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ABSTRACT This paper focuses on Beyond fifth generation (B5G) non-linear data modeling and
decision-making tools to optimize cost reduction versus coverage-QoS trade-off, in other words, the number
of active Remote Radio Heads or Units (RRHs) needed according to traffic demands. The cost and energy
optimization are analytically expressed by modeling the complex relationships between input and output
system parameters using realistic scenarios and traffic profiles for low, medium, and high traffic environ-
ments. The optimization tool is based on a multi-objective integer linear programming model, designed to
reduce the network cost while maintaining a good coverage-QoS and accounting for capacity constraints,
User Equipments (UEs), and different slices. Results at 3.6 and 28 GHz are presented by analyzing and
comparing several Cloud Radio Access Network (C-RAN) split options in a heterogeneous deployment
with Macro-RRHs (MRRHs) and Small-RRHs (SRRHs). Cost reductions ranging from 30 % to 70 % have
been obtained depending on the scenario. This proposal allows mobile network operators (MNOs) to achieve
further optimization, while providing better network diagnostics.

INDEX TERMS 5G, C-RAN, radio network optimization.

I. INTRODUCTION
The Fifth-Generation (5G) of cellular networks has a
service-oriented architecture that significantly increases both
performance and flexibility of the offered services to users
and service providers. This is done by introducing new
radio modes such as ultra-Reliable Low Latency Commu-
nication (uRLLC), Massive Machine Type Communications
(mMTC) and enhanced Mobile Broadband (eMBB). Robust
and dynamic radio network management solutions should
be implemented by operators to tackle such complexity and
flexibility.

The future Sixth-Generation (6G) network ecosystem is
a step further that should implement a fully cloud-native
architecture capable of dealing with a network of sub-
networks, offering Tbps of data throughput, sub-ms latency
and extremely low packet error rate, increased device
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density, ultra-low-energy consumption, very high security
and cm-level accuracy localization among others [1].

The network design of Beyond Fifth-Generation (B5G)
must benefit the whole society by being a human-centric reli-
able infrastructure. Moreover, future mobile networks should
support immersive communication, cognition and twinning,
deterministic end-to-end applications, and high-resolution
sensing services. Sustainability is crucial to support these
services and network requirements. It is fundamental to
reduce: energy consumption, resources usage, and emissions
footprints to avoid an excessive growth in power consump-
tion. The enormous increase in the number of devices, data
amounts, and data rates implies an increase in the overall data
traffic and required capacity, while the energy reduction is not
automatically guaranteed.

The 3rd Generation Partnership Project (3GPP) included
Cloud Radio Access Network (C-RAN) in New Genera-
tion RAN (NG-RAN) to facilitate the implementation of
ultra-dense mobile networks while reducing the Total Cost
of Ownership (TCO). The centralization of the baseband
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FIGURE 1. 3GPP protocol stack split options [4].

functionalities of the Base Stations (BSs) in Baseband
Unit (BBU) pools aids in implementing extremely dense
mobile networks with a significant reduction of the required
resources and increased energy-savings. A low-cost entity,
called Remote Radio Head (RRH), remains at the cell site
due to the centralization, which reduces the radio deployment
costs.

As a solution to the extremely high capacity demands of
the fronthaul network (BBU-RRH) in fully centralized Radio
Access Networks (RANs), 3GPP included different split
options to reduce bandwidth and latency requirements [2].
Fig. 1 shows the protocol stack and the split options. Split
option 8 corresponds to a fully C-RANwhere all the baseband
functionalities are centralized in BBU pools, while option
1 represents the traditional network architecture where the
baseband functions are allocated at the BS site.

Artificial Intelligence (AI)/machine learning (ML), as well
as other optimization frameworks that offer automatic and
distributed resource pool control and RRH selection, will be
needed to operate cost-effective services, enabling the imple-
mentation of predictive orchestration in the 6G network-of-
networks [3]. The research community has been focused on
the standardization of 5G, and multiple techniques have been
introduced to support the network requirements and increase
energy efficiency. However, strategies to automatically obtain
a cost-efficient deployment while maintaining the coverage-
QoS, and also to activate/deactivate RRHs for energy-saving
are still open issues.

For this reason, the presented work focuses on B5G
non-linear statistical data modeling and decision-making
tools to optimize the number of required active resources,
in terms of RRHs, according to the traffic patterns that should
be satisfied. Hence, it offers a cost-efficient and energy-
saving solution, which is fundamental for current and future
standards.

The optimum deployment of 5G and B5G networks is
a challenging problem. It should account for different fre-
quency bands, channel propagation models, the massive
amount of User Equipments (UEs), and devices with realistic
traffic profiles. Additionally, it could consider cooperation
among BSs to reduce interference and increase throughput
in a heterogeneous and ultra-dense network.

This work proposes an optimization framework with two
purposes. Firstly, the efficient deployment of 5G and B5G
radio networks on C-RAN ecosystems. Secondly, the activa-
tion/deactivation of the RRHs to maintain the coverage and
Quality of Service (QoS) while minimizing the network cost.
The proposed algorithm selects the optimal distribution of
RRHs from a set of realistic candidate locations. It is based
on the data traffic of the UEs, which generate Guaranteed
Bit Rate (GBR) or Best Effort (BE) services. The algo-
rithm includes the possibility of implementing cooperation
strategies between cells, automatically selecting the cells that
should cooperate to satisfy the traffic demand of a specific
zone in the map.

The main contributions are summarized as follows:

• The complex relationships between input and output
parameters of the system in a dense B5G environment
is modeled. This is done analytically, by obtaining a
complete set of nonlinear equations.

• A formulation and software implementation of
decision-making rules to optimize the number of
required active RRHs under different traffic patterns in
a heterogeneous environment is presented. The software
could identify the optimum constellation of RRHs to
provide the best performance in terms of coverage, user
equipment density, QoS, and overall cost deployment.

• On the other hand, the impact of different split options
in the deployment cost and coverage-QoS of the radio
network is detailed. The selected split option intro-
duces a cost ratio between types of BSs, especially
when heterogeneous network deployments with Macro
and Small-BSs are considered. The cost ratio between
macro-RRHs (MRRHs) and small-RRHs (SRRHs)
increases when they contain more baseband functional-
ities. Thus, this cost ratio achieves the maximum value
in distributed RAN (option 1) scenarios, while it is min-
imum in full C-RAN (option 8).

• Furthermore, a comprehensive analysis and comparison
of the performance at 2.6 (MRRHs), 3.6, and 28 GHz
carrier frequencies for SRRHs in urban environments is
presented, which is of high interest for researchers and
Mobile Network Operators (MNOs).

• Through a careful analysis of the performance on a
realistic scenario, it is demonstrated that the proposed
optimization could help MNOs to a) improve network
planning by detecting problems in advance while offer-
ing solutions, b) provide a network diagnostic tool, and
c) optimize and control the network cost-effectiveness
and energy efficiency.
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• As far of our knowledge, the optimization of the RRH
deployments of B5Gs in terms of energy and cost-
saving considering: flexible radio access network, both
frequency ranges (sub 6GHz and mm-wave), coverage
and capacity constraints, realistic propagation models,
and heterogeneous mobile networks with MRRHs and
SRRHs is not available in the literature.

The rest of this paper is organized as follows. Section II
presents a literature review on radio network deployment
algorithms. Section III models the radio network and the
proposed optimization problem. Section IV describes the
considered radio network platform and its different planes or
layers: RRH plane, demand plane, UE plane and propagation
model. Section V evaluates the results. Finally, section VI
summarizes the most relevant results.

II. RELATED WORKS
In parallel with the standardization process, some research
works have been focused on the definition of different strate-
gies to deploy and optimize 5G and B5G networks [5]–[11].

A mixed-integer linear programming (MILP) algorithm is
proposed in [5] to minimize the network deployment cost and
latency of a C-RAN with Mobile Edge Computing (MEC)
nodes. Moreover, they propose a heuristic algorithm because
of the complexity of the MILP approach. The main goal of
this paper is to optimize the MEC nodes placement and the
C-RAN deployment. Although the proposed strategies are
novel and could be of interest because they implement a
joint optimization consideringMEC and C-RAN, the analysis
is limited to the transport network and the placement of
BBU pools and MEC nodes, without considering the RRH
deployment and the mobile network demand plane.

In [6], the authors propose an energy-effective radio net-
work deployment where the system could select a subset
of RRHs according to the traffic demand simulated using
Traffic Demand Points (TDPs), which concentrate the data
rate of a specific zone to satisfy the QoS requirements of the
potential UEs. However, the problem is divided into two sub-
optimal problems: RRH-TDP association and RRH selection,
which could reduce the possibility of finding the optimal
solution for the network deployment. On the other hand,
the authors consider two synthetic scenarios to validate the
results. The first scenario depicts a dense square region of
250m× 250m with two micro-RRHs and seven pico-RRHs,
while the second represents an area of 500 m × 500 m with
3 micro-RRHs and 13 pico-RRHs.

Besides, the authors in [7] recently proposed a hybrid fron-
thaul solution based on fibers and Free-Space Optics (FSO)
to minimize the deployment costs in dense urban scenarios.
They formulated and compared two Integer Linear Program-
mings (ILPs): joint and disjoint approaches. The disjoint
approach splits the whole problem into two sub-problems: the
RRH placement and the fronthaul deployment, while the joint
strategy only solves one optimization problem to deploy the
whole C-RAN. The authors conclude that the joint approach

is better than the disjoint strategy in terms of deployment cost.
Although they propose an interesting solution to reduce the
deployment cost of a C-RAN with hybrid fronthaul, there is
room for improvement by introducing realistic UEs to model
the traffic demand, validating the results under realistic RRH
possible locations.

In [8], the authors propose a Multi-Objective Optimization
(MOO) problem for small cell planning which considers fiber
and wireless backhaul technologies and two types of BSs.
The MOO aims to determine the optimum type and location
of the deployed BSs. The authors also propose a joint cell
and fiber backhaul planning algorithm employing heuristic
techniques. This work is also of interest because it focuses on
the last standard of Passive Optical Networks (PONs), called
Next-Generation Passive Optical Network 2 (NG-PON2), for
the fiber deployment of the backhaul; however, it does not
consider a C-RAN environment.

In [9], the authors design a joint optimization framework
considering the costs of the mobile network and its fronthaul
in a C-RAN ecosystem. Deployment cost is analyzed under
different scenarios; they also extend the work to consider
three optical fronthaul technologies: Common Public Radio
Interface (CPRI), Physical Layer Split (PLS), and Analogue
Radio-over-Fiber (ARoF). Although a detailed analysis of the
fronthaul network and the C-RAN deployment is provided,
traffic profiles are simplified due to the complexity of the
model. Hotspots are considered to generate traffic without
accounting for different services and UEs. On the other hand,
the radio network deployment is simplified by introducing
a fixed coverage radio per RRH, instead of modeling the
Signal-to-Noise-plus-Interference-Ratio (SINR) using a suit-
able propagation channel model.

On the other hand, the authors in [10] propose an opti-
mization problem that minimizes the number of RRHs in a
C-RAN context. Following the same approach of [6], they
use the concept of TDPs to simulate the traffic demand,
where the TDPs are allocated at the center of the demand
zones. The algorithm starts with all the possible RRHs on, and
connects each TDP to the nearest RRH. Then, the proposed
algorithm turns off some of the RRHs at each iteration until
the percentage of not satisfied TDPs is greater than 0.1 %.
However, for the sake of simplicity, the traffic demand of
each TDP is established without UE and service modeling,
considering only a capacity constraint, and the RRH-TDP
association is based on a minimum distance approach.

In [11], the authors propose a framework to improve
resource efficiency at the BS level. They employ a joint
optimization problem to efficiently allocate the resources of
the network slices, the cell-slice association, and the UE-BS
connections. They include SINR requirements and different
slice services in the network optimization problem. This work
demonstrates that realistic scenarios with UEs and services
can be modeled.

The works mentioned above propose promising radio
network deployment strategies. However, there is room
for improvement because they skip traffic generation by
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considering only demanding points without accounting for
slices, services, and UEs. Moreover, the RRH coverage and
the RRH-TDP association are simplified, which results in
synthetic scenarios, usually with a small number of cells, that
do not reflect the complexity of mobile networks. To the best
of our knowledge, there are no published papers that include
cell cooperation in radio network deployment algorithms,
saving energy, and reducing costs at different frequency
ranges and split options in a realistic scenario. For these
reasons, it is impossible to compare the presented results
with the available literature. However, the initial deployment,
where all the cells are active, is considered as a benchmark.
This baseline is extracted from the realistic cell deployment
provided by the European COST Action IRACON in [12],
which has been widely used by the research community.

III. RADIO NETWORK: MATHEMATICAL MODEL
This section presents the mathematical model developed to
optimize the number and distribution of the active RRHs
required to minimize the deployment cost while simultane-
ously maximizing the coverage and satisfying QoS require-
ments for any BBU–RRH split option. The model also allows
for cooperation among RRHs.

A. MODEL DEFINITION
LetR be the set of candidate RRHs and their locations. Infor-
mation provided by the MNO about the already deployed
cellular networks is used (Fourth-Generation (4G) and 5G)
and complemented with additional locations at lamp poles
and street corners. In general, locations with feasible access
to the power grid and line of sight propagation have been
considered. Two types of RRHs can be used, MRRHs and
SRRHs, which have a deployment cost ofCMRRH andCSRRH,
respectively. A binary vector η = {η1, η2, . . . , η|R|} indicates
what kind of cell could be deployed at each possible location,
where the notation |R| denotes the number of elements of the
setR. Equation (1) shows the definition of the elements of η.
The setR is subdivided into the setsM and S that represent
MRRHs and SRRHs respectively, such thatM ∪ S = R.

ηr =

{
1 if r ∈M
0 if r ∈ S

(1)

On the other hand, UEs have been modeled to generate
the traffic demand and also have been represented mathe-
matically by the set U . Each UE is subscribed to a unique
Service Provider (SP) and, for the sake of simplicity, each
SP is associated to one slice. A slice can support multiple
services and the data flow related to a given service is rep-
resented by a Service Function Chain (SFC). Thus, each UE
generates only one service and is associated to one SFC of its
SP. Those services could be GBR or non-GBR (Best Effort)
services such as High-Definition (HD) video streaming and
File Transfer Protocol (FTP), respectively.

Especially, the GBR services must guarantee a minimum
bit rate to each UE, which is denoted as Dmin

u , where u ∈ U .

This parameter is selected by the SP according to the mini-
mum QoS that should be assured for each service. In order to
provide the minimum bit rate to the GBR-UEs, a minimum
SINR should be maintained (denoted as γmin

u ), which can be
estimated employing the Shannon’s equation (2).

γmin
u = 2

Dmin
u
Bu − 1 ∀u ∈ U (2)

where Bu depicts the bandwidth assigned to the UE u.
The geographical area under analysis is divided into TDPs,

where each of them aggregates and concentrates the data rates
of the UEs inside it. LetZ be the set of demand zones or TDPs
in the region and Dz the demand bit rate of the zone z ∈ Z .
The algorithm should select the optimum RRH distribu-

tion that reduces the deployment cost while increases the
coverage. For this reason, the binary decision vector ρ =
{ρ1, ρ2, . . . , ρ|R|} has been defined to indicate the RRH dis-
tribution. ρr is a binary variable that indicates if the candidate
RRH r ∈ R is activated or not, see (3).

ρr =

{
1 if r ∈ R is selected as RRH
0 otherwise

(3)

Besides, a binary decision matrix X of dimension
|R| × |Z| is employed to represent the association between
RRHs and TDPs. The elements of X are represented by the
binary variable xr,z, which is defined as (4):

xr,z =

{
1 if z ∈ Z is served by r ∈ R
0 otherwise

(4)

Next, constraint (5) takes into account cooperation among
RRHs to improve the network capacity (e.g. Joint Trans-
mission (JT) or any other Coordinated Multipoint (CoMP)
technique) by the introduction of the integer µ, that limits the
number of RRHs that can cooperate to increase the bit rate
while mitigating the interference of the zones. It guarantees
that each zone is served by a maximum of µ RRHs. Its mini-
mum value isµ = 1, when the cooperation techniques are not
allowed. MNOs should select µ before the optimization pro-
cess and according to the available cooperation technology of
the considered network.∑

r∈R
xr,z ≤ µ ∀z ∈ Z (5)

Additionally, a key point is the establishment of a relation-
ship between the decision variables ρr and xr,z to ensure that,
if a possible RRH r ∈ R is selected, it must serve at least one
zone z ∈ Z; and if a RRH is associated to a zone z, it must
be active. Equations (6) and (7) account for these conditions
respectively. ∑

z∈Z
xr,z ≥ ρr ∀r ∈ R (6)

Moreover, equation (7) is also a capacity constraint.
It ensures that a selected RRH has enough capacity to satisfy
the demand of its associated TDPs or zones.

ξr ≤ ξ
maxρr ∀r ∈ R
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ξr =
∑
z∈Z

xr,zDz
Dr

∑
r ′∈R xr ′,z

(7)

In (7) Dr represents the achievable throughput at the
RRH r . This parameter depends on the RRH configuration,
e.g., Multiple-InputMultiple-Output (MIMO) order, modula-
tion order and bandwidth. Besides, the real variable ξr depicts
the traffic load of the GBR services through the RRH r . The
MNOs establish a partition of the resources between the GBR
and best effort services by controlling the parameter 0 ≤ ξr ≤
ξmax
≤ 1. For instance, if ξmax

= 0.8 it means that 80% of the
radio resources of the RRHs could be dedicated to satisfy the
traffic of the slices with GBR services. The remainder 20%
of the RRH capacity is reserved for the non-GBR traffic. The
parameter ξmax should be selected according to the demand
of the different types of services.

As it has been mentioned, to guarantee the QoS, it is
important that the UEs experience a SINR greater than a
minimum (γmin

u ). However, due to the enormous amounts
of UEs that are expected in 5G networks, it is not scalable
to define a constraint that maintains an independent SINR
requirement for each UE in the optimization algorithm. For
this reason, equation (8) guarantees that the SINR constraint
is accomplished while relaxing the specifications by moving
them to an upper level (zone plane).

γz ≥ γ
min
z κadj ∀z ∈ Z (8)

In (8), γz represents the perceived SINR at the TDP or
zone z ∈ Z , while γmin

z depicts the minimum SINR that
must be kept at TDP of the zone z, which is taken equal
to the required SINR of the UE with highest demand in
the zone z. This approach is highly restrictive and it does
not take into account techniques such as enhanced Inter-Cell
Interference Coordination (eICIC). For this reason the factor
κadj is introduced, which should be adjusted by the MNO
to consider the mitigation of the interference by dynamic
resource allocation techniques.∑
r∈R

xr,zPRxr,z ≥ γ
min
z κadj

× (
∑
r∈R

ρr (1− xr,z)PRxr,z + N ) ∀z ∈ Z (9)

Equation (8) is transformed into (9) by introducing an esti-
mated value for γz. The left side of (9) represents the useful
received power at TDP z, while the expression in brackets of
the right term models the interference plus noise power. The
parameter N represents the average UE thermal noise power.
It is important to mention that according to equation (8), all
the active RRHs that are not serving the considered TDP
are a source of interference, which means that the mobile
network is designed with a frequency reuse factor equal to
unity. However, operating at the same frequency band in the
entire network will produce a high level of interference. For
this reason, the proposed algorithm considers that MRRHs
and SRRHs operate at different frequency bands. In this work,
the MRRHs operate at 2.6 GHz while the SRRHs are able to

operate at multiple frequency bands (for instance, 3.6 GHz
and 28 GHz). As a result, equation (9) is split into (10)
and (11)∑

r∈M
xr,zPRxr,z ≥ γ

min
z κadj(

∑
r∈M

ρr (1− xr,z)PRxr,z

+N ) ∀z ∈ Z (10)∑
r∈S

xr,zPRxr,z ≥ γ
min
z κadj(

∑
r∈S

ρr (1− xr,z)PRxr,z

+N ) ∀z ∈ Z (11)

where, as mentioned above, M and S are subsets of R that
contain the sets of MRRH and SRRH respectively, such that
R = M ∪ S. The parameter PRxr,z, which represents the
received power at TDP z from the RRH r , is calculated by
using the link budget equation (12)

PRxr,z =
PTxr GrGUE

Lr,z
Lr,z = LRRHLUELFDLPLr,z (12)

where PTxr and Gr denote the transmission power and the
antenna gain of the RRH r , respectively. GUE represents the
UE antenna gain, while Lr,z takes into account the radio link
losses. Namely, LRRH and LUE account for the losses due to
connectors, transmission lines and other mismatches at the
RRH and the UE respectively. Besides, LPLr,z represents the
path-loss from the RRH r to the TDP z. Finally, LFD is a
random variable modelling the slow fading. It is important to
notice that this parameter should be eliminated if the consid-
ered channel model already takes into account the shadowing
effects.

Additionally, equation (13) ensures that if a RRH r is
serving the zone z, the received power (PRxr,z) is greater or
equal than the sensitivity of the UE-receivers (PRxmin).

xr,zPRxr,z ≥ PRxmin (13)

As it has been stated, the proposed algorithm allows for
RRH cooperation with the introduction of the parameter µ.
On the other hand, constraint (5) does not limit the cooper-
ation between MRRH and SRRH, which introduces a high
complexity to the UEs because they would have to operate
simultaneously at different frequency bands, for instance in
a dual connectivity operation mode. For this reason, con-
straint (14) guarantees that the cooperation is limited to a
specific frequency band (known as inter-site aggregation).
In other words, the cooperation in a specific zone is carried
out by only one type of RRH.∑

r∈M
xr,z ≤ 0 ∨

∑
r∈S

xr,z ≤ 0 ∀z ∈ Z (14)

where ∨ stands for the logical disjunction (logical OR opera-
tion), guaranteeing that the zone z ∈ Z is not served by RRHs
of different classes.

The goal of the proposed algorithm is to select the opti-
mum distribution of the RRHs, minimizing the radio network
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deployment cost while simultaneously maximizing the cov-
erage and satisfying QoS requirements. The deployment cost
is computed as in equation (15).

F1 =
∑
r∈R

ρr (ηrCM + (1− ηr )CS)

F1 = CS

∑
r∈R

ρr (ηrσ + (1− ηr ))

σ =
CM

CS
(15)

where σ represents the ratio between the MRRH and SRRH
costs, CM and CS, respectively. This parameter is useful to
consider different kind of scenarios; for instance, to repre-
sent heterogeneous mobile network deployments (σ > 1).
Furthermore, it is used in this work to consider different
BBU–RRH split options because it modifies the cost ratio
betweenMRRHs and SRRHs. On the other hand, it allows the
normalization of the RRH costs by considering CS = 1. The
MNOs should carefully select the cost ratio (σ ) according to
the cost of the considered network devices.

The coverage–QoS is estimated by the number of served
zones, computed as in equation (16).

F2 =
∑
z∈Z

u[
∑
r∈R

xr,z − 1] (16)

F2 ≥ Fmin
2 |Z|

u[n] =

{
1 if n ≥ 0
0 if n < 0

(17)

where u[·] denotes the Heaviside sequence and the operator
| · | stands for the cardinal of the considered set. More-
over, the MNO has the flexibility to establish the mini-
mum coverage-QoS that must be provided by controlling the
parameter 0 ≤ Fmin

2 ≤ 1 in constraint (17). Finally, the opti-
mum radio network deployment algorithm is formulated as
an integer optimization problem in equation (18).

minimize
ρr ,xr,z

F1,−F2

subject to : (1)− (7), (10)− (14), (17) (18)

Table 1 summarizes the sets, variables and parameters of
the proposed algorithm.

B. REFORMULATION AS INTEGER LINEAR OPTIMIZATION
PROBLEM
The algorithm formulated in section III-A is a non-linear
integer programming model. The non linearity is introduced
by the constraints (7), (10), (11), (14) and the coverage func-
tion (16). In order to solve the proposed algorithm employ-
ing a linear optimization solver, a reformulation of these
expressions to linear equations is needed. In this section,
the problem is transformed into an ILP model.

The linearization of the previously mentioned expressions
uses theorem 1:
Theorem 1: Lets assume D ⊆ Rn, f : D→ R, M ∈ R :

M 6= 0;M ≥ max{f (φ)|φ ∈ D} and δ a binary variable

such that δ ∈ {0, 1}. Then, the following expressions are
equivalent,

i: δ = 0 H⇒ f (φ) ≤ 0
ii: f (φ)−Mδ ≤ 0

The linearization of the constraint (7) implies the modifi-
cation of the term xr,z∑

r ′∈R xr ′,z
. Following the constraint (5),

the denominator of this term is an integer (k ∈ N|0 ≤ k ≤
µ), bounded by the maximum number of RRHs that could
cooperate to serve a zone (µ). So, it is possible to reformulate
the expression as it is described in (19)

xr,z∑
r ′∈R xr ′,z

=

{∑µ
k=1 k

−1xr,zδk,z if k 6= 0
0 if k = 0

(19)

where δk,z are binary variables indicating if the TDP z is
served by k RRHs, as described in (20)

δk,z = 1 H⇒
∑
r∈R

xr,z = k ∀z ∈ Z, k ∈ [0, µ] (20)

However, the equations (19) and (20) are also non-linear
expressions that should be linearized. The product of binary
variables in (19) is substituted by another binary variables
such that xr,zδk,z = ψr,z,k , which is equivalent to (21).

ψr,z,k = 1⇐⇒ xr,z + δk,z = 2 (21)

After this mathematical procedure, the equations (20)
and (21) could be converted to linear expressions employing
the Theorem 1. Equation (22) shows the linear equivalent
expressions of the constraint (7).∑

z∈Z
Dz

µ∑
k=1

k−1ψr,z,k ≤ ξmaxρrDr (22a)

ψr,z,k ≤ xr,z (22b)

ψr,z,k ≤ δk,z (22c)

ψr,z,k ≥ δk,z + xr,z − 1 (22d)∑
r∈R

xr,z ≤ µ− δk,z(µ− k) (22e)∑
r∈R

xr,z ≥ kδk,z (22f)

µ∑
k=0

δk,z = 1 (22g)

For the sake of simplicity, the domain of the indexing sub-
scripts r, z, k has been made explicit only when it is different
from the defined domain.

The other non-linear constraints are (10), (11) and (14).
As it has been explained, each TDP could be served by k
RRHs, where k = 0 means there is no RRH that can serve
TDP z satisfying the constraints. This situation has not been
considered by constraints (10) and (11), which do not hold
for this special case. For this reason, the binary variables βMz
and βSz , that are used to indicate if the zone z is served by
MRRHs or SRRHs, are introduced in (23) and (24).

βMz = 1⇐⇒
∑
r∈M

xr,z ≤ 0 (23)
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TABLE 1. Glossary of terms of the RRH selection algorithm.

βSz = 1⇐⇒
∑
r∈S

xr,z ≤ 0 (24)

Considering this approach, the constraints could be rewrit-
ten as it is shown in (25)∑
r∈T

xr,zPRxr,z + Lβ
T
z ≥ γ

min
z κadj(

∑
r∈T

ρrPRxr,z −
∑
r∈T

xr,zPRxr,z

+N ) ∀z ∈ Z (25)

where T is equal toM or S to represent the constraints (10)
and (11) respectively. An alternative is to write both con-
straints in the same expression. It is important to notice that
the non-linear expression ρrxr,z has been substituted by xr,z,
because the constraint (7) ensures that if xr,z = 1 then ρr = 1,
which is equivalent to ρrxr,z = xr,z. The parameter L ∈ R is
a large number to hold the constraint (25) when the zone z is
not served by this type of RRH.

On the other hand, the constraint (14) is an inclusive dis-
junction that could be rewritten combining (23) and (24) with
the expression βMz + β

S
z ≥ 1. Theorem 1 has been employed

to obtain the linear expressions of (23) and (24), which are
shown in (26). ∑

r∈M
xr,z ≤ µ(1− βMz ) (26a)∑

r∈M
xr,z ≥ ε(1− βMz ) (26b)

∑
r∈S

xr,z ≤ µ(1− βSz ) (26c)∑
r∈S

xr,z ≥ ε(1− βSz ) (26d)

βMz + β
S
z ≥ 1 (26e)

Besides, the coverage is estimated in equation (16), as the
number of served zones. Following this definition, the multi-
objective optimization problem (18) should minimize the
deployment cost while maximizing the coverage. However,
maximizing the number of served zones is equivalent to
minimizing the zones without service. This approach allows
for the reuse of the binary variable δ0,z that indicates if the
zone z is not served. Then, constraint (17) is expressed as (28)
and the underlying linear coverage–QoS function is shown in
equation (27). ∑

z∈Z
δ0,z = F3 = |Z| − F2 (27)∑

z∈Z
δ0,z ≤ Fmin

2 |Z| (28)

This strategy reduces the complexity of the proposed algo-
rithm by eliminating the additional variables in the lineariza-
tion of the Heaviside sequence u[·] in (16).

Finally, the ILP model of the proposed algorithm is sum-
marized in equation (29). The multi-objective optimization
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problem is solved employing the weighted–sum method,
where the weights ω1 and ω3 should be carefully selected
by the MNO in order to obtain an optimal point on the
Pareto Front. Additionally, the subscript n in equation (29a)
means that the objective functions have been normalized to
guarantee that their values are in the same range. In this
case, each function has been divided by its maximum value.
The maximum of F1 and F3 are CS(σ |M| + |S|) and |Z|,
respectively.

Min
ρr ,xr,z

ω1F1n + ω3F3n (29a)

subject to :
∑
r∈R

xr,z ≤ µ (29b)∑
z∈Z

xr,z ≥ ρr (29c)

xr,zPRxr,z ≥ PRxmin (29d)∑
z∈Z

Dz

µ∑
k=1

k−1ψr,z,k ≤ ξmaxρrDr (29e)

ψr,z,k ≤ xr,z (29f)

ψr,z,k ≤ δk,z (29g)

ψr,z,k ≥ δk,z + xr,z − 1 (29h)∑
r∈R

xr,z ≤ µ− δk,z(µ− k) (29i)∑
r∈R

xr,z ≥ kδk,z (29j)

µ∑
k=0

δk,z = 1 (29k)∑
r∈T

xr,zPRxr,z + Lβ
T
z ≥

γmin
z κadj(

∑
r∈T

ρrPRxr,z −
∑
r∈T

xr,zPRxr,z + N )(29l)∑
r∈M

xr,z ≤ µ(1− βMz ) (29m)∑
r∈M

xr,z ≥ ε(1− βMz ) (29n)∑
r∈S

xr,z ≤ µ(1− βSz ) (29o)∑
r∈S

xr,z ≥ ε(1− βSz ) (29p)

βMz + β
S
z ≥ 1 (29q)∑

z∈Z
δ0,z ≤ Fmin

2 |Z| (29r)

ρr , xr,z, δk,z, ψr,z,k , βMz , β
S
z binary variables.

IV. DESCRIPTION OF THE SCENARIO
This section describes the scenario used to validate the
proposed algorithm. A realistic radio network deployment
over the Vienna City is considered (see Fig. 2), which has
been detailed in [13]; it has been widely used to validate

FIGURE 2. Possible RRH locations on the considered scenario.

different optimization algorithms in mobile communica-
tions [12], [14]. Furthermore, this same scenario has been
used in our previous works to validate the performance of
adaptive resource allocation strategies on C-RAN and 5G
networks [4], [15].

The proposed scenario has a map resolution of 5 m with
205 × 291 points, which is equivalent to an area of 1025 ×
1455 m2.
To complete the scenario, three layers in a hierarchical

structure have been defined: RRH plane, Demand plane and
UE plane as it is represented in Fig.3. Details of each layer are
given in the following subsections as well as the interrelations
between them.

A. RRH PLANE
Fig. 2 shows the candidate locations of the RRHs in the
urban region of Vienna. Red stars and green dots represent
the MRRH and SRRH possible locations, respectively. Sec-
torization can be used at MRRHs locations. As shown on
Fig. 2, the SRRHs are located at street corners to facili-
tate line-of-sight propagation. The parameters of the RRHs
have been chosen to describe a realistic 5G radio network
deployment. Transmitted powers of MRRHs and SRRHs are
Pr = 43 dBm and Pr = 24 dBm respectively. When both,
MRRH and SRRH, operate at FR1 (sub 6 GHz) the antenna
gains are 18 dBi and 2 dBi respectively. When FR2 is consid-
ered (mmWave, 28 GHz) the antenna gain of the SRRHs is
increased to 12 dBi, because more elements can be added at
the antenna array, according to [16].

Besides the sensitivity and SINR constraints, the capacity
constraint should also be satisfied. To this end, it is funda-
mental to introduce an estimation of the maximum bit rate
capacity of the RRHs. To do so, it is necessary to know addi-
tional RRHs configuration parameters such as modulation,
MIMO order, operating frequency band, bandwidth and 5G
numerology.

As previously discussed, to reduce the inter-cell
interference MRRHs and SRRHs operate at different
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FIGURE 3. Hierarchical structure of the scenario.

frequencies. In this work 2.6 GHz (FR1) is selected for the
MRRH, while SRRHs could operate at 3.6 GHz (FR1) or
28 GHz (FR2). In particular, n41 (2496-2690 MHz) and
n77 (3300-4200 MHz) frequency bands are considered when
MRRHs and SRRHs operate at FR1, with a bandwidth
of 100 MHz for each. When the SRRHs operate at FR2,
the selected frequency band is n257 (26.50-29.50 GHz) with
300 MHz of bandwidth.

While the maximum modulation order considered for all
the frequency ranges is 256QAM, lower values would be
dynamically assigned according to the interference and prop-
agation conditions. Regarding the MIMO, 8× 8 and 16× 16
are considered in FR1 and FR2 respectively. Finally, the the-
oretical RRHs maximum capacity is estimated according
to [17], and using the values summarized in Table 2.
In the scenario used to test, the RRH plane is composed

of 41 possible RRHs locations, with 8 of them for possible
MRRHs while the remainder are for possible SRRHs.

B. DEMAND PLANE
The demand plane contains the TDPs that are allocated in the
set Z and their UEs. The whole map is divided into demand
regions.

The proposed optimization algorithm does not depend on
the strategy used to split the demand plane. This work consid-
ers two options for splitting. The first one is based on a regular
map division: the whole map is divided into

√
|Z| ×

√
|Z|

homogeneous zones. This simple approach has the advantage
that by increasing the number of divisions (so, by decreasing
the area of one zone), a finer tuning is obtained at the expense
of increasing the computational complexity. The second is an
irregular map division: the number of zones is equal to the
number of candidate RRHs, being the center of the zone the
point where the RRHs is located. In other words, the zones are
defined using a Voronoi diagram, which is a better approach
for those cases where traffic is not uniformly distributed and
there are hotspots or areas with a high demand. In this dia-
gram eachmap point is associated with the zone of the nearest
RRH. As result, the dimension of the zones decreases in areas
with higher RRH spatial density and higher concentration
of UEs. Once the demand plane has been split, the traffic
demand of each zone should be estimated. It depends on the
demand of the UEs that fall inside the zone.

C. UE PLANE
As it has been mentioned above, each UE is associated to a
SFC provided by a slice of a specific SP. Different kind of ser-
vices have been modeled to generate the traffic demand. The
voice and video services on 5G networks will be delivered
based on the IP Multimedia Subsystem (IMS). In general,
this kind of services are enclosed in the standardization of
Voice/Video over New Radio (VoNR) [18]. In particular,
three examples of these services, which have been specified
by [19], are considered in this work: conversational voice, HD
video and Standard-Definition (SD) video.

The GBR of each service must be selected by the SP to
guarantee a specific QoS. In this case, the conversational
audio service uses Enhanced Voice Services (EVS) codec
(EVS), which has different bit rates configurations with a
maximum value of 128 kbps; this is the value considered
as the GBR to provide the maximum QoS to the end user.
On the other hand, the video services use H.265 and EVS
codecs. In the proposed scenario, two different video qualities
are considered: HD video and SD video with 10 Mbps and
2 Mbps of GBR respectively, which is consistent with [20].
Table 3 summarizes the service parameters, where the param-
eter SP mix represents the percentage of UEs subscribed to
each SP/service.

A random user distribution can be used when the demand
plane is regular. When the map is split using a Voronoi
diagram, more users are allocated in the SRRH regions.
In a general case, UEs should be allocated according to the
traffic measures and reports that the MNO has about the
region.

Fig. 4 shows the demand plane with Low traffic (LT)
profile that contains 30000 randomly distributed UEs in a
regular divided map of 49 zones (7 × 7) or TDPs. Fig. 4a
shows the traffic demand of each TDP in Mbps (Dz). On the
other hand, Fig. 4b shows the number of UEs that belong
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TABLE 2. RRH plane: configuration and maximum capacity.

TABLE 3. Service parameters.

FIGURE 4. Traffic distribution of the demand plane at each zone or TDP
with a total of 30000 UEs: a) traffic demand in Mbps, b) number of UEs.

to each zone. In order to analyze the performance of our
proposal, medium and high traffic profiles have also been
considered, with 60000 and 300000 UEs, respectively.

D. PROPAGATION MODEL
The use of an adequate propagation model is fundamental to
analyze a realistic system; especially in a millimeter-wave 5G
environment. In this paper, a 3D ray-tracing map-based prop-
agation model is employed [21]. It is similar to the METIS
model for urban macro and micro cells [22]. This channel
model provides correlation and spatial consistency because
it employs deterministic and physical principles accounting
for scattering mechanisms, such as diffraction, scattering and
blocking.

It is important to mention that the proposed analysis is
limited to the downlink and outdoor communications. In par-
ticular, it is unfeasible to provide indoor communications at
28 GHz. Table 4 summarizes the parameters of the scenario.

The air interface establishes not only the considered prop-
agation model but also the RRH–TDP association, which
has been described by the binary variables xr,z, including
cooperation among RRH to serve the same TDP or demand
zone, as represented in Fig. 3.

TABLE 4. Features of the scenario.

V. RESULTS: ANALYSIS AND DISCUSSION
This section presents the results of testing a radio net-
work deployment using the proposed optimization algorithm.
These results demonstrate how the algorithm reduces the
number of required active RRH. Besides, it offers acceptable
coverage and satisfies the UE requirements in terms of QoS.
This is crucial because it entails a considerable reduction
in the network cost, with the consequent improvements in
energy-saving, necessary when a large amount of cells are
deployed as it is the case of 5G and beyond.

The algorithm could adapt to variations in traffic patterns
and load, recalculating the set of RRHs that should be active
for each case. Without the optimization procedure, the MNO
would activate the 41 available RRHs, not benefiting from
the resource, cost, and energy-saving improvements. The
optimization gains will be compared with this baseline sit-
uation [12] through the different figures and tables analyzed
in this section.

As 3GPP includes different split options of the proto-
col stack between BBU and RRH to reduce bandwidth and
latency requirements, it is fundamental to consider them in
the optimization process. For this reason, the following splits
are analyzed: split option 8 that corresponds to a fully central-
ized C-RAN; split 6, whereMIMOprecoding andOrthogonal
Frequency-Division Multiplexing (OFDM) modulation are
maintained at the RRH side; and split 1 that represents a
traditional architecture where all the baseband functions are
allocated at the RRH (see Fig. 1).

Besides, a comparison of results when SRRHs operate
at different frequency ranges (FR1 and FR2) is included.
In particular,MRRHs operate at 2.6GHz,while SRRHs could
work at 3.6, 5, and 28 GHz. For simplicity, only the 3.6 and
28 GHz cases are analyzed since there are no significant
differences between the results obtained at 3.6 and 5 GHz.
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TABLE 5. Resume of the optimized cost and coverage-QoS for different weights, frequency bands, split options and traffic profiles.

Finally, it is interesting to stress the algorithm consider-
ing different traffic loads. For this purpose, three data traf-
fic options have been considered: Low, Medium, and High
Traffic patterns, with 30000, 60000, and 300000 UEs,
respectively. The split of service parameters with the dif-
ferent percentages of GBR and Best-Effort users is given
in Table 3.

The simulations and modeling have been carried out
in MatLab. Specifically, the convex programming software
CVX [23] with the Mosek solver [24] have been used to
solve the optimization problem. An MSI Prestige 15 A10SC
computer with a Core i7 10th gen. CPU and 32 GB of RAM
has been used to carry out the simulations.

A. COST REDUCTION
As it has been explained in subsection III-B, the cost is
normalized using the maximum cost of the considered split
option, which is CS(σ |M| + |S|), where σ represents the
ratio between the cost of MRRHs and SRRHs. The value of
σ changes depending on the split option. For split 8 (fully
centralized C-RAN), it corresponds to a value of σ = 1,
whereas for split options 6 and 1 the assigned values are
σ = 10 and σ = 50, respectively. However, this parameter
should be adjusted according to the cost of the available
devices. Cost differences associated with power amplifiers
and antennas have not been considered in the value of σ , nor
the additional cost of the hardware equipment when working
at higher frequencies, because the purpose is to measure the
impact of different split options. However, they could be
easily included by changing σ values.

It is fundamental to fix the weights ω1 and ω3 = 1 −
ω1 to solve the multi-objective optimization problem. Equa-
tion (29a) shows that these weights are associated with the
cost and coverage-QoS optimization, respectively. The con-
sidered values for ω1 cover the range from 0 to 1 with a step
of 0.2. For instance, if ω1 = 0.2 and ω3 = 0.8, the algorithm
provides more importance to coverage than cost reduction
optimization.

Table 5 shows the comparison before and after running the
optimization algorithm for the combinations of the consid-
ered parameters. The first three columns indicate the traffic

pattern (Low, Medium, or High), the frequency range for the
SRRH, which can be 3.6 GHz or 28 GHz, and the considered
splits (8, 6, and 1). The fourth column displays the cost of the
deployment before the optimization, that is, assuming that all
the RRHs in the scenario are active. Values under the Nor-
malized Cost columns give the normalized cost factors after
the optimization for different ω1: from 0, meaning that the
optimization is focusing on coverage-QoS, to 1, meaning that
the optimization is focusing on cost reduction. Absolute cost
values could be obtained bymultiplying the normalized factor
by the cost value before optimization. The final columns
under the Coverage-QoS label provide the percentage of
covered zones after the optimization.

The data from Table 5 can be used to extract multiple
conclusions:
• Assuming that only the solutions with a final
Coverage-QoS higher than 95 % are acceptable, it is
possible to see that some combinations of parameters
should not be used. It is the case of Medium Traffic
(60000 users) at 3.6 GHz where, regardless of the split
option and the considered weights, the requirements are
never achieved. Even when Coverage-QoS is prioritized
(ω1 = 0), results show that all the 41 RRHs need to
be active, but the maximum achieved Coverage-QoS is
only 84%. For this reason, the combination High Traffic
(300000 users) at 3.6 GHz is not analyzed, as it is known
in advance that this combination will never accomplish
the coverage-QoS requirement.

• On the other hand, there is always a solution that guaran-
tees a Coverage-QoS higher than 95 % in the remaining
combinations, and in most cases, there is more than one
solution. If this is the case, the best one in terms of cost
reduction is the solution associated with the higher ω1
value, because it is the solution that maximizes the cost
reduction of the scenario, allowing for a higher number
of inactive RRHs with the consequent energy-saving.

• Cost reduction is indirectly given in Table 5 as the com-
plementary of the Normalized Cost value. For example,
in the first row, the value is 0.68 for LT, FR1, split 1,
and ω1 = 0. In this case, the algorithm provides a cost
reduction of 32 %.
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FIGURE 5. Coverage-QoS and cost reduction trade-off after running the optimization algorithm.

B. COST VS COVERAGE-QoS
Table 5 shows the trade-off between the achieved cost reduc-
tion and the Coverage-QoS of the UEs in the scenario. Fig. 5
illustrates this trade-off. Each circumference represents a
different Coverage-QoS percentage, starting with 50% for the
most internal, meaning that only 50% of the TDPs of the
scenario have been covered with the required QoS, to 100 %
for the most external, meaning that all the coverage-QoS
requirements have been fulfilled. On the other hand, each
radial shown in Fig. 5 represents a different cost reduction
value, ranging from 0 to 100 %, written at the edge of
the radial. Remember that cost reduction is calculated with
respect to the maximum cost, obtained when all the RRHs
remain active and shown in Table 5. The colored region in
green is the area where the coverage-QoS is higher than
90 %. The light blue area represents the region where the cost
reduction is higher than 20 %. Each point (circles, triangles,
or rhomboids) is obtained after running the optimization and
represents the result for differentω1 values. The points closest
to the most internal circumference are associated with the
maximum value ω1 = 1. Furthermore, the distance to the
center of the circumference increases as the value of ω1
decreases, indicating that coverage-QoS is gaining priority
with respect to cost reduction. The blue, red and green lines
in Fig. 5 connect the points with the same input simulation
parameters (FR, split, and traffic level).

The blue-continuous lines represent the performance asso-
ciated to split 8, while red-discontinuous and green-punctured

lines represent split 6 and 1, respectively. The cases shown
in Table 5 that do not achieve a good coverage-QoS after the
optimization have not been represented in Fig. 5, as they are
not considered valid solutions.

The best solution for each case (above 95 % of coverage-
QoS) is represented by the symbol located at the outermost
end of the line. There are other symbols of the same type
showing a better Coverage-QoS, even in some cases close
to 100 %, at the expense of an increasing cost. They are
represented in Fig. 5 by the corresponding symbols, but they
appear isolated (not connected to the line) to distinguish them.
Despite this analysis, theMNO could select the solution point
that best reflects the network requirements, addressing the
trade-off between coverage-QoS and cost reduction.

Firstly, it should be appreciated that split 1 provides the
highest cost reduction (around 95 %) while offering a good
coverage-QoS. This extreme cost reduction is due to the
higher cost of the RRHs, as they contain all the baseband
functionalities. Additionally, split 6 shows cost reductions
of around 80-90 %, while split 8 exhibits cost reductions
of 70-50-40 % for the different combinations of carriers
and traffic. The cost is also reduced when moving to higher
frequency bands because, as wider bandwidths are assigned
to the RRHs, they are able to serve more UEs. However,
if some system parameters change (as for example antenna
gains or transmitted power), the number of RRHs needed to
satisfy receiver sensitivity requirements, could increase when
working at 28 GHz.
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On the other hand, analyzing LT and Medium traffic (MT)
cases at 3.6 GHz, it is shown that when the traffic profile is
close to the maximum capacity of the whole network, the cost
reduction decreases since most of the RRHs should be active
to satisfy the demand. This behavior is similar at 28 GHz.
However, in this case, the algorithm saves at least 20 % of the
network cost because of the higher capacity of the network at
FR2. The cost reduction reaches approximately 75 % when
LT demand is considered, while the coverage-QoS reaches
100 %.

Fig. 6 complements the previous results by representing
the minimum cost that guarantees a Coverage-QoS higher
than 95 % after solving the multi-objective problem where
Fig. 6(a), 6(b) and 6(c) stand for split 8, 6, and 1 respec-
tively. Fig. 6 also shows the cost values before optimizing,
to facilitate the comparison. The blue bars represent valid
solutions, while the red bars represent solutions that do not
satisfy the 95 % of Coverage-QoS and neither reduce the
cost. In terms of absolute cost deployment, optimal resource
management, and computational capacity efficiency, split 8 is
the best option for C-RAN networks, as has been widely
shown. As the cost to deploy a new RRH is lower than
with splits 6 and 1, the cost reduction when turning-off a
RRH is also lower; however, it is still a significant reduction.
It is fundamental to notice that the cost reduction is directly
associated with an increase in the energy efficiency of the
network. The lower the number of RRH required to satisfy
the UEs requirements, the higher the energy-saving.

To summarize the analysis, it has been shown that the
proposed algorithm is highly efficient allowing practical cost
deployment reductions between 20 to 70 % depending on the
traffic level (Low,Medium, High), carrier frequency used and
selected split option.

C. REDUCTION IN THE NUMBER OF ACTIVE RRH AND
USAGE RATIO
The proposed optimization framework is worthy for the
MNO, not only in the deployment phase but also to select
the RRHs that should be active to satisfy the current traffic
demand or even the predicted traffic demand. This could be
achieved by combining the present algorithm, or the look-
up tables that can be generated after running it, with opti-
mized AI prediction tools allowing to analyze a dynamic
scenario.

Additionally, it contributes enormously to energy-saving,
a key parameter for 5G and future 6G networks. The number
of required active RRHs after the optimization is shown
in Fig. 7 for each split option, being Fig. 7(a) for the 3.6 GHz
carrier frequency, while Fig. 7(b) shows the 28 GHz results.
The first bar of each split corresponds to LT profile, while
the second bars stand for MT or High traffic (HT), depend-
ing on the figure. Remember that the initial situation, with-
out optimization, uses the 41 RRHs of the scenario, being
8 of them MRRHs. The presented solutions correspond to
the weights considered in Fig. 6, which guarantee a 95 %
Coverage-QoS while reducing simultaneously the cost.

FIGURE 6. Minimum cost and corresponding weights for the different
splits, frequency bands and traffic patterns.

As expected, regardless of the frequency band, the num-
ber of active RRHs increases with the traffic demand.
On the other hand, the distribution of MRRHs and SRRHs
is detailed, showing that the algorithm prioritizes SRRHs
when σ increases, to reduce the cost. The MT simulation
working at 3.6 GHz needs all the RRHs of the scenario
to maximize the coverage. This MT solution is represented
to show that the optimization algorithm could signal when
the initial assigned resources are insufficient. In this case,
to find a feasible solution, MNOs should increase the
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FIGURE 7. Number of active RRHs vs split options. Left and right bars of
each split option represent LT, and MT or HT cases, respectively.

number of RRHs deployed or the bandwidth allocated to
them.

It is also interesting to show that in Fig. 7(a) the opti-
mized solution ends with a similar number of required
active RRHs(25-24), being the main difference that opti-
mal split 8 requires keeping six active MRRHs while in
splits 6 and 1MRRHs are not needed at all. This also explains
why in Fig. 6 there is a significant difference in cost between
the three splits: in splits 1 and 6 the cost of a MRRH is very
high compared to the cost of a SRRH, so the algorithm tries
to avoid the activation of MRRHs when searching for the
optimal solution.

From a practical point of view, it may be reasonable that
the deployed MRRHs remain always active, the switch-off
possibility being associated only to the SRRHs. For lack
of space, these results have not been shown. However, it is
implemented as a configuration option.

The operation at 28 GHz shows an enormous reduction
in the number of required active RRHs, around one-third of
them are needed in LT conditions while half of them are
required when HT is considered. Propagation is not the lim-
iting factor in the scenario because the cells are close enough
and transmitted power and antenna gain are high enough

FIGURE 8. Resource usage ratio (ξr ) of the RRHs by the GBR slices in
C-RAN (split option 8): (a) at 3.6 GHz with LT profile, (b) at 28 GHz with LT
profile, and (c) at 28 GHz with HT profile.

to satisfy the UE requirements. However, only outdoor UEs
have been considered, assuming that at 28 GHz, indoor users
should be served by indoor Base Stations due to the large
building penetration losses. The main difference with the
3.6 GHz operation is that the bandwidth associated to each
RRH is higher.

The last fundamental parameter analyzed in this work is
the usage ratio, (ξr ), which has been previously defined as the
ratio between the GBR traffic load at RRH r and its maximum
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FIGURE 9. Resulting radio network for a C-RAN at 28 GHz with ω1 = 0.6
and LT profile.

capacity. In the simulations, 20 % of the resources of a RRH
are dedicated to best-effort services, while 80 % is for the
GBR services. The usage ratio for a fully C-RAN (split 8) and
for the ω1 values given in Fig. 6 is shown in Fig. 8. The red
bars from id 1 to 8 correspond to the active MRRHs, while
the remaining green bars represent the active SRRHs. Each
figure is for a different frequency band and traffic pattern
combination. Even in the most loaded case 8(a) most of the
RRHs still have at least 30 % of remaining capacity that
could be used to attend sudden network variations as new or
handover UEs as well as cooperative beamforming. In those
cases where the available capacity is not enough to serve a
new TDP or zone, the capacity of several RRHs could be
aggregated, using cooperation techniques that will improve
the coverage and efficiency of the network. A comprehensive
analysis considering cooperation techniques and their impact
on the performance of the proposed algorithm will be the
main objective of the next publications.

Finally, Fig. 9 shows an example of a radio network deploy-
ment after applying the optimization process, in particular,
a C-RAN at 28 GHz with ω1 = 0.6 and LT profile. The
gray markers on Fig. 9 depict the RRHs that have been deac-
tivated from the original and non-optimize network deploy-
ment (see Fig. 2). It allows not only to realize the advantage
of the optimization but also to analyze the resulting network
distribution.

VI. CONCLUSION
Overall power consumption of future mobile networks should
not grow beyond what it is now for 5G. A strategy that
provides a sustainable optimal deployment not only for 5G
but also for B5G and 6G radio networks has been provided.
The main objectives are to reduce the footprint on energy
efficiency, the deployment and operational costs of the net-
work while maintaining the coverage-QoS. This complex
problem has beenmodeled, introducing aMulti-objective ILP

optimization algorithm to select the optimum distribution of
the RRHs on the densest zone of the city of Vienna.

The proposed algorithm is tested by using a realistic sce-
nario that includes 41 possible RRHs in a heterogeneous
deployment with MRRHs and SRRHs, UEs modeled with
different services, and an accurate 3D ray-tracing propa-
gation model. Additionally, operation at frequency bands
3.6 and 28 GHz, as well as different C-RAN split options are
studied.

As so many parameters can be compared after the opti-
mization, it is impossible to summarize the main results
in few words. A detailed explanation is already given in
Section V. Only mention that the algorithm reduces the
deployment cost while maintaining the coverage-QoS better
than 95 %. Especially, at 3.6 GHz with low traffic demand,
the cost reduction is around 35 %, while at 28 GHz it
reaches 70 % with LT profile and almost 50 % under a
HT condition.

The proposed algorithm also includes RRH coopera-
tion. However, the detailed analysis and comparison of the
achievements with/without RRHs cooperation has been left
for a future publication, to simplify a bit the comprehension
of the mathematical model exposed, which is quite complex
and requires a large amount of variables. Let’s mention that
the results obtained so far with cooperation are promising,
showing and additional cost reduction and improving the
energy efficiency of the network.

Besides, the option of reducing the cost based only on
SRRHs activation/deactivation is currently being included in
the algorithm. This upgrade would allow modelling a hetero-
geneous network where the control plane is managed by few
MRRHs that always remain active, to provide better indoor
communications.

Finally, this approach will be upgraded by integrating pre-
diction tools based on AI to efficiently manage the resources
centralized at the BBU pools. To do so, the AI algorithms
analysed by the authors in a previous publication [4] will be
used to deploy the optimal solution on a real-time or near-
to-real-time basis, attending of course the limitation that an
RRH cannot be activated/deactivated continuously in a real
network.

This tool undoubtedly could help the MNOs to improve
their network planning by detecting problems, providing a
network diagnosis, optimizing and controlling the network by
allowing the operator to balance between coverage-QoS and
cost reduction and consequently power consumption savings.
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