
between microSD1 (i.e., typical SD) and UFS significantly
increases by up to 1.75×. Compared to the Wordcount
benchmark, TeraSort noticeably differs in performance, par-
ticularly according to storage media card write performance.
Based on our performance evaluation of storage media cards,
UFS exhibits 7.88× and 6.15× improved write performance
compared to a microSD1 on the desktop and RPi 4B
node respectively (please refer to table 10). Spark TeraSort
enlarges the performance gap between microSD1 and UFS
by an average of 1.96×. UFS also exhibits on average 1.64×
better performance than microSD2 (Figure 5 (b)).

C. TestDFSIO READ AND WRITE
The TestDFSIO benchmark is an I/O (i.e., read and write)
test to stress Hadoop Distributed File System (HDFS) on

TABLE 14. Hadoop TeraSort benchmark results (seconds).

TABLE 15. Spark TeraSort benchmark results (seconds).

the clusters [14]. It measures cluster I/O speed and is
therefore helpful to explore cluster performance bottlenecks.
TestDFSIO creates one mapper for one file (i.e., one map task
per file). Since a TestDFSIO read test does not generate its
own input test files, first we should run a write test (as input
data for the subsequent read test) and a read test then should
follow it by subsequently reading these test file. Meanwhile,
the benchmark measures average I/O (Mb/s), throughput
(Mb/s) and execution time (seconds) [3].

We performed this benchmark with 10 files of sizes 1GB,
5GB, 10GB, and 20GB on the RPi 4B cluster of 5 nodes.
We also used a value of 3 as an HDFS replication factor.
Both table 16 and 17 respectively present TestDFSIO read
and write benchmark results of Hadoop and Spark.

In the Hadoop DFSIO write benchmark, the UFS card
showed better performance than microSD2 and microSD1 by
an average of 1.87× and 4.37× respectively. On average,
the microSD2 was 2.33× faster than microSD1. Similarly,
in the Spark DFSIO write benchmark, we observed the
UFS card exhibited on average 1.9× and 7.07× better
performance than microSD2 and microSD1 respectively. The
microSD2 showed on average 3.69× better performance than
microSD1.

In the DFSIO read benchmark, we did not observe
notable performance differences between microSD1 and
microSD2 for both Hadoop and Spark. This microSD2 read
performance problem was previously addressed in the
subsection IV-D and this DFSIO read benchmark confirmed
that issue. Undoubtedly, UFS dominated both microSD1 and
microSD2 by an average of 3.2× on Hadoop and 3.7× on
Spark.
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TABLE 16. Hadoop TestDFSIO read and write performance on the Raspberry Pi 4B cluster of 5 nodes. SD1 and SD2 stand for microSD1 and
microSD2 respectively.

TABLE 17. Spark TestDFSIO read and write performance on the Raspberry Pi 4B cluster of 5 nodes. SD1 and SD2 stand for microSD1 and
microSD2 respectively.

Please note, because DFSIO read benchmarks are per-
formed after completing DFSIO write benchmarks, a cache
must be first eliminated for objective read performance evalu-
ation before the DFSID read tests.Without cache elimination,
we observed both microSD1 and microSD2 DFSIO read
performance exhibited performance very similar to UFS,
particularly with small test data (i.e., 1GB). As test data
size increases, their DFSIO read performance (without cache
dropping) decreases because cache effects also decrease.
However, when we initially dropped cache and performed
the DFSIO read benchmarks, each storage media card’s
read performance showed nearly consistent performance,
irrespective of test data size.

D. PI COMPUTATION
Mathematically, Pi is the ratio of the circumference of any
circle to the diameter of that circle. Regardless of the circle’s
size, this ratio is always equal to Pi. The Pi computation
benchmark is a MapReduce program that estimates Pi using
a quasi-Monte Carlo method. Its main goal is to measure
CPU performance by observing a compute-bound CPU. First,
the Monte Carlo method presents a inscribed circle of a
square. It then generates a large number of random points
within the square and counts how many fall in the inner
circle [3]. If we divide the area of the circle by the area of
the square, we get π/4. The same ratio can be applied to
the number of points within the square and the number of
points within the inner circle. Hence, we can use the following
formula to estimate Pi: π ≈ 4× (number of points in the
circle / total number of points).

In the Pi computation benchmark, a mapper generates
random points in a unit square and then counts points inside
and outside of the inner circle of the square. A reducer
accumulates points inside and outside results from the
mappers [3]. The goal of this Pi computation benchmark is

FIGURE 6. Average execution time of Pi computation benchmark on
Raspberry Pi 4B cluster.

TABLE 18. Hadoop Pi benchmark results (seconds). Numbers stand for
the number of nodes on the cluster.

to observe the CPU computation-bound workload of the RPi
cluster because this Pi computation is a heavy CPU-intensive
workload.

For this benchmark, we adopted 100 maps that each
uses 10,000 samples per map. Figure 6 displays average
execution time of the Pi computation benchmark on our
Raspberry Pi 4B cluster. Unlike other benchmark tests,
performance gap among the three different media cards is
ignorable because the Pi computation benchmark is very
CPU-intensive. Consequently, storage performance does not
affect test results. However, as the number of nodes increases,
each completion (i.e., execution) time decreases since it
benefits from more distributed computation.

E. RASPBERRY PI 3B VS. RASPBERRY PI 4B
This subsection determines the Raspberry Pi 4B’s perfor-
mance improvement by comparing it to a Raspberry 3B.
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TABLE 19. Spark Pi benchmark results (seconds). Header numbers
indicate the number of cluster nodes.

FIGURE 7. TeraSort benchmark with 1GB data on Raspberry Pi 3B cluster
vs. 4B cluster.

TABLE 20. Hadoop TeraSort benchmark results (seconds):
RPi 3B vs. RPi 4B.

Since the main goal of our work is not 1:1 performance
comparison between RPi 3B and RPi 4B, we provide one
benchmark result which suggests meaningful hints for their
performance differences.

We performed TeraSort benchmark on both the RPi 4B
cluster and the RPi 3B cluster using various data sizes
(500MB, 1GB, 2GB, and 4GB) and varying the node numbers
from one to five. As subsection V-B mentioned, unlike other
benchmark programs, TeraSort is more appropriate to test
comprehensive computing capabilities.

Figure 7 demonstrates that RPi 4B performance dominates
RPi 3B performance. In theHadoop framework (Figure 7 (a)),
RPi 4B TeraSort shows better performance than RPi 3B by
an average of 3.58× and up to 4.1×. Similarly, in the Spark
framework (Figure 7 (b)), RPi 4B is even faster than RPi 3B
by an average of 6.65× and up to 9.56×. This mainly results
from Spark’s computing model (i.e., in-memory processing).
Apache Spark effectively exploits main memory, so DRAM
capacity significantly affects overall performance. Our RPi
4B has 4GBmain memory. On the other hand, the RPi 3B has
1GB DRAM. Consequently, Spark TeraSort presents a more
pronounced performance difference than Hadoop TeraSort.

F. RASPBERRY PI 4B VS. DESKTOP PC
Subsection V-E identified the substantial improvement of
the RPi 4B’s computational capabilities. The RPi 4B’s per-
formance compared to a desktop PC’ performance suggests
the possibilities of the RPi 4B as a desktop PC alternative
or replacement for big data processing. We performed

TABLE 21. Spark TeraSort benchmark results (seconds): RPi 3B vs. RPi 4B.

FIGURE 8. Performance comparison between Raspberry Pi 4B vs. desktop
PC. Both 1node and 5nodes stand for RPi 4B cluster with 1 node and
5 nodes respectively.

TABLE 22. Performance comparison between RPi 4B and desktop PC
with various benchmarks (seconds).

three representative Hadoop and Spark benchmarks on both
the RPi 4B node and the desktop PC (table 5 presents
both specifications). Figure 8 shows the benchmark results.
We observed the desktop PC respectively exhibited 4.3× and
3.9× better performance than one RPi 4B in Hadoop and
Spark. However, when we added 4 more RPi 4B nodes to
the cluster (i.e., total 5 nodes), the performance gap between
one desktop PC and the 5 node RPi 4B cluster noticeably
decreased to an average 1.4× and 1.5×.

VI. DISCUSSION
The latest generation RPi’s substantially improved compu-
tational capabilities enabled us to re-visit and re-explore the
possibilities of heavy computing-intensive applications on
RPi clusters. Based on our studies, this section discusses
challenges and suggestions for big data processing on
Raspberry Pi (RPi) clusters.

A. CPU THERMAL THROTTLING
The RPi 4B’s new A72 series 64bit CPU consumes
1.7× more power than the previous ARM processor (i.e.,
A53 series 64bit CPU) in the RPi 3B. This increases
requirements for thermal dissipation. When we put the RPi
4B in an official RPi case without a cooling fan, we found a
significant performance drop. This implies the RPi 4B clearly
engaged CPU thermal throttling. On the other hand, when we
opened the case and applied an active cooling with a fan,
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FIGURE 9. Cooling effect: TeraSort benchmark with 2GB data on
Raspberry Pi 4B cluster (without cooling vs. with cooling).

our RPi 4B cluster exhibited best performance. Therefore,
we strongly suggest installing an active cooling system (such
as a fan) into the RPi 4B systems or using a metal case that
passively dissipates heat. Moreover, based on [9], the author
recommended to invest a heatsink or some ventilation even
for the previous model (RPi 3) because RPi 3 is hotter than
its predecessors. All in all, a stronger cooling system is
necessary for the RPi 4B.

Figure 9 (a) presents the CPU cooling effect of RPi
4B (i.e., without cooling vs. with active cooling). RPi 4B
with active cooling shows better performance than RPi 4B
without the cooling system by an average of 1.97× and
1.57× in Hadoop and Spark TeraSort respectively. This is
because RPi 4B without the cooling activated CPU thermal
throttling. Please note we omitted the Spark TeraSort chart
because it showed a similar result to Hadoop TeraSort bench-
mark. For clarification, we measured CPU temperatures
over time (Figure 9 (b)). In an idle state with a cooling
system, its temperature looks very stable over time (around
40 degrees centigrade). In an idle state without the cooling
system, the temperature keeps increasing from 48 degrees
to 62 degrees. We also measured CPU temperature while
running an application (TeraSort). The CPU temperature
of RPi 4B with active cooling slightly increases but soon
stabilizes. However, the RPi 4B without cooling displayed
as high as 87 degrees centigrade. If any heavier program
runs on the RPi 4 node without an active cooling system,
the CPU expected temperature will definitely be higher than
87 degrees. Our experiments demonstrate, for maximum
performance, effective cooling is necessary (not optional) for
the RPi 4B.

B. CRC DISABLEMENT
HDFS (Hadoop Distributed File System) generates check-
sums of all data written to it and verifies checksums when
reading data. A separate checksum is generated for each
data of 512 bytes (io.bytes.per.checksum) by default. Hadoop
datanodes are responsible for verifying the data they receive
before storing both the data and their checksums. At rest, they
continuously verify data against stored checksums to detect
and repair, via other means, bit errors. When clients read data
from datanodes, they also verify checksums by comparing
them with the ones stored at the datanodes. These HDFS data
integrity processes can cause extra overhead, particularly for
RPi clusters because the RPi does not have relatively strong

FIGURE 10. CRC disablement: CPU utilization of TeraSort benchmark with
2GB data on Raspberry Pi 4B (disable vs. default).

computing capabilities. To save RPi’s computing resources,
we can consider disabling the checksum verification of
Hadoop by setting the setVerifyChecksum() method to false
on FileSystem before using the open() method to read a file.

Figure 10 depicts TeraSort CPU utilization with 2GB
data on one RPi 4B node. We performed the same TeraSort
benchmark with default CRC (i.e., enabled) vs. disabled
CRC configurations, and measured average CPU utilization
over time. TeraSort with a disabled CRC configuration
consumes 52.5% CPU in total. On the other hand, the default
(i.e., CRC enabled) TeraSort shows on average 59.5% CPU
utilization. Therefore, disabling HDFS CRC checksums
helps reduce CPU consumption when running big data
processing applications on RPi nodes.

C. MASTER NODE SEPARATION
Namenode is a master node in the Apache Hadoop archi-
tecture. It manages and maintains the data blocks on the
datanodes (i.e., slave nodes) in the cluster. That is, it manages
the file system name space and controls client access to
files by recording the metadata of all HDFS data files the
cluster stores. Additionally, the namenode regularly receives
both heartbeats and block reports from all datanodes in the
cluster to ensure each datanode is alive. On the other hand,
the datanodes are in charge of worker nodes that actually
store big data and process them. Since the namenode is not
involved in data computation and processing jobs, it does not
consume high computing resources. Thus, in many Hadoop
cluster configurations, we can find such a configuration that
the master daemon runs together on one of the datanodes.
If the master daemon runs on a separate, non-datanode, it can
help conserve RPi’s datanode (i.e., worker node) resources.

Figure 11 presents TeraSort benchmark resource usage on
the RPi 4B cluster. We measured I/O, CPU, and memory
consumption on a datanode which was configured to run
a master daemon on the datanode together (referred to as
Combined in the figure) and on a separate namenode (referred
to as Separate in the figure) respectively. In figure 11 (a),
the datanode with a separate namenode configuration (i.e.,
Separate) generates on average 28.5% less write traffic than
the datanode with a combined namenode configuration (i.e.,
Combined). Similarly, the Separate generates less read traffic
than the Combined by an average of 29.5% (we omitted
this figure). Figure 11 (b) shows memory consumption of
a datanode with both configurations. We observed Separate
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FIGURE 11. Master node separation effect: Resource usage of TeraSort
benchmark with 1GB data on Raspberry Pi 4B cluster.

consumes on average 42.2% less memory than Combined.
Interestingly, unlike both I/O traffic and memory usage,
we did not find notably different CPU usage between both
configurations: Separate consumes slightly less CPU than
Combined by an average of 2% (we omitted this figure).

D. DIFFERENT PERFORMANCE VIEWS
Subsection V-F compared the RPi 4B’s performance to a
desktop PC’s performance. We observed the 5 node RPi 4B
cluster exhibited close big data processing performance (on
average 1.4× to 1.5×) to the PC. This implies a cluster
of about seven RPi 4B nodes is likely to show comparable
performance to the desktop PC. This hypothesis introduces
two different performance metrics: performance-per-dollar
and performance-per-watt. Our desktop PC costs about $600
(US) and each RPi 4B node with 4GB RAM costs $55 (US).
Other considerations such as storage cards and a network
switch hub (approximately $200 (US) total), the seven RPi
4B node cluster costs approximately $585 (US) total. This
implies the RPi 4B essentially matches the desktop PC
in terms of performance-per-dollar. We also measured the
power consumption of both systems during benchmarks.
The PC consumed about 102 watts and the cluster required
approximately 42 watts. The RPi 4B outperformed the PC
in terms of performance-per-watt. Please note the power
consumption and the total price of a computer system totally
depend on hardware configurations. However, as shown in
table 5, our experimental desktop PC was not inappropriately
configured to manipulate our performance results.

A primary goal of this discussion is to provide useful
hints of the latest RPi’s performance as well as explore
RPi possibilities for big data processing. Based on our
previous studies, the previous generation (i.e., RPi 3B) never
matched desktop PCs in terms of performance-per-dollar as
well as performance-per-watt because its overall performance
is significantly lower than the RPi 4B. However, through
extensive experiments, we observed the latest generation of
RPi with large RAM (e.g., 4GB or more) exhibited this
possibility.

E. DATA SIZES
For a single board computer (SBC) cluster to be adopted
for practical big data processing applications, the data size
the cluster can process in practice is a crucial factor. Most
previous studies simply evaluate processing hundreds of

Megabytes data (mostly less than 1GB). This is because
previous generations were not powerful enough to accom-
modate ‘real’ big data (i.e., more than 100s GB to TB).
We also employed a few GB data for our evaluations,
not because an RPi 4B cluster cannot process larger data
amounts, but because the objective is to provide various hints
at our performance results by varying the data size from
0.5GB to 4GB.

This subsection addresses how large data can be practically
processed on our 5 node RPi 4B cluster. For this, we used
UFS cards (256GB each) for storage media to accommodate
as much data as possible (i.e., approximately 1.2TB storage
space in total). To test both 500GB and 1TB data, we changed
the Hadoop configuration replication factor from 3 to 1 to
get enough working space to perform Spark Wordcount
benchmarks. Our RPi 4B cluster successfully processed
them in 17509 seconds and 32884 seconds respectively. For
reference, we built a 5 node RPi 3B cluster with identical
configurations within hardware limitations for the same
benchmarks. However, the RPi 3B cluster often failed to
simply put dozens of GB data to HDFS. We observed the RPi
3B cluster frequently met with failure in putting just 10GB
data to the cluster via HDFS due to each datanode’s slow data
processing.

Based on our experiments, we expect larger data can be
processed on our RPi 4B with 4GB RAM cluster if we can
access a larger storage space. Specifically, we observed large
RAM significantly assists big data processing capabilities by
notably reducing Hadoop intermediate data amount such as
data spills. We conclude RPi 4B is the first generation to
finally address the possibilities of ‘real’ big data processing
with the help of its unprecedented computational capabilities.

VII. CONCLUSION
Big data has been spotlighted for the last decade and
various big data technologies have been emerged. Today,
the big data industry has a significant impact on our
daily life. Many companies adopted Apache Hadoop and
Spark as the core of their big data revolution, storing and
analyzing increasingly massive data on powerful servers.
However, now, server architecture is transitioning from
general-purpose rack servers to purpose-built servers such
as blade servers and microservers in an attempt to reduce
power consumption and space requirements. The advent of
single board computers (SBCs) has changed the computing
environment by bridging the gap between controller boards
and personal computers. Importantly, the Raspberry Pi (RPi)
family now leads the SBC market for several good reasons.

This paper comprehensively explored RPi cluster-based
big data processing challenges and possibilities. We built a
5 node RPi cluster (Model 4B with 4GB RAM, the most
powerful RPi as of now) and installed Apache Hadoop and
Spark on it. We evaluated storage media performance impact
on RPi clusters by utilizing three different storage solutions
with distinctly different performance (i.e., typical, fast, fastest
storage media available for RPi 4B). To our knowledge,
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this is the first study that addresses storage performance
impact on RPi cluster, but also revisits the possibilities of big
data processing on the Raspberry 4B with 4GB RAM-based
clusters.

In the individual RPi performance evaluation, we observed
RPi 4B’ performance has unprecedentedly improved in many
respects compared to the previous generation RPi (i.e., RPi
3B): about 2.5× faster CPU, 10× faster on-board LAN, 4×
larger DRAM, 10× faster USB, etc. at the cost of 1.7–1.9×
higher power consumption.

We also extensively performed popular benchmarks
(Wordcount, TeraSort/TeraGen, DFSIO read/write, Pi com-
putation) to evaluate big data processing platforms on RPi
clusters with the aforementioned three storage media cards.
These representative benchmarks demonstrate that adopting
faster storage media is a very effective way in substantially
improving the cluster performance by showing 1.3× to 7.07×
big data processing performance improvement.We compared
RPi 4B cluster performance to RPi 3B cluster performance
by running the TeraSort benchmark. This benchmark showed
the RPi 4B cluster exhibited on average 6.65× to 9.56×
better performance than the RPi 3B cluster, particularly with
the Spark platform. Performance comparison to a desktop
PC also showed very promising results–RPi 4B exhibited
comparable or better performance than the PC in terms of
performance-per-dollar and performance-per-watt.

In summary, unlike previous generation RPis, we observed
RPi 4B’s computational capabilities have been substantially
improved so that it now supports big data processing on
SBC clusters by running mainstream operating systems
and accommodating heavy workloads (more than 100s
GB to TBs). Our comprehensive studies suggest some
optimization techniques to further reduce RPi 4B cluster
resource consumption. If a future generation RPi arrives
with a substantially larger DRAM capacity, it would sig-
nificantly improve big data processing performance on the
cluster.
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