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ABSTRACT Fast and accurate screening of novel coronavirus (COVID-19) suspected subjects plays a vital
role in timely quarantine and medical care. Deep transfer learning-based screening models on chest X-ray
(CXR) are effective for countering the COVID-19 outbreak. However, an efficient screening of COVID-19 is
still a huge task due to the spatial complexity of CXRs. In this paper, a dense convolutional neural network
(DCov-Net) based transfer learning model is proposed for the screening of COVID-19 suspected subjects
using CXR images. A modified multi-crossover genetic algorithm (MMCGA) is then proposed to tune the
hyper-parameters of DCov-Net. Majority of the existing COVID-19 diagnosis models are not interpretable
as they do not provide any transparency to the users. Therefore, the concept of heat-maps is used to achieve
explainability and interpretability. MMCGA based DCov-Net is implemented on a multiclass dataset that
contains four different classes. Experimental results reveal that MMCGA based DCov-Net achieves better
performance than the existing models. The proposed MMCGA based DCov-Net can be utilized for initial
screening of COVID-19 suspected subjects with an accuracy of 99.34 ± 0.51 %.

INDEX TERMS COVID-19, diagnosis, chest-CT, ensemble, deep learning.

I. INTRODUCTION
Since December 2019, the entire world has been experi-
encing the epidemic of a novel coronavirus (COVID-19).
It is due to severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) [1], [2]. The laboratory examinations of
COVID-19 patients have elevated lactate dehydrogenase,
reduced lymphocyte count, reduced or normal leuko-
cyte count, elevated myoglobin, and elevated creatine
kinase [3], [4]. The lesser lymphocyte count is found in severe
cases. In some cases, the patients have a severe provocative
storms that can cause death [5]. Therefore, the early screening
of COVID-19 suspected subjects is desirable to decrease the
mortality rate and ensure an efficient treatment of patients.
For this, chest X-ray (CXR) images are utilized to monitor
the common symptoms found in infected patients.

The associate editor coordinating the review of this manuscript and
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For efficient screening of COVID-19 suspected subjects,
the reverse transcription polymerase chain reaction (RT-PCR)
is utilized as a standard approach [6]. Due to time-consuming
and strict testing conditions of RT-PCR kit, fast and early
testing of suspected subjects is limited. Moreover, RT-PCR
kits suffer from high false-negative rates [7].

Recently, deep learning models are widely utilized by
researchers for diagnosis of COVID-19 suspected subjects
from radiological images. The deep learning-based local-
ization and classification models have been designed for
marking COVID-19 infected areas in ultrasound images [6].
Automated classification of COVID-19 suspected subjects
from CT was developed by designing an deep 3D learning
model. This model semantically produces deep-3D occur-
rences following the probably infected region in chest
CT images to screen the COVID-19 suspected sub-
jects [8]. A patch-based convolutional neural network (CNN)
model was proposed for screening of COVID-19 by
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using CXRs. The patch-based CNN model used a signifi-
cantly few trainable variables for COVID-19 screening [9].

COVID-19 screening and lesion localization can be
achieved by using weakly supervised model from chest
CT images. A pretrained UNet model was implemented for
lung region segmentation. Thereafter, 3D-CNN was used
to recognize COVID-19 suspected subjects [10]. More dis-
criminative diagnosis of COVID-19 suspected subjects from
CT Images can be achieved using prior attention residual
learning [11].

An infection segmentation deep network (Inf-net) based
COVID-19 Infected lung segmentation approach was imple-
mented in [12] for chest CT images. To improve the learn-
ing ability, a semisupervised segmentation framework was
also utilized. A COVID-19 pneumonia lesion segmentation
(COPLE-Net) model was presented in [13] for pneumonia
lesion segmentation from chest computed tomography (CT)
images.

However, the existing COVID-19 screening models suf-
fer from underfitting issues due to the lack of labeled
datasets. Additionally, the existing models have focused on
COVID-19 screening as a binary or three-class problem.
However, it is found that there exists a similarity between
CXRs of COVID-19 suspected subjects and CXRs of patients
who have other lung diseases.

CT screening in the initial patient indicates significant
sensitivity as compared with RT-PCR [14]. Also, it has been
found that when COVID-19 infection is very low in patients
(i.e., an early stage of infection), CT-based diagnosis shows
significantly more sensitivity as compared to RT-PCR [15].
Due to the high increase in COVID-19 suspected subjects
every day, the routine utilization of CT spots put a massive
burden on radiologists and possible infection of CT suite
hence, many researchers have started using CXR images for
initial screening of COVID-suspected subjects [9], [16].

Therefore, the development of a fast and efficient auto-
mated COVID-19 screening model from CXR images is
still a challenging issue. Compared with the competi-
tive models, the proposed DCov-Net has the following
advantages:

1) A dense convolutional neural network (DCov-Net)
based transfer learning model is proposed for the
screening of COVID-19 suspected subjects using
CXR images.

2) Modifiedmulti-crossover genetic algorithm (MMCGA)
is proposed to tune the hyper-parameters of DCov-Net.

3) The concept of heat-maps is also used to achieve
explainability and interpretability.

4) Data augmentation is utilized to augment the size of the
dataset.

5) The proposed MMCGA based DCov-Net is imple-
mented on a multiclass dataset that contains four
classes.

The remaining structure of this paper is as follows: The
related work is presented in Section II. Section III describes
the proposed DenseNet based model. Section IV presents the

experimental results and discussion Section V concludes the
paper.

II. RELATED WORK
Deep learning models have been extensively utilized in the
area of biomedical imaging [17], [18]. These approaches
can be used in detecting abnormalities from CXR and CT
scan [19], [20]. Due to low ionizing radiation exposure to
patients, CXR is preferred over CT scans [21]. Das et al. [22]
proposed a pretrained transfer learning architecture for diag-
nosis of COVID-19 suspected cases. The weights were
fine-tuned through a pretrained Xception network. It has
achieved 97.41% accuracy. Mahmud et al. [23] implemented
a deep learning model namely CovXNet, for the screening
of COVID-19 suspected subjects from CXRs. Depthwise
dilated convolution was used for the extraction of diverse
features from CXR. These extracted features were applied
to gradient-based discriminative localization to discriminate
abnormal regions in CXR. Their model attained an accu-
racy of 97.40%. Singh et al. [24] designed a differential
evolution-based CNN (DCNN) for diagnosis of coronavirus
infections using CXR. The hyper-parameters of CNN were
tuned through multiobjective adaptive differential evolution
(MADE). It has attained an overall classification accuracy
of 94.48%. Togacar et al. [25] used the fuzzy based pre-
processing approach for CXR. The preprocessed images are
structured using the stacking approach. The efficient fea-
tures were extracted through MobileNet and SqueezeNet
models. A support vector machine (SVM) was then utilized
to build the screening model from the extracted features.
Their model attained an accuracy of 98.25% on 1357 CXR
images.

Behzadi-Khormouji et al. [26] proposed a ChestNet
model for detecting consolidation using CXR. ChestNet
used a lesser number of max-pooling layers compared with
VGG16 and DenseNet121. The accuracy obtained from their
approach was 94.67%. Altan and Karasu [27] developed
a hybrid model that consists of curvelet transformation,
deep learning, and the chaotic salp algorithm for distin-
guishing COVID-19 imaging patterns from CXR images.
The curvelet transformation was applied on a CXR for
extracting coefficients. Chaotic salp swarm algorithm (CSA)
was used to optimize the extracted coefficients. These opti-
mized coefficients were applied to the EfficentNet-B0 model
for screening of COVID-19. Their model was tested on
1596 CXR images. This model has shown 99% accuracy
for screening of COVID-19 suspected subjects. Rahimzadeh
and Attar [28] hybridized Xception and ResNet50V2 for
the screening of COVID-19 from CXRs. 11302 CXRs were
used to validate the performance of the hybrid model.
The average accuracy obtained from the hybrid model
was 91.40%. Ucar and Korkmaz [29] proposed a deep
Bayes-SqueezeNet based COVIDiagnosis-Net for diagno-
sis of coronavirus infected persons. COVIDiagnosis-Net
achieved 98.30% accuracy. Tuncer et al. [30] designed
a screening model for COVID-19 using CXR images.
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They used grayscale conversion approach for preprocessing
of CXRs. Residual exemplar local binary pattern (ResExLBP)
was used for feature iteration. These characteristics were
utilized in a SVM to distinguish COVID-19 from healthy
subjects. It has attained 99.29% accuracy. However, a lim-
ited number of chest images were used for validation
purposes. Alqudah et al. [31] employed artificial intelli-
gence approaches for the identification of coronavirus infec-
tion in patients using CXR. The imaging features were
extracted using CNN. SVM was then used for building
COVID-19 screening model. This SVM based model has
achieved 95.20% accuracy. Hemdan et al. [32] utilized seven
different CNN architectures and implemented COVIDX-Net
model for screening of COVID-19 from CXR images.
VGG19 and DenseNet201 attained 90% accuracy using
fifty CXRs. Wang et al. [33] developed a deep learning
model namely COVID-Net for the diagnosis of COVID-19
from CXR. COVID-Net was trained using over 13975 CXR
images. COVID-Net has shown the accuracy of 93.3%.
It is observed from the literature review that there is scope
for improvement in deep learning models for screening of
COVID-19 suspected persons.

Yamac et al. [34] utilized a convolution support estimation
network (CSEN) for COVID-19 diagnosis. CSEN utilized a
noniterative mapping from query to ideally sparse represen-
tation coefficient support. Thus, it can handle critical infor-
mation for class decision in representation-based approaches.
CSENhas shown 98% sensitivity and 95% specificity to diag-
nose COVID-19 suspected cases. Abbas et al. [35] designed
a self-supervised super sample decomposition for transfer
learning (4S-DT) model. The super sample decomposition
of unlabeled CXRs was utilized to form self-supervised
learning model. It has shown an accuracy of 99.8% and
97.54% on two different datasets. Ismael and Sengur [36]
designed a transfer learning based SVM (TL-SVM) model.
TL-SVM has utilized various transfer learning models to
extract the features from CXRs. The extracted features were
classified using SVM. It has shown the accuracy of 94.7%.
Hasan [37] has designed a hybrid two-dimensional empiri-
cal mode decomposition (2DEMD) based CNN (HT-CNN)
model to diagnose COVID-19 suspected cases. Intrinsic
mode functions were generated using 2DEMD. CNN model
was utilized to diagnose COVID-19 suspected cases. It has
shown the accuracy of 99.01%. Hasan et al. [38] proposed
DenseNet-121 CNN model. Data augmentation was used to
augment the dataset. It has shown the accuracy of 92% on
CT images dataset. Sarker et al. [39] designed an
explainability based COVID-DenseNet model. Transfer
learning was used by utilizing the pre-trained CheXNet
model. It has achieved an accuracy of 96.49% and
93.71%, for two-class and three-class datasets, respectively.
Misra et al. [40] designed an ensemble based multi-channel
pre-trained ResNet (MC-ResNet) for CXRs. Three ResNet
based variants were used to buildMC-ResNet. It has achieved
an accuracy of 95.5% and 93.9% for raw and refined datasets,
respectively.

It is clear from the literature that the development of early
stage recognition of COVID-19 suspected subjects is an open
area of research. In particular, the use of a deep transfer learn-
ing model can be explored further to improve the sensitivity
and specificity of automated screening tools. The existing
automated screening models are sensitives to their initial
hyper-parameters. Majority of the existing COVID-19 diag-
nosis models are not interpretable as they do not provide
any transparency to the users. Additionally, an efficient auto-
mated screening model can distinguish among the other kinds
of lung diseases such as pneumonia and lung opacity.

III. PROPOSED MODEL
This section provides the mathematical formulation of the
proposed DCov-Net-based screening of COVID-19 sus-
pected subjects. Initially, the labeled dataset is obtained and
then the dataset is decomposed into three sets for training,
testing, and validation. As the obtained dataset is small in
size, data augmentation is used. Thereafter, DCov-Net is
proposed. The initial parameters of DCov-Net are then tuned
using MMCGA. Finally, MMCGA based DCoV-Net is build
to recognize the suspected patient as infected (i.e., COVID-19
(+ve) or pneumonia or lung opacity) or as a healthy person.

A. COVID-19 SCREENING MODEL
The primary objective is to design a model that can auto-
matically screen COVID-19 suspected subjects from their
respective CXRs. Figure 1 presents the block diagram
of DCov-Net based COVID-19 screening model. Initially,
ImageNet [41] dataset is used to obtain the transferable
coefficients from DenseNet model. Thereafter, data aug-
mentation is applied to the obtained dataset. Fine-tuning of
DenseNet is then achieved using the training dataset with
a pretrained DenseNet model. The trained DenseNet based
COVID-19 screening model can successfully classify a sus-
pected person as infected (i.e., COVID-19 (+ve), pneumonia
or lung opacity) or as a healthy person.

B. DenseNet MODEL
In this paper, a pretrained DenseNet model is utilized.
Figure 2 demonstrates the diagrammatic flow of DenseNet-
based COVID-19 screening model. It contains three transi-
tion blocks (TB) and four dense blocks (DB), respectively.
In Fig. 2, Fi shows a composite function of three operators
such as BN , FReLU , and CV . Xi represents the computed
feature map by ith layer. Also, i = 1, 2, 3, . . . , I . I shows
number of layers. Like ResNet [42], DenseNet considers
dense links to enhance the relationship between perspective
information. The input of every layer includes the input and
output of the preceding layer. Thus, it improves the informa-
tion transmission to reuse the features efficiently. Features
of CXRs are dense and redundant in nature. Combined with
the constrained dataset, neural network-based model building
is susceptible to gradient loss. Therefore, the trained model
suffers from the overfitting issue. DenseNet integrates the

142568 VOLUME 9, 2021



D. Singh et al.: Screening of COVID-19 Suspected Subjects Using MCGA Based DCov-Net

FIGURE 1. Proposed DCov-Net-based COVID-19 screening model.

FIGURE 2. Architecture of DenseNet264-based automated screening model for COVID-19 suspected subjects.
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feature map to overcome this gradient loss issue. Thus, it can
efficiently be obtained the potential features from CXRs.

Although, there exist some similarities in the modules of
DenseNet and ResNet but there are considerable variations in
thesemodules. It is found that the skip connection of ResNet’s
residual module can easily aggregate xl−1 and the nonlinear
transformation of xl−1 as:

xl = F(xl−1)+ xl−1 (1)

Here, xl denotes the output of layer l and F(•) defines
a nonlinear transformation. Thus, the model can adapt the
input’s residual mapping to overcome the gradient loss issue.

Dense block (DB) module concatenates the feature map’s
connection instead of summation as:

xl = F([x0, x1, . . . , xl−1]) (2)

At ith layer, there are K × (i− 1)+ K0 convolution maps.
K defines convoluted feature maps for every layer.
In DenseNet, the input of every layer contains the feature
maps of all preceding layers (see Figure 9). DenseNet devel-
ops a L layer architecture with L(L+1)

2 connections.
In this paper, DenseNet264 is used. In the dense

block (DB), both contain different numbers of convolution
layers. Table 1 depicts the characteristics of both models.

C. TRANSFER LEARNING
Transfer learning is generally used for fine-tuning deep learn-
ing models to prevent local optimization issues. Instead of
model initialization with random weights, it acts as an initial
point of the newmodel [43]. Thus, it helps in the fast building
of a new deep learning model with significant results even for
small size datasets.

In fully connected layer, every neuron is associated with
every neuron of the preceding layer. As the input of preceding
layer is 2D feature map, therefore, Bernoulli function is
utilized. It randomly computes a vector t l−1 following the
[0, 1] distribution with a specific probability (p). It can be
computed as [44]:

t l−1 = Bernoulli(p) (3)

x l−1 = t l−1 × cl−1 (4)

x l = f (wk × x l−1 + ol) (5)

Here, the vector dimension is cl−1. k shows feature maps.
o1 and w1 indicate the offset and weighting variables of the
fully connected layer, respectively. Dropout is also used to
prevent overfitting issue. Dropout blocks some neurons with
specific probability on random basis. The computed feature
map is then weighted and added to the bias offset. Thereafter,
softmax activation function is used.

D. ACTIVATION AND LOSS FUNCTION
In this work, the softmax activation function is used at
the output layer of the proposed DCov-Net for multiclass
classification. The softmax function (P(c, s)) can be

TABLE 1. Architectures of proposed MMCGA based DCov-Net model with
stride=2.

defined as:

P(c, s) =
P(s, c) × P(c)∑C
n=1 P(n) × P(s, n)

(6)

Here, c defines the total number of classes, P(c) and
P(s, c) denote the class probability and conditional proba-
bility, respectively. s shows the probability of a sample that
belongs to c class. P(c, s) can be rewritten as:

P(c, s) =
exp(βc[s])∑C
n=1 exp(βn[s])

(7)

where

βc = ln[P(s, c) × P(c)] (8)

The binary cross entropy is utilized as a loss function. It can
be evaluated as:

loss = −
n∑
i=1

ŷi log yi + (1− ŷi) log(1− yi) (9)

Here, n shows the number of test CXRs and yi represents
the output of the deep learning model. loss approaches 0,
when yi approaches ŷi. ŷi defines the accurate value of the
desired output.
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E. OPTIMIZATION OF HYPER-PARAMETERS
Proposed DenseNet model is sensitive to its initial parame-
ters. Therefore, it is required to tune the hyper-parameters of
DenseNet to achieve the efficient results. Table 2 depicts the
search space for hyper-parameters of the proposed DenseNet
model.

TABLE 2. Search space for hyper-parameters of the proposed DenseNet.

In genetic algorithm, new solutions are searched using
crossover operator and it also influence the optimization
results. Therefore, many crossover operators are proposed in
the literature to efficiently form the new solutions. However,
the selection of the efficient crossover operator according to
the problem is an open area of research. To resolve this issue,
Xue et al. [45] has designed a multi-crossover genetic algo-
rithm (MCGA). Five crossover operators were used to form
the new solutions for next iteration. According to their perfor-
mance during evolution process, a probability was assigned
to each of them. Based on their probabilities crossover oper-
ator was selected using roulette wheel selection during the
evolution process.

In this paper, a modified MCGA (MMCGA) is proposed
to reduce the complexity and increase the computational
speed. In MMCGA, three crossover operators are used that
will be adaptively selected during evolution step. Also, elitist
non-dominated sorting [46] is used to evaluate the best solu-
tion for DCoV-Net. The step by step approach is discussed
in Algorithm 1.

iPop (): Initially, population P is composed by randomly
generating N solutions based upon their range values as
reported in Table 2. iACS:Adaptive crossover selection func-
tion (ACS) and its associated parameters are also imitated.
Initially, the probability of every crossover operator is 1/Q.
Q indicates available crossovers used in MMCGA. iRWS():
Roulette wheel selection is used to select one crossover
operator depending upon their respective probability values
computed from ACS. iCros(): Depending upon ACS values
(av), a specific crossover operator is then applied to obtain
child solutions. Two parents are randomly selected. iMut():
Uniformmutation operator is also used to form new solutions.
All new solutions are then stored in offspring population( Pδ).
iCred(): Dominance relationship is then computed between
parents and children and corresponding performance is stored
in nR and nP. During N/2th step, Pδ is evaluated. iSel():
Elitist non-dominated sorting [46] and crowded distance [47]
techniques are then utilized to select N individuals from R
(P ∪ Pδ). iDomin(): dominance comparison is utilized to

assign the reward or penalty to the selected parent and child
solutions.

The reward and penalty of solutions in given step is stored
in two matrices RW TH×Q and PLTH×Q, respectively. After
every TH number of steps, ACS will be updated using
RW TH×Q and PLTH×Q. The evolution process keep repeating
until the fitness evaluations do not exceed Fe (refer [45]).

Algorithm 1MMCGA Based DCoV-Net
Input: Maximum fitness evaluations (Fe), Population size

(N ), Number of crossover operators (Q), and ACS iter-
ative threshold (TH ).

Output: Tuned parameters for DCov-Net
1: P← iPop(N)
2: Initialize nR, nP, RW TH×Q, and PLTH×Q.
3: P̂ = p1, p2, . . . , pQ← iACS(Q)
4: k ← 0
5: nFE ← 0
6: Pδ ← φ

7: while nFE < Fe do
8: for i = 1toN/2 do
9: av← iRWS (̂P)
10: Randomly select two individuals as parents: Pp
11: Pc← iCros(Pp, av)
12: Pc← iMut(Pc )
13: nFE ← nFE + 2
14: [nR, nP]← iCred(Pp, Pc)
15: Add Pc to Pδ
16: end for
17: k← k + 1
18: Append nR to k th row of RW TH×Q
19: Append nP to k th row of PLTH×Q
20: if k = TH then
21: P̂← iACS( RW TH×Q, PLTH×Q )
22: k = 0
23: end if
24: R← P ∪ Pδ
25: P← iSel(R)
26: Select non-dominated solutions in P as TP
27: Tuned parameters← TP
28: end while
29: return Optimal parameters

The steps of proposed MMCGA are discussed in the suc-
ceeding subsections.

1) MULTI-OBJECTIVE FITNESS FUNCTION
The main objective of MMCGA is to obtain an optimal set
of hyper-parameters with maximum performance in terms
of sensitivity and specificity. Thus, multi-objective fitness
function can be computed as:

maxF(X ) = {f1(X ) and f2(X )} (10)

where X is a solution. f1 and f2 computes the sensitivity
and specificity values, respectively. These are used to obtain
optimal hyper-parameter (X ) of DCoV-Net
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Algorithm 2 Credit Card Assignment (iCred ())
Input: Parents (P), Children (R), iACS based crossover (q)
Output: nR, nP [nd , ds] ← iDomin(P) //nd and ds refer

to the sets of non-dominated and dominated solutions,
respectively.

1: if ds 6= φ then
// Dominated parent, and suppose P1 ≺ P2.

2: for i = 1 to 2 do
3: if P1 ≺ Ri then
4: nPq← nPq + 1
5: else
6: nRq← nRnRq + 1
7: end if
8: end for
9: else

10: // Non-dominated parent.
11: for i = 1 to 2 do
12: if P1 ⊀ Ri P2 ⊀ Ri then
13: nRq← nRnRq + 1
14: else
15: nPq← nPq + 1
16: end if
17: end for
18: end if
19: P← iPop (N)
20: return Tuned parameters for DCov-Net

2) CROSSOVER OPERATORS
In this paper, three well-known crossover operators namely
single-point [47], Reduced surrogate [48], [49], and chaotic
crossover operator [50] have been selected. Single-point [47]
is selected as it is the most efficient operator concerning the
computational effort [45].

Reduced surrogate [48], [49] crossover operator is selected
because it avoids the unwanted crossover operations in case
of the parents having same genes. This operator initially
checks for the individual genes in the parents. It forms
a set of possible crossover points where the genes of
both parents are different. If there is no such crossover
point then no action will be taken. The chaotic crossover
operator [50] helps to form well-distributed and well-
converged set of Pareto-optimal solutions.

3) REWARD AND PENALTY
Rewards and penalties are assigned to the solutions by defin-
ing two vectors (i.e., nR and nP) as:

nR = [000]1×Q (11)

nP = [000]1×Q (12)

Pareto dominance among the solutions is utilized to update
nR and nP.

a: DOMINATED PARENT
Assume that parent 1 (P1) is dominated by P2, then the pareto
dominance relationship of every child solution is compared

with P2. If the child solution is not dominated by P2, then
set nRq + 1. Otherwise set nPq + 1.

b: NON-DOMINATED PARENT
Every child solution’s pareto dominance is compared with its
both parents. If it is not dominated by both parents, then set
nRq + 1, otherwise set nPq + 1. Algorithm 2 shows the step
by step updation of reward and penalty values (refer [45]).

4) UPDATION OF ACS
ACS is used to update the selection probability of every
crossover operator. It is updated after every TH iterations
(for more details [51]). Twomatrices,RW TH×Q andPLTH×Q,
are utilized to store nR and nP values, respectively, by rows
till TH iterations. Recent TH ’s nR and nP values are used
to update ACS. To compute the probability for qth (q = 1,
2, . . . ,Q) operator, summation of qth column of RW and
PL is performed, respectively:

S1q =
TH∑
k=1

RW k,q (13)

S2q =
TH∑
k=1

PLk,q (14)

Here, S1q shows numbers of promising solutions obtained
by using the qth crossover during last TH iterations. S2q shows
the non-promising solutions. ACS for qth crossover can be
evaluated as:

S3q =

{
δ, if S1q = 0,
ifS1q = 0, otherwise.

(15)

S4q =
S1q

S3q + S2q
(16)

Here, δ = 0.0001 is a small number used to prevent being
divided by 0 if the qth crossover is never selected during last
TH iterations.

Also, S4q is the probability allocated to qth crossover.
To normalize the probabilities of each crossover, normaliza-
tion is achieved as:

pq =
S4q∑Q
q=1 S

4
q

(17)

Here, pq shows the normalized probability for qth

crossover.
Table 3 shows tuned hyper-parameters obtained from opti-

mization algorithm.
Figure 3 shows the training and validation analysis

of the proposed model without using MMCGA. The
proposed model has been tested by considering various
hyper-parameters on trial and error basis. We have selected
those hyper-parameters which have achieved better perfor-
mance as compared among all the trial and error basis
based hyper-parameters. It has shown the testing accuracy
of 98.48% when number of iterations are set to be 580.
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FIGURE 3. Training and validation analysis of the proposed model without using MMCGA.

TABLE 3. Obtained optimized hyper-parameters of the proposed
DenseNet.

The proposed DCov-Net model is then trained on the
optimized parameters obtained from MMGCA (see Table 3).
In Figure 4, training and validation analysis of MMGCA
based proposedmodel is presented. It has achieved the testing
accuracy of 99.81% when number of iterations are set to
be 580. Therefore, from Figures 3 and 4, it is observed that
the optimized hyper-parameters based proposed model has
achieved better performance with good convergence speed.
MMCGA based DCoV-Net has shown an average improve-
ment of 1.33% as compared to the accuracy obtained from
trial and error basis based DCoV-Net.

IV. EXPERIMENTAL RESULTS
MMCGA based DCov-Net is tested on four-class CXR
dataset. The performance of MMCGA based DCov-Net
is compared with various competitive models such as
CNN [9], AlexNet [52], VGGNet [26], Inceptionnet-v1
[53], ResNet [28], Inceptionnet-v3 [53], DenseNet [26],
Xception [28], Inception-ResNet [54], Inceptionnet-V4 [53],

TABLE 4. Characteristics of COVID-19 radiography database.

and ResNeXt [55]. The simulations are achieved on
MATLAB 2021a using core i7 3.44 GHz, 16GB RAM, and
4GB graphics card.

A. DATASET
In this paper, COVID-19 radiography database [56] is
used. The main characteristics of the database is presented
in Table 4. Since the database is completely imbalanced in
nature, therefore, data augmentation is utilized to balance the
database. The data augmentation is achieved by considering
random blurring, random cropping, and random rotation.
Thus, it is used to increase the minority class CXR images
for improving the strength of COVID-19 screening model
and overcome the overfitting issue. Table 5 depicts the data
augmentation approaches used along with their respective
parameter settings. Figure 5 shows the sample view of the
obtained CXRs from data augmentation approach. Also, all
the images are resized to 224× 224 resolution.

Table 6 shows number of images used for training, vali-
dation and testing of the proposed and competitive models.
Training fraction also includes augmented images.
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FIGURE 4. Training and validation analysis of MMCGA based proposed model.

TABLE 5. Parameter settings for data augmentation approach.

TABLE 6. Number of images used for training, validation and testing of
proposed model.

B. PERFORMANCE ANALYSIS
Themedian and uncertainty values (i.e., median± IQR×1.5)
are utilized to evaluate the performance of MMCGA based
DCov-Net. 65% of dataset is utilized for building the model.
10% of dataset is utilized for validation of proposed model.
25% of dataset is utilized for testing MMCGA based DCov-
Net. The confusion matrix-based performance metrics such
as accuracy, specificity, sensitivity, area under curve (AUC)
and F-measure are utilized for evaluating the performance of
MMCGA based DCov-Net.

AUC - receiver operating characteristic (ROC) curve is a
well-known measure for classification problems at different
threshold settings. AUC represents a measure of separability
and ROC defines a probability curve. AUC-ROC evaluates
the performance of the model in terms of differentiating

FIGURE 5. Sample view of obtained results from the data augmentation
approach.

between classes. Maximum AUC values define that the
model can efficiently differentiate between positive and
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TABLE 7. Training analysis of MMCGA based DCov-Net-based automatic COVID-19 screening model on four class CXR datasets.

TABLE 8. Testing analysis of MMCGA based DCov-Net-based automatic COVID-19 screening model on four class CXR datasets.

FIGURE 6. Receiver operating characteristic (ROC) curve analysis of the
proposed MMCGA based DCoV-Net.

negative classes. ROC curve is drawn with a true positive
rate (TPR) against the false positive rate (FPR). It shows
specificity and sensitivity analysis for every possible cut-off
for a test or a combination of tests. Figure 6 demonstrates
that the proposed MMCGA based DCov-Net achieves better
AUC values as compared to the existing models. There-
fore, the proposed MMCGA based DCov-Net can provide
significantly better performance for the initial screening of
COVID-19 suspected subjects.

Tables 7 and 8 demonstrates the performance analysis of
MMCGA based DCov-Net for COVID-19 suspected sub-
jects. During the training and testing process,MMCGAbased

FIGURE 7. ANOVA analysis of the proposed MMCGA based DCoV-Net in
terms of accuracy.

DCov-Net achieves the accuracy values 99.81 and 99.34,
respectively. Therefore, MMCGA based DCov-Net does not
suffer from the overfitting issue. Additionally, during training
and testing processing, MMCGA based DCov-Net achieves
and AUC values of 99.72 and 99.28, respectively. Therefore,
the proposed model is least affected by the false positive and
false negative values.

In this paper, a one-way analysis of variance (ANOVA)
and boxplot based statistical analysis is also performed by
considering the performance of testing results. For every
performance metric, the hypotheses can be defined as:{

H0 µM1 = µM2 = . . . . = µM12,

HA Means are not equal.
(18)

Here,µMi represents various COVID-19 screeningmodels
under consideration. M12 represents the proposed model. H0
and HA denote null and alternate hypothesis, respectively.
From Figures 7 to 15, it is observed that HA is accepted as all
computed p− values are lesser than 0.01. Therefore, there is
statistically significant difference in the average performance
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FIGURE 8. Boxplot analysis of the proposed MMCGA based DCoV-Net in
terms of accuracy.

FIGURE 9. ANOVA analysis of the proposed MMCGA based DCoV-Net in
terms of f-measure.

metric values. However, it does not showwhich of the specific
models outperforms others. Therefore, boxplot analysis is
performed to check which model perform consistently better
than the others (see Figures 8 to 16. Figures 7 - 8 show
ANOVA and boxplot analysis of computed accuracy values
using the testing data, respectively. It is clearly found that the
testing accuracy values obtained from the proposedmodel are
significantly better than the existing models.

Figures 9 and 10 demonstrate ANOVA and boxplot analy-
sis of computed f-measure values using the testing data. It is
observed that the f-measure values obtained from MMCGA
based DCoV-Net are significantly better than the existing
models.

Figures 11 and 12 show ANOVA and boxplot analysis of
computed testing sensitivity values. It is clearly found that
the sensitivity values obtained from the proposed model are
significantly better than the existing models.

Figures 13 and 14 demonstrate ANOVA and boxplot anal-
ysis of computed specificity values using the testing data. It is
observed that the specificity values obtained from MMCGA
based DCoV-Net are significantly better than the existing
models.

Figures 15 and 16 show ANOVA and boxplot analysis of
computed testing AUC values. It is clearly found that the
AUC values obtained from MMCGA based DCoV-Net are
significantly better than the existing models.

FIGURE 10. Boxplot analysis of the proposed MMCGA based DCoV-Net in
terms of f-measure.

FIGURE 11. ANOVA analysis of the proposed MMCGA based DCoV-Net in
terms of sensitivity.

FIGURE 12. Boxplot analysis of the proposed MMCGA based DCoV-Net in
terms of sensitivity.

Majority of the existing models are not interpretable as
they do not provide any transparency to the users. Therefore,
the concept of heat-maps is used to achieve explainability
and interpretability. Heat-maps allow us to understand how
the proposed model achieves classification. The objective
is to indicate the critical regions in CXRs so that we can
understand that whether the proposed model has correctly
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FIGURE 13. ANOVA analysis of the proposed MMCGA based DCoV-Net in
terms of specificity.

FIGURE 14. Boxplot analysis of the proposed MMCGA based DCoV-Net in
terms of specificity.

FIGURE 15. ANOVA analysis of the proposed MMCGA based DCoV-Net in
terms of AUC.

classified the image or not. Figure 17 shows the heat-maps
obtained using the proposed model. It is found that there are
many dissimilarities between the heat-maps obtained from
different class of patients and healthy subjects.

C. DISCUSSION
From the existing literature, it has been found that CXRs can
be successfully used for the screening of COVID-19 infected
subjects. Many models have been designed and implemented
to predict COVID-19 infection in suspected subjects from
their respective CXRs. Some well-known COVID-19 auto-
mated screening models are DCNN [24], CovXNet [23],
Xception [22], MobileNet and SqueezeNet based SVM [25],
ChestNet [26], EfficentNet-B0 [27], Hybridized the Xcep-
tion and ResNet50V2 [28], COVIDiagnosis-Net [29],
ResExLBP-SVM [30], CNN-SVM [31], COVIDX-Net [32],
COVID-Net [33], CSEN [34]. Although these models have

FIGURE 16. Boxplot analysis of the proposed MMCGA based DCoV-Net in
terms of AUC.

FIGURE 17. Heatmap analysis of the proposed MMCGA based DCov-Net:
(a) COVID-19 (+), (b) Pneumonia, (c) Lung opacity, and (d) Healthy
subjects.

shown significant results, but the majority of these models
have shown poor sensitivity than RT-PCR. Therefore, a fast
and efficient COVID-19 automated screening model is pro-
posed for CXR images. Table 9 demonstrates the accuracy
analysis among MMCGA based DCov-Net and the existing
models. It is found that MMCGA based DCov-Net performs
significantly better than the competitive models. DCov-Net
is tested on a four-class dataset. Moreover, the sensitivity
of MMCGA based DCov-Net approaches towards 100 %.
Therefore, the proposed MMCGA based DCov-Net is more
reliable for diagnosis of COVID-19 suspected subjects.
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TABLE 9. Accuracy analysis among the proposed MMCGA based
DCov-Net and state-of-the-art COVID-19 screening models.

Additionally, the proposed model takes on average 8.94
minutes for building the multiclass COVID-19 screening
model. Furthermore, it can test up to 500 images in one
minute. Thus, DCov-Net can screen the COVID-19 suspected
subjects at a reasonable time.

V. CONCLUSION
In this paper, DCov-Net was designed for screening
COVID-19 suspected subjects from CXR images. However,
DCoV-Net is sensitive towards the initial control param-
eters. Therefore, MMCGA is then proposed to tune the
hyper-parameters of DCov-Net. Majority of the existing
COVID-19 diagnosis models are not interpretable as they
do not provide any transparency to the users. Therefore,
in this paper, the concept of heat-maps was utilized to
achieve explainability and interpretability. MMCGA based
DCov-Net was validated on a multiclass dataset that con-
tains four different classes. Experimental results revealed that
MMCGA based DCov-Net achieves better results than the
existing models. Therefore, MMCGA based DCov-Net has
an ability to be implemented in clinical applications for quick
and accurate screening of COVID-19 suspected subjects and
potentially other coronaviruses in the future.

In near future, the proposed model can be extended by
designing an evolving deep transfer learning model. Since in
real-time applications, CXRs may suffer from noise and poor
visibility issues, therefore, image preprocessing techniques
can also be integrated with the proposed model.
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